9d33edb20f
- Core: The bulk is the rework of the MSI subsystem to support per device MSI interrupt domains. This solves conceptual problems of the current PCI/MSI design which are in the way of providing support for PCI/MSI[-X] and the upcoming PCI/IMS mechanism on the same device. IMS (Interrupt Message Store] is a new specification which allows device manufactures to provide implementation defined storage for MSI messages contrary to the uniform and specification defined storage mechanisms for PCI/MSI and PCI/MSI-X. IMS not only allows to overcome the size limitations of the MSI-X table, but also gives the device manufacturer the freedom to store the message in arbitrary places, even in host memory which is shared with the device. There have been several attempts to glue this into the current MSI code, but after lengthy discussions it turned out that there is a fundamental design problem in the current PCI/MSI-X implementation. This needs some historical background. When PCI/MSI[-X] support was added around 2003, interrupt management was completely different from what we have today in the actively developed architectures. Interrupt management was completely architecture specific and while there were attempts to create common infrastructure the commonalities were rudimentary and just providing shared data structures and interfaces so that drivers could be written in an architecture agnostic way. The initial PCI/MSI[-X] support obviously plugged into this model which resulted in some basic shared infrastructure in the PCI core code for setting up MSI descriptors, which are a pure software construct for holding data relevant for a particular MSI interrupt, but the actual association to Linux interrupts was completely architecture specific. This model is still supported today to keep museum architectures and notorious stranglers alive. In 2013 Intel tried to add support for hot-pluggable IO/APICs to the kernel, which was creating yet another architecture specific mechanism and resulted in an unholy mess on top of the existing horrors of x86 interrupt handling. The x86 interrupt management code was already an incomprehensible maze of indirections between the CPU vector management, interrupt remapping and the actual IO/APIC and PCI/MSI[-X] implementation. At roughly the same time ARM struggled with the ever growing SoC specific extensions which were glued on top of the architected GIC interrupt controller. This resulted in a fundamental redesign of interrupt management and provided the today prevailing concept of hierarchical interrupt domains. This allowed to disentangle the interactions between x86 vector domain and interrupt remapping and also allowed ARM to handle the zoo of SoC specific interrupt components in a sane way. The concept of hierarchical interrupt domains aims to encapsulate the functionality of particular IP blocks which are involved in interrupt delivery so that they become extensible and pluggable. The X86 encapsulation looks like this: |--- device 1 [Vector]---[Remapping]---[PCI/MSI]--|... |--- device N where the remapping domain is an optional component and in case that it is not available the PCI/MSI[-X] domains have the vector domain as their parent. This reduced the required interaction between the domains pretty much to the initialization phase where it is obviously required to establish the proper parent relation ship in the components of the hierarchy. While in most cases the model is strictly representing the chain of IP blocks and abstracting them so they can be plugged together to form a hierarchy, the design stopped short on PCI/MSI[-X]. Looking at the hardware it's clear that the actual PCI/MSI[-X] interrupt controller is not a global entity, but strict a per PCI device entity. Here we took a short cut on the hierarchical model and went for the easy solution of providing "global" PCI/MSI domains which was possible because the PCI/MSI[-X] handling is uniform across the devices. This also allowed to keep the existing PCI/MSI[-X] infrastructure mostly unchanged which in turn made it simple to keep the existing architecture specific management alive. A similar problem was created in the ARM world with support for IP block specific message storage. Instead of going all the way to stack a IP block specific domain on top of the generic MSI domain this ended in a construct which provides a "global" platform MSI domain which allows overriding the irq_write_msi_msg() callback per allocation. In course of the lengthy discussions we identified other abuse of the MSI infrastructure in wireless drivers, NTB etc. where support for implementation specific message storage was just mindlessly glued into the existing infrastructure. Some of this just works by chance on particular platforms but will fail in hard to diagnose ways when the driver is used on platforms where the underlying MSI interrupt management code does not expect the creative abuse. Another shortcoming of today's PCI/MSI-X support is the inability to allocate or free individual vectors after the initial enablement of MSI-X. This results in an works by chance implementation of VFIO (PCI pass-through) where interrupts on the host side are not set up upfront to avoid resource exhaustion. They are expanded at run-time when the guest actually tries to use them. The way how this is implemented is that the host disables MSI-X and then re-enables it with a larger number of vectors again. That works by chance because most device drivers set up all interrupts before the device actually will utilize them. But that's not universally true because some drivers allocate a large enough number of vectors but do not utilize them until it's actually required, e.g. for acceleration support. But at that point other interrupts of the device might be in active use and the MSI-X disable/enable dance can just result in losing interrupts and therefore hard to diagnose subtle problems. Last but not least the "global" PCI/MSI-X domain approach prevents to utilize PCI/MSI[-X] and PCI/IMS on the same device due to the fact that IMS is not longer providing a uniform storage and configuration model. The solution to this is to implement the missing step and switch from global PCI/MSI domains to per device PCI/MSI domains. The resulting hierarchy then looks like this: |--- [PCI/MSI] device 1 [Vector]---[Remapping]---|... |--- [PCI/MSI] device N which in turn allows to provide support for multiple domains per device: |--- [PCI/MSI] device 1 |--- [PCI/IMS] device 1 [Vector]---[Remapping]---|... |--- [PCI/MSI] device N |--- [PCI/IMS] device N This work converts the MSI and PCI/MSI core and the x86 interrupt domains to the new model, provides new interfaces for post-enable allocation/free of MSI-X interrupts and the base framework for PCI/IMS. PCI/IMS has been verified with the work in progress IDXD driver. There is work in progress to convert ARM over which will replace the platform MSI train-wreck. The cleanup of VFIO, NTB and other creative "solutions" are in the works as well. - Drivers: - Updates for the LoongArch interrupt chip drivers - Support for MTK CIRQv2 - The usual small fixes and updates all over the place -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmOUsygTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoYXiD/40tXKzCzf0qFIqUlZLia1N3RRrwrNC DVTixuLtR9MrjwE+jWLQILa85SHInV8syXHSd35SzhsGDxkURFGi+HBgVWmysODf br9VSh3Gi+kt7iXtIwAg8WNWviGNmS3kPksxCko54F0YnJhMY5r5bhQVUBQkwFG2 wES1C9Uzd4pdV2bl24Z+WKL85cSmZ+pHunyKw1n401lBABXnTF9c4f13zC14jd+y wDxNrmOxeL3mEH4Pg6VyrDuTOURSf3TjJjeEq3EYqvUo0FyLt9I/cKX0AELcZQX7 fkRjrQQAvXNj39RJfeSkojDfllEPUHp7XSluhdBu5aIovSamdYGCDnuEoZ+l4MJ+ CojIErp3Dwj/uSaf5c7C3OaDAqH2CpOFWIcrUebShJE60hVKLEpUwd6W8juplaoT gxyXRb1Y+BeJvO8VhMN4i7f3232+sj8wuj+HTRTTbqMhkElnin94tAx8rgwR1sgR BiOGMJi4K2Y8s9Rqqp0Dvs01CW4guIYvSR4YY+WDbbi1xgiev89OYs6zZTJCJe4Y NUwwpqYSyP1brmtdDdBOZLqegjQm+TwUb6oOaasFem4vT1swgawgLcDnPOx45bk5 /FWt3EmnZxMz99x9jdDn1+BCqAZsKyEbEY1avvhPVMTwoVIuSX2ceTBMLseGq+jM 03JfvdxnueM3gw== =9erA -----END PGP SIGNATURE----- Merge tag 'irq-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq updates from Thomas Gleixner: "Updates for the interrupt core and driver subsystem: The bulk is the rework of the MSI subsystem to support per device MSI interrupt domains. This solves conceptual problems of the current PCI/MSI design which are in the way of providing support for PCI/MSI[-X] and the upcoming PCI/IMS mechanism on the same device. IMS (Interrupt Message Store] is a new specification which allows device manufactures to provide implementation defined storage for MSI messages (as opposed to PCI/MSI and PCI/MSI-X that has a specified message store which is uniform accross all devices). The PCI/MSI[-X] uniformity allowed us to get away with "global" PCI/MSI domains. IMS not only allows to overcome the size limitations of the MSI-X table, but also gives the device manufacturer the freedom to store the message in arbitrary places, even in host memory which is shared with the device. There have been several attempts to glue this into the current MSI code, but after lengthy discussions it turned out that there is a fundamental design problem in the current PCI/MSI-X implementation. This needs some historical background. When PCI/MSI[-X] support was added around 2003, interrupt management was completely different from what we have today in the actively developed architectures. Interrupt management was completely architecture specific and while there were attempts to create common infrastructure the commonalities were rudimentary and just providing shared data structures and interfaces so that drivers could be written in an architecture agnostic way. The initial PCI/MSI[-X] support obviously plugged into this model which resulted in some basic shared infrastructure in the PCI core code for setting up MSI descriptors, which are a pure software construct for holding data relevant for a particular MSI interrupt, but the actual association to Linux interrupts was completely architecture specific. This model is still supported today to keep museum architectures and notorious stragglers alive. In 2013 Intel tried to add support for hot-pluggable IO/APICs to the kernel, which was creating yet another architecture specific mechanism and resulted in an unholy mess on top of the existing horrors of x86 interrupt handling. The x86 interrupt management code was already an incomprehensible maze of indirections between the CPU vector management, interrupt remapping and the actual IO/APIC and PCI/MSI[-X] implementation. At roughly the same time ARM struggled with the ever growing SoC specific extensions which were glued on top of the architected GIC interrupt controller. This resulted in a fundamental redesign of interrupt management and provided the today prevailing concept of hierarchical interrupt domains. This allowed to disentangle the interactions between x86 vector domain and interrupt remapping and also allowed ARM to handle the zoo of SoC specific interrupt components in a sane way. The concept of hierarchical interrupt domains aims to encapsulate the functionality of particular IP blocks which are involved in interrupt delivery so that they become extensible and pluggable. The X86 encapsulation looks like this: |--- device 1 [Vector]---[Remapping]---[PCI/MSI]--|... |--- device N where the remapping domain is an optional component and in case that it is not available the PCI/MSI[-X] domains have the vector domain as their parent. This reduced the required interaction between the domains pretty much to the initialization phase where it is obviously required to establish the proper parent relation ship in the components of the hierarchy. While in most cases the model is strictly representing the chain of IP blocks and abstracting them so they can be plugged together to form a hierarchy, the design stopped short on PCI/MSI[-X]. Looking at the hardware it's clear that the actual PCI/MSI[-X] interrupt controller is not a global entity, but strict a per PCI device entity. Here we took a short cut on the hierarchical model and went for the easy solution of providing "global" PCI/MSI domains which was possible because the PCI/MSI[-X] handling is uniform across the devices. This also allowed to keep the existing PCI/MSI[-X] infrastructure mostly unchanged which in turn made it simple to keep the existing architecture specific management alive. A similar problem was created in the ARM world with support for IP block specific message storage. Instead of going all the way to stack a IP block specific domain on top of the generic MSI domain this ended in a construct which provides a "global" platform MSI domain which allows overriding the irq_write_msi_msg() callback per allocation. In course of the lengthy discussions we identified other abuse of the MSI infrastructure in wireless drivers, NTB etc. where support for implementation specific message storage was just mindlessly glued into the existing infrastructure. Some of this just works by chance on particular platforms but will fail in hard to diagnose ways when the driver is used on platforms where the underlying MSI interrupt management code does not expect the creative abuse. Another shortcoming of today's PCI/MSI-X support is the inability to allocate or free individual vectors after the initial enablement of MSI-X. This results in an works by chance implementation of VFIO (PCI pass-through) where interrupts on the host side are not set up upfront to avoid resource exhaustion. They are expanded at run-time when the guest actually tries to use them. The way how this is implemented is that the host disables MSI-X and then re-enables it with a larger number of vectors again. That works by chance because most device drivers set up all interrupts before the device actually will utilize them. But that's not universally true because some drivers allocate a large enough number of vectors but do not utilize them until it's actually required, e.g. for acceleration support. But at that point other interrupts of the device might be in active use and the MSI-X disable/enable dance can just result in losing interrupts and therefore hard to diagnose subtle problems. Last but not least the "global" PCI/MSI-X domain approach prevents to utilize PCI/MSI[-X] and PCI/IMS on the same device due to the fact that IMS is not longer providing a uniform storage and configuration model. The solution to this is to implement the missing step and switch from global PCI/MSI domains to per device PCI/MSI domains. The resulting hierarchy then looks like this: |--- [PCI/MSI] device 1 [Vector]---[Remapping]---|... |--- [PCI/MSI] device N which in turn allows to provide support for multiple domains per device: |--- [PCI/MSI] device 1 |--- [PCI/IMS] device 1 [Vector]---[Remapping]---|... |--- [PCI/MSI] device N |--- [PCI/IMS] device N This work converts the MSI and PCI/MSI core and the x86 interrupt domains to the new model, provides new interfaces for post-enable allocation/free of MSI-X interrupts and the base framework for PCI/IMS. PCI/IMS has been verified with the work in progress IDXD driver. There is work in progress to convert ARM over which will replace the platform MSI train-wreck. The cleanup of VFIO, NTB and other creative "solutions" are in the works as well. Drivers: - Updates for the LoongArch interrupt chip drivers - Support for MTK CIRQv2 - The usual small fixes and updates all over the place" * tag 'irq-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (134 commits) irqchip/ti-sci-inta: Fix kernel doc irqchip/gic-v2m: Mark a few functions __init irqchip/gic-v2m: Include arm-gic-common.h irqchip/irq-mvebu-icu: Fix works by chance pointer assignment iommu/amd: Enable PCI/IMS iommu/vt-d: Enable PCI/IMS x86/apic/msi: Enable PCI/IMS PCI/MSI: Provide pci_ims_alloc/free_irq() PCI/MSI: Provide IMS (Interrupt Message Store) support genirq/msi: Provide constants for PCI/IMS support x86/apic/msi: Enable MSI_FLAG_PCI_MSIX_ALLOC_DYN PCI/MSI: Provide post-enable dynamic allocation interfaces for MSI-X PCI/MSI: Provide prepare_desc() MSI domain op PCI/MSI: Split MSI-X descriptor setup genirq/msi: Provide MSI_FLAG_MSIX_ALLOC_DYN genirq/msi: Provide msi_domain_alloc_irq_at() genirq/msi: Provide msi_domain_ops:: Prepare_desc() genirq/msi: Provide msi_desc:: Msi_data genirq/msi: Provide struct msi_map x86/apic/msi: Remove arch_create_remap_msi_irq_domain() ...
122 lines
3.3 KiB
C
122 lines
3.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
* Definitions for the clocksource provided by the Hyper-V
|
|
* hypervisor to guest VMs, as described in the Hyper-V Top
|
|
* Level Functional Spec (TLFS).
|
|
*
|
|
* Copyright (C) 2019, Microsoft, Inc.
|
|
*
|
|
* Author: Michael Kelley <mikelley@microsoft.com>
|
|
*/
|
|
|
|
#ifndef __CLKSOURCE_HYPERV_TIMER_H
|
|
#define __CLKSOURCE_HYPERV_TIMER_H
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/math64.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
|
|
#define HV_MAX_MAX_DELTA_TICKS 0xffffffff
|
|
#define HV_MIN_DELTA_TICKS 1
|
|
|
|
#ifdef CONFIG_HYPERV_TIMER
|
|
|
|
#include <asm/hyperv_timer.h>
|
|
|
|
/* Routines called by the VMbus driver */
|
|
extern int hv_stimer_alloc(bool have_percpu_irqs);
|
|
extern int hv_stimer_cleanup(unsigned int cpu);
|
|
extern void hv_stimer_legacy_init(unsigned int cpu, int sint);
|
|
extern void hv_stimer_legacy_cleanup(unsigned int cpu);
|
|
extern void hv_stimer_global_cleanup(void);
|
|
extern void hv_stimer0_isr(void);
|
|
|
|
extern void hv_init_clocksource(void);
|
|
extern void hv_remap_tsc_clocksource(void);
|
|
|
|
extern unsigned long hv_get_tsc_pfn(void);
|
|
extern struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
|
|
|
|
static inline notrace u64
|
|
hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, u64 *cur_tsc)
|
|
{
|
|
u64 scale, offset;
|
|
u32 sequence;
|
|
|
|
/*
|
|
* The protocol for reading Hyper-V TSC page is specified in Hypervisor
|
|
* Top-Level Functional Specification ver. 3.0 and above. To get the
|
|
* reference time we must do the following:
|
|
* - READ ReferenceTscSequence
|
|
* A special '0' value indicates the time source is unreliable and we
|
|
* need to use something else. The currently published specification
|
|
* versions (up to 4.0b) contain a mistake and wrongly claim '-1'
|
|
* instead of '0' as the special value, see commit c35b82ef0294.
|
|
* - ReferenceTime =
|
|
* ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
|
|
* - READ ReferenceTscSequence again. In case its value has changed
|
|
* since our first reading we need to discard ReferenceTime and repeat
|
|
* the whole sequence as the hypervisor was updating the page in
|
|
* between.
|
|
*/
|
|
do {
|
|
sequence = READ_ONCE(tsc_pg->tsc_sequence);
|
|
if (!sequence)
|
|
return U64_MAX;
|
|
/*
|
|
* Make sure we read sequence before we read other values from
|
|
* TSC page.
|
|
*/
|
|
smp_rmb();
|
|
|
|
scale = READ_ONCE(tsc_pg->tsc_scale);
|
|
offset = READ_ONCE(tsc_pg->tsc_offset);
|
|
*cur_tsc = hv_get_raw_timer();
|
|
|
|
/*
|
|
* Make sure we read sequence after we read all other values
|
|
* from TSC page.
|
|
*/
|
|
smp_rmb();
|
|
|
|
} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
|
|
|
|
return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
|
|
}
|
|
|
|
static inline notrace u64
|
|
hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
|
|
{
|
|
u64 cur_tsc;
|
|
|
|
return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
|
|
}
|
|
|
|
#else /* CONFIG_HYPERV_TIMER */
|
|
static inline unsigned long hv_get_tsc_pfn(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
|
|
u64 *cur_tsc)
|
|
{
|
|
return U64_MAX;
|
|
}
|
|
|
|
static inline int hv_stimer_cleanup(unsigned int cpu) { return 0; }
|
|
static inline void hv_stimer_legacy_init(unsigned int cpu, int sint) {}
|
|
static inline void hv_stimer_legacy_cleanup(unsigned int cpu) {}
|
|
static inline void hv_stimer_global_cleanup(void) {}
|
|
static inline void hv_stimer0_isr(void) {}
|
|
|
|
#endif /* CONFIG_HYPERV_TIMER */
|
|
|
|
#endif
|