83c088148c
Replace literals under drivers/pci/ with PCI_HEADER_TYPE_MASK, PCI_HEADER_TYPE_NORMAL, and PCI_HEADER_TYPE_MFD. Also replace !! boolean conversions with FIELD_GET(). Link: https://lore.kernel.org/r/20231003125300.5541-4-ilpo.jarvinen@linux.intel.com Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Wolfram Sang <wsa+renesas@sang-engineering.com> # for Renesas R-Car
2912 lines
73 KiB
C
2912 lines
73 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Compaq Hot Plug Controller Driver
|
|
*
|
|
* Copyright (C) 1995,2001 Compaq Computer Corporation
|
|
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
|
|
* Copyright (C) 2001 IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Send feedback to <greg@kroah.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_hotplug.h>
|
|
#include <linux/kthread.h>
|
|
#include "cpqphp.h"
|
|
|
|
static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
|
|
u8 behind_bridge, struct resource_lists *resources);
|
|
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
|
|
u8 behind_bridge, struct resource_lists *resources);
|
|
static void interrupt_event_handler(struct controller *ctrl);
|
|
|
|
|
|
static struct task_struct *cpqhp_event_thread;
|
|
static struct timer_list *pushbutton_pending; /* = NULL */
|
|
|
|
/* delay is in jiffies to wait for */
|
|
static void long_delay(int delay)
|
|
{
|
|
/*
|
|
* XXX(hch): if someone is bored please convert all callers
|
|
* to call msleep_interruptible directly. They really want
|
|
* to specify timeouts in natural units and spend a lot of
|
|
* effort converting them to jiffies..
|
|
*/
|
|
msleep_interruptible(jiffies_to_msecs(delay));
|
|
}
|
|
|
|
|
|
/* FIXME: The following line needs to be somewhere else... */
|
|
#define WRONG_BUS_FREQUENCY 0x07
|
|
static u8 handle_switch_change(u8 change, struct controller *ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
u16 temp_word;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/* Switch Change */
|
|
dbg("cpqsbd: Switch interrupt received.\n");
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x1L << hp_slot)) {
|
|
/*
|
|
* this one changed.
|
|
*/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
/* this is the structure that tells the worker thread
|
|
* what to do
|
|
*/
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
/*
|
|
* Switch opened
|
|
*/
|
|
|
|
func->switch_save = 0;
|
|
|
|
taskInfo->event_type = INT_SWITCH_OPEN;
|
|
} else {
|
|
/*
|
|
* Switch closed
|
|
*/
|
|
|
|
func->switch_save = 0x10;
|
|
|
|
taskInfo->event_type = INT_SWITCH_CLOSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* cpqhp_find_slot - find the struct slot of given device
|
|
* @ctrl: scan lots of this controller
|
|
* @device: the device id to find
|
|
*/
|
|
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
|
|
{
|
|
struct slot *slot = ctrl->slot;
|
|
|
|
while (slot && (slot->device != device))
|
|
slot = slot->next;
|
|
|
|
return slot;
|
|
}
|
|
|
|
|
|
static u8 handle_presence_change(u16 change, struct controller *ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
u8 temp_byte;
|
|
u16 temp_word;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
struct slot *p_slot;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/*
|
|
* Presence Change
|
|
*/
|
|
dbg("cpqsbd: Presence/Notify input change.\n");
|
|
dbg(" Changed bits are 0x%4.4x\n", change);
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x0101 << hp_slot)) {
|
|
/*
|
|
* this one changed.
|
|
*/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
|
|
if (!p_slot)
|
|
return 0;
|
|
|
|
/* If the switch closed, must be a button
|
|
* If not in button mode, nevermind
|
|
*/
|
|
if (func->switch_save && (ctrl->push_button == 1)) {
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
temp_byte = (temp_word >> hp_slot) & 0x01;
|
|
temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (temp_byte != func->presence_save) {
|
|
/*
|
|
* button Pressed (doesn't do anything)
|
|
*/
|
|
dbg("hp_slot %d button pressed\n", hp_slot);
|
|
taskInfo->event_type = INT_BUTTON_PRESS;
|
|
} else {
|
|
/*
|
|
* button Released - TAKE ACTION!!!!
|
|
*/
|
|
dbg("hp_slot %d button released\n", hp_slot);
|
|
taskInfo->event_type = INT_BUTTON_RELEASE;
|
|
|
|
/* Cancel if we are still blinking */
|
|
if ((p_slot->state == BLINKINGON_STATE)
|
|
|| (p_slot->state == BLINKINGOFF_STATE)) {
|
|
taskInfo->event_type = INT_BUTTON_CANCEL;
|
|
dbg("hp_slot %d button cancel\n", hp_slot);
|
|
} else if ((p_slot->state == POWERON_STATE)
|
|
|| (p_slot->state == POWEROFF_STATE)) {
|
|
/* info(msg_button_ignore, p_slot->number); */
|
|
taskInfo->event_type = INT_BUTTON_IGNORE;
|
|
dbg("hp_slot %d button ignore\n", hp_slot);
|
|
}
|
|
}
|
|
} else {
|
|
/* Switch is open, assume a presence change
|
|
* Save the presence state
|
|
*/
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
|
|
(!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
|
|
/* Present */
|
|
taskInfo->event_type = INT_PRESENCE_ON;
|
|
} else {
|
|
/* Not Present */
|
|
taskInfo->event_type = INT_PRESENCE_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static u8 handle_power_fault(u8 change, struct controller *ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/*
|
|
* power fault
|
|
*/
|
|
|
|
info("power fault interrupt\n");
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x01 << hp_slot)) {
|
|
/*
|
|
* this one changed.
|
|
*/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
|
|
/*
|
|
* power fault Cleared
|
|
*/
|
|
func->status = 0x00;
|
|
|
|
taskInfo->event_type = INT_POWER_FAULT_CLEAR;
|
|
} else {
|
|
/*
|
|
* power fault
|
|
*/
|
|
taskInfo->event_type = INT_POWER_FAULT;
|
|
|
|
if (ctrl->rev < 4) {
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
set_SOGO(ctrl);
|
|
|
|
/* this is a fatal condition, we want
|
|
* to crash the machine to protect from
|
|
* data corruption. simulated_NMI
|
|
* shouldn't ever return */
|
|
/* FIXME
|
|
simulated_NMI(hp_slot, ctrl); */
|
|
|
|
/* The following code causes a software
|
|
* crash just in case simulated_NMI did
|
|
* return */
|
|
/*FIXME
|
|
panic(msg_power_fault); */
|
|
} else {
|
|
/* set power fault status for this board */
|
|
func->status = 0xFF;
|
|
info("power fault bit %x set\n", hp_slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**
|
|
* sort_by_size - sort nodes on the list by their length, smallest first.
|
|
* @head: list to sort
|
|
*/
|
|
static int sort_by_size(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *current_res;
|
|
struct pci_resource *next_res;
|
|
int out_of_order = 1;
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
if (!((*head)->next))
|
|
return 0;
|
|
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->length > (*head)->next->length)) {
|
|
out_of_order++;
|
|
current_res = *head;
|
|
*head = (*head)->next;
|
|
current_res->next = (*head)->next;
|
|
(*head)->next = current_res;
|
|
}
|
|
|
|
current_res = *head;
|
|
|
|
while (current_res->next && current_res->next->next) {
|
|
if (current_res->next->length > current_res->next->next->length) {
|
|
out_of_order++;
|
|
next_res = current_res->next;
|
|
current_res->next = current_res->next->next;
|
|
current_res = current_res->next;
|
|
next_res->next = current_res->next;
|
|
current_res->next = next_res;
|
|
} else
|
|
current_res = current_res->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* sort_by_max_size - sort nodes on the list by their length, largest first.
|
|
* @head: list to sort
|
|
*/
|
|
static int sort_by_max_size(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *current_res;
|
|
struct pci_resource *next_res;
|
|
int out_of_order = 1;
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
if (!((*head)->next))
|
|
return 0;
|
|
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->length < (*head)->next->length)) {
|
|
out_of_order++;
|
|
current_res = *head;
|
|
*head = (*head)->next;
|
|
current_res->next = (*head)->next;
|
|
(*head)->next = current_res;
|
|
}
|
|
|
|
current_res = *head;
|
|
|
|
while (current_res->next && current_res->next->next) {
|
|
if (current_res->next->length < current_res->next->next->length) {
|
|
out_of_order++;
|
|
next_res = current_res->next;
|
|
current_res->next = current_res->next->next;
|
|
current_res = current_res->next;
|
|
next_res->next = current_res->next;
|
|
current_res->next = next_res;
|
|
} else
|
|
current_res = current_res->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* do_pre_bridge_resource_split - find node of resources that are unused
|
|
* @head: new list head
|
|
* @orig_head: original list head
|
|
* @alignment: max node size (?)
|
|
*/
|
|
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
|
|
struct pci_resource **orig_head, u32 alignment)
|
|
{
|
|
struct pci_resource *prevnode = NULL;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 rc;
|
|
u32 temp_dword;
|
|
dbg("do_pre_bridge_resource_split\n");
|
|
|
|
if (!(*head) || !(*orig_head))
|
|
return NULL;
|
|
|
|
rc = cpqhp_resource_sort_and_combine(head);
|
|
|
|
if (rc)
|
|
return NULL;
|
|
|
|
if ((*head)->base != (*orig_head)->base)
|
|
return NULL;
|
|
|
|
if ((*head)->length == (*orig_head)->length)
|
|
return NULL;
|
|
|
|
|
|
/* If we got here, there the bridge requires some of the resource, but
|
|
* we may be able to split some off of the front
|
|
*/
|
|
|
|
node = *head;
|
|
|
|
if (node->length & (alignment - 1)) {
|
|
/* this one isn't an aligned length, so we'll make a new entry
|
|
* and split it up.
|
|
*/
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
temp_dword = (node->length | (alignment-1)) + 1 - alignment;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword;
|
|
|
|
node->length -= temp_dword;
|
|
node->base += split_node->length;
|
|
|
|
/* Put it in the list */
|
|
*head = split_node;
|
|
split_node->next = node;
|
|
}
|
|
|
|
if (node->length < alignment)
|
|
return NULL;
|
|
|
|
/* Now unlink it */
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* do_bridge_resource_split - find one node of resources that aren't in use
|
|
* @head: list head
|
|
* @alignment: max node size (?)
|
|
*/
|
|
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
|
|
{
|
|
struct pci_resource *prevnode = NULL;
|
|
struct pci_resource *node;
|
|
u32 rc;
|
|
u32 temp_dword;
|
|
|
|
rc = cpqhp_resource_sort_and_combine(head);
|
|
|
|
if (rc)
|
|
return NULL;
|
|
|
|
node = *head;
|
|
|
|
while (node->next) {
|
|
prevnode = node;
|
|
node = node->next;
|
|
kfree(prevnode);
|
|
}
|
|
|
|
if (node->length < alignment)
|
|
goto error;
|
|
|
|
if (node->base & (alignment - 1)) {
|
|
/* Short circuit if adjusted size is too small */
|
|
temp_dword = (node->base | (alignment-1)) + 1;
|
|
if ((node->length - (temp_dword - node->base)) < alignment)
|
|
goto error;
|
|
|
|
node->length -= (temp_dword - node->base);
|
|
node->base = temp_dword;
|
|
}
|
|
|
|
if (node->length & (alignment - 1))
|
|
/* There's stuff in use after this node */
|
|
goto error;
|
|
|
|
return node;
|
|
error:
|
|
kfree(node);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_io_resource - find first node of given size not in ISA aliasing window.
|
|
* @head: list to search
|
|
* @size: size of node to find, must be a power of two.
|
|
*
|
|
* Description: This function sorts the resource list by size and then
|
|
* returns the first node of "size" length that is not in the ISA aliasing
|
|
* window. If it finds a node larger than "size" it will split it up.
|
|
*/
|
|
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *prevnode;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (!(*head))
|
|
return NULL;
|
|
|
|
if (cpqhp_resource_sort_and_combine(head))
|
|
return NULL;
|
|
|
|
if (sort_by_size(head))
|
|
return NULL;
|
|
|
|
for (node = *head; node; node = node->next) {
|
|
if (node->length < size)
|
|
continue;
|
|
|
|
if (node->base & (size - 1)) {
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
temp_dword = (node->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((node->length - (temp_dword - node->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword - node->base;
|
|
node->base = temp_dword;
|
|
node->length -= split_node->length;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of non-aligned base */
|
|
|
|
/* Don't need to check if too small since we already did */
|
|
if (node->length > size) {
|
|
/* this one is longer than we need
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base + size;
|
|
split_node->length = node->length - size;
|
|
node->length = size;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of too big on top end */
|
|
|
|
/* For IO make sure it's not in the ISA aliasing space */
|
|
if (node->base & 0x300L)
|
|
continue;
|
|
|
|
/* If we got here, then it is the right size
|
|
* Now take it out of the list and break
|
|
*/
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
break;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_max_resource - get largest node which has at least the given size.
|
|
* @head: the list to search the node in
|
|
* @size: the minimum size of the node to find
|
|
*
|
|
* Description: Gets the largest node that is at least "size" big from the
|
|
* list pointed to by head. It aligns the node on top and bottom
|
|
* to "size" alignment before returning it.
|
|
*/
|
|
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *max;
|
|
struct pci_resource *temp;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (cpqhp_resource_sort_and_combine(head))
|
|
return NULL;
|
|
|
|
if (sort_by_max_size(head))
|
|
return NULL;
|
|
|
|
for (max = *head; max; max = max->next) {
|
|
/* If not big enough we could probably just bail,
|
|
* instead we'll continue to the next.
|
|
*/
|
|
if (max->length < size)
|
|
continue;
|
|
|
|
if (max->base & (size - 1)) {
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
temp_dword = (max->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((max->length - (temp_dword - max->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = max->base;
|
|
split_node->length = temp_dword - max->base;
|
|
max->base = temp_dword;
|
|
max->length -= split_node->length;
|
|
|
|
split_node->next = max->next;
|
|
max->next = split_node;
|
|
}
|
|
|
|
if ((max->base + max->length) & (size - 1)) {
|
|
/* this one isn't end aligned properly at the top
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
temp_dword = ((max->base + max->length) & ~(size - 1));
|
|
split_node->base = temp_dword;
|
|
split_node->length = max->length + max->base
|
|
- split_node->base;
|
|
max->length -= split_node->length;
|
|
|
|
split_node->next = max->next;
|
|
max->next = split_node;
|
|
}
|
|
|
|
/* Make sure it didn't shrink too much when we aligned it */
|
|
if (max->length < size)
|
|
continue;
|
|
|
|
/* Now take it out of the list */
|
|
temp = *head;
|
|
if (temp == max) {
|
|
*head = max->next;
|
|
} else {
|
|
while (temp && temp->next != max)
|
|
temp = temp->next;
|
|
|
|
if (temp)
|
|
temp->next = max->next;
|
|
}
|
|
|
|
max->next = NULL;
|
|
break;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_resource - find resource of given size and split up larger ones.
|
|
* @head: the list to search for resources
|
|
* @size: the size limit to use
|
|
*
|
|
* Description: This function sorts the resource list by size and then
|
|
* returns the first node of "size" length. If it finds a node
|
|
* larger than "size" it will split it up.
|
|
*
|
|
* size must be a power of two.
|
|
*/
|
|
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *prevnode;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (cpqhp_resource_sort_and_combine(head))
|
|
return NULL;
|
|
|
|
if (sort_by_size(head))
|
|
return NULL;
|
|
|
|
for (node = *head; node; node = node->next) {
|
|
dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
|
|
__func__, size, node, node->base, node->length);
|
|
if (node->length < size)
|
|
continue;
|
|
|
|
if (node->base & (size - 1)) {
|
|
dbg("%s: not aligned\n", __func__);
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
temp_dword = (node->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((node->length - (temp_dword - node->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword - node->base;
|
|
node->base = temp_dword;
|
|
node->length -= split_node->length;
|
|
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of non-aligned base */
|
|
|
|
/* Don't need to check if too small since we already did */
|
|
if (node->length > size) {
|
|
dbg("%s: too big\n", __func__);
|
|
/* this one is longer than we need
|
|
* so we'll make a new entry and split it up
|
|
*/
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base + size;
|
|
split_node->length = node->length - size;
|
|
node->length = size;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of too big on top end */
|
|
|
|
dbg("%s: got one!!!\n", __func__);
|
|
/* If we got here, then it is the right size
|
|
* Now take it out of the list */
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
break;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
|
|
* @head: the list to sort and clean up
|
|
*
|
|
* Description: Sorts all of the nodes in the list in ascending order by
|
|
* their base addresses. Also does garbage collection by
|
|
* combining adjacent nodes.
|
|
*
|
|
* Returns %0 if success.
|
|
*/
|
|
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *node1;
|
|
struct pci_resource *node2;
|
|
int out_of_order = 1;
|
|
|
|
dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
dbg("*head->next = %p\n", (*head)->next);
|
|
|
|
if (!(*head)->next)
|
|
return 0; /* only one item on the list, already sorted! */
|
|
|
|
dbg("*head->base = 0x%x\n", (*head)->base);
|
|
dbg("*head->next->base = 0x%x\n", (*head)->next->base);
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->base > (*head)->next->base)) {
|
|
node1 = *head;
|
|
(*head) = (*head)->next;
|
|
node1->next = (*head)->next;
|
|
(*head)->next = node1;
|
|
out_of_order++;
|
|
}
|
|
|
|
node1 = (*head);
|
|
|
|
while (node1->next && node1->next->next) {
|
|
if (node1->next->base > node1->next->next->base) {
|
|
out_of_order++;
|
|
node2 = node1->next;
|
|
node1->next = node1->next->next;
|
|
node1 = node1->next;
|
|
node2->next = node1->next;
|
|
node1->next = node2;
|
|
} else
|
|
node1 = node1->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
node1 = *head;
|
|
|
|
while (node1 && node1->next) {
|
|
if ((node1->base + node1->length) == node1->next->base) {
|
|
/* Combine */
|
|
dbg("8..\n");
|
|
node1->length += node1->next->length;
|
|
node2 = node1->next;
|
|
node1->next = node1->next->next;
|
|
kfree(node2);
|
|
} else
|
|
node1 = node1->next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
|
|
{
|
|
struct controller *ctrl = data;
|
|
u8 schedule_flag = 0;
|
|
u8 reset;
|
|
u16 misc;
|
|
u32 Diff;
|
|
|
|
|
|
misc = readw(ctrl->hpc_reg + MISC);
|
|
/*
|
|
* Check to see if it was our interrupt
|
|
*/
|
|
if (!(misc & 0x000C))
|
|
return IRQ_NONE;
|
|
|
|
if (misc & 0x0004) {
|
|
/*
|
|
* Serial Output interrupt Pending
|
|
*/
|
|
|
|
/* Clear the interrupt */
|
|
misc |= 0x0004;
|
|
writew(misc, ctrl->hpc_reg + MISC);
|
|
|
|
/* Read to clear posted writes */
|
|
misc = readw(ctrl->hpc_reg + MISC);
|
|
|
|
dbg("%s - waking up\n", __func__);
|
|
wake_up_interruptible(&ctrl->queue);
|
|
}
|
|
|
|
if (misc & 0x0008) {
|
|
/* General-interrupt-input interrupt Pending */
|
|
Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
|
|
|
|
ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
/* Clear the interrupt */
|
|
writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
/* Read it back to clear any posted writes */
|
|
readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
if (!Diff)
|
|
/* Clear all interrupts */
|
|
writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
|
|
schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
|
|
schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
|
|
}
|
|
|
|
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
if (reset & 0x40) {
|
|
/* Bus reset has completed */
|
|
reset &= 0xCF;
|
|
writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
wake_up_interruptible(&ctrl->queue);
|
|
}
|
|
|
|
if (schedule_flag) {
|
|
wake_up_process(cpqhp_event_thread);
|
|
dbg("Waking even thread");
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_slot_create - Creates a node and adds it to the proper bus.
|
|
* @busnumber: bus where new node is to be located
|
|
*
|
|
* Returns pointer to the new node or %NULL if unsuccessful.
|
|
*/
|
|
struct pci_func *cpqhp_slot_create(u8 busnumber)
|
|
{
|
|
struct pci_func *new_slot;
|
|
struct pci_func *next;
|
|
|
|
new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
|
|
if (new_slot == NULL)
|
|
return new_slot;
|
|
|
|
new_slot->next = NULL;
|
|
new_slot->configured = 1;
|
|
|
|
if (cpqhp_slot_list[busnumber] == NULL) {
|
|
cpqhp_slot_list[busnumber] = new_slot;
|
|
} else {
|
|
next = cpqhp_slot_list[busnumber];
|
|
while (next->next != NULL)
|
|
next = next->next;
|
|
next->next = new_slot;
|
|
}
|
|
return new_slot;
|
|
}
|
|
|
|
|
|
/**
|
|
* slot_remove - Removes a node from the linked list of slots.
|
|
* @old_slot: slot to remove
|
|
*
|
|
* Returns %0 if successful, !0 otherwise.
|
|
*/
|
|
static int slot_remove(struct pci_func *old_slot)
|
|
{
|
|
struct pci_func *next;
|
|
|
|
if (old_slot == NULL)
|
|
return 1;
|
|
|
|
next = cpqhp_slot_list[old_slot->bus];
|
|
if (next == NULL)
|
|
return 1;
|
|
|
|
if (next == old_slot) {
|
|
cpqhp_slot_list[old_slot->bus] = old_slot->next;
|
|
cpqhp_destroy_board_resources(old_slot);
|
|
kfree(old_slot);
|
|
return 0;
|
|
}
|
|
|
|
while ((next->next != old_slot) && (next->next != NULL))
|
|
next = next->next;
|
|
|
|
if (next->next == old_slot) {
|
|
next->next = old_slot->next;
|
|
cpqhp_destroy_board_resources(old_slot);
|
|
kfree(old_slot);
|
|
return 0;
|
|
} else
|
|
return 2;
|
|
}
|
|
|
|
|
|
/**
|
|
* bridge_slot_remove - Removes a node from the linked list of slots.
|
|
* @bridge: bridge to remove
|
|
*
|
|
* Returns %0 if successful, !0 otherwise.
|
|
*/
|
|
static int bridge_slot_remove(struct pci_func *bridge)
|
|
{
|
|
u8 subordinateBus, secondaryBus;
|
|
u8 tempBus;
|
|
struct pci_func *next;
|
|
|
|
secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
|
|
subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
|
|
|
|
for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
|
|
next = cpqhp_slot_list[tempBus];
|
|
|
|
while (!slot_remove(next))
|
|
next = cpqhp_slot_list[tempBus];
|
|
}
|
|
|
|
next = cpqhp_slot_list[bridge->bus];
|
|
|
|
if (next == NULL)
|
|
return 1;
|
|
|
|
if (next == bridge) {
|
|
cpqhp_slot_list[bridge->bus] = bridge->next;
|
|
goto out;
|
|
}
|
|
|
|
while ((next->next != bridge) && (next->next != NULL))
|
|
next = next->next;
|
|
|
|
if (next->next != bridge)
|
|
return 2;
|
|
next->next = bridge->next;
|
|
out:
|
|
kfree(bridge);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
|
|
* @bus: bus to find
|
|
* @device: device to find
|
|
* @index: is %0 for first function found, %1 for the second...
|
|
*
|
|
* Returns pointer to the node if successful, %NULL otherwise.
|
|
*/
|
|
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
|
|
{
|
|
int found = -1;
|
|
struct pci_func *func;
|
|
|
|
func = cpqhp_slot_list[bus];
|
|
|
|
if ((func == NULL) || ((func->device == device) && (index == 0)))
|
|
return func;
|
|
|
|
if (func->device == device)
|
|
found++;
|
|
|
|
while (func->next != NULL) {
|
|
func = func->next;
|
|
|
|
if (func->device == device)
|
|
found++;
|
|
|
|
if (found == index)
|
|
return func;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* DJZ: I don't think is_bridge will work as is.
|
|
* FIXME */
|
|
static int is_bridge(struct pci_func *func)
|
|
{
|
|
/* Check the header type */
|
|
if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* set_controller_speed - set the frequency and/or mode of a specific controller segment.
|
|
* @ctrl: controller to change frequency/mode for.
|
|
* @adapter_speed: the speed of the adapter we want to match.
|
|
* @hp_slot: the slot number where the adapter is installed.
|
|
*
|
|
* Returns %0 if we successfully change frequency and/or mode to match the
|
|
* adapter speed.
|
|
*/
|
|
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
|
|
{
|
|
struct slot *slot;
|
|
struct pci_bus *bus = ctrl->pci_bus;
|
|
u8 reg;
|
|
u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
u16 reg16;
|
|
u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
if (bus->cur_bus_speed == adapter_speed)
|
|
return 0;
|
|
|
|
/* We don't allow freq/mode changes if we find another adapter running
|
|
* in another slot on this controller
|
|
*/
|
|
for (slot = ctrl->slot; slot; slot = slot->next) {
|
|
if (slot->device == (hp_slot + ctrl->slot_device_offset))
|
|
continue;
|
|
if (get_presence_status(ctrl, slot) == 0)
|
|
continue;
|
|
/* If another adapter is running on the same segment but at a
|
|
* lower speed/mode, we allow the new adapter to function at
|
|
* this rate if supported
|
|
*/
|
|
if (bus->cur_bus_speed < adapter_speed)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* If the controller doesn't support freq/mode changes and the
|
|
* controller is running at a higher mode, we bail
|
|
*/
|
|
if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
|
|
return 1;
|
|
|
|
/* But we allow the adapter to run at a lower rate if possible */
|
|
if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
|
|
return 0;
|
|
|
|
/* We try to set the max speed supported by both the adapter and
|
|
* controller
|
|
*/
|
|
if (bus->max_bus_speed < adapter_speed) {
|
|
if (bus->cur_bus_speed == bus->max_bus_speed)
|
|
return 0;
|
|
adapter_speed = bus->max_bus_speed;
|
|
}
|
|
|
|
writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
|
|
|
|
set_SOGO(ctrl);
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
if (adapter_speed != PCI_SPEED_133MHz_PCIX)
|
|
reg = 0xF5;
|
|
else
|
|
reg = 0xF4;
|
|
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
|
|
|
|
reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
|
|
reg16 &= ~0x000F;
|
|
switch (adapter_speed) {
|
|
case(PCI_SPEED_133MHz_PCIX):
|
|
reg = 0x75;
|
|
reg16 |= 0xB;
|
|
break;
|
|
case(PCI_SPEED_100MHz_PCIX):
|
|
reg = 0x74;
|
|
reg16 |= 0xA;
|
|
break;
|
|
case(PCI_SPEED_66MHz_PCIX):
|
|
reg = 0x73;
|
|
reg16 |= 0x9;
|
|
break;
|
|
case(PCI_SPEED_66MHz):
|
|
reg = 0x73;
|
|
reg16 |= 0x1;
|
|
break;
|
|
default: /* 33MHz PCI 2.2 */
|
|
reg = 0x71;
|
|
break;
|
|
|
|
}
|
|
reg16 |= 0xB << 12;
|
|
writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
|
|
|
|
mdelay(5);
|
|
|
|
/* Re-enable interrupts */
|
|
writel(0, ctrl->hpc_reg + INT_MASK);
|
|
|
|
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
|
|
|
|
/* Restart state machine */
|
|
reg = ~0xF;
|
|
pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
|
|
pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
|
|
|
|
/* Only if mode change...*/
|
|
if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
|
|
((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
|
|
set_SOGO(ctrl);
|
|
|
|
wait_for_ctrl_irq(ctrl);
|
|
mdelay(1100);
|
|
|
|
/* Restore LED/Slot state */
|
|
writel(leds, ctrl->hpc_reg + LED_CONTROL);
|
|
writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
|
|
|
|
set_SOGO(ctrl);
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
bus->cur_bus_speed = adapter_speed;
|
|
slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
|
|
info("Successfully changed frequency/mode for adapter in slot %d\n",
|
|
slot->number);
|
|
return 0;
|
|
}
|
|
|
|
/* the following routines constitute the bulk of the
|
|
* hotplug controller logic
|
|
*/
|
|
|
|
|
|
/**
|
|
* board_replaced - Called after a board has been replaced in the system.
|
|
* @func: PCI device/function information
|
|
* @ctrl: hotplug controller
|
|
*
|
|
* This is only used if we don't have resources for hot add.
|
|
* Turns power on for the board.
|
|
* Checks to see if board is the same.
|
|
* If board is same, reconfigures it.
|
|
* If board isn't same, turns it back off.
|
|
*/
|
|
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
|
|
{
|
|
struct pci_bus *bus = ctrl->pci_bus;
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
u8 adapter_speed;
|
|
u32 rc = 0;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
|
|
/*
|
|
* The switch is open.
|
|
*/
|
|
if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
|
|
rc = INTERLOCK_OPEN;
|
|
/*
|
|
* The board is already on
|
|
*/
|
|
else if (is_slot_enabled(ctrl, hp_slot))
|
|
rc = CARD_FUNCTIONING;
|
|
else {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
/* turn on board without attaching to the bus */
|
|
enable_slot_power(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Change bits in slot power register to force another shift out
|
|
* NOTE: this is to work around the timer bug */
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
adapter_speed = get_adapter_speed(ctrl, hp_slot);
|
|
if (bus->cur_bus_speed != adapter_speed)
|
|
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
|
|
rc = WRONG_BUS_FREQUENCY;
|
|
|
|
/* turn off board without attaching to the bus */
|
|
disable_slot_power(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
slot_enable(ctrl, hp_slot);
|
|
green_LED_blink(ctrl, hp_slot);
|
|
|
|
amber_LED_off(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
/* Wait for ~1 second because of hot plug spec */
|
|
long_delay(1*HZ);
|
|
|
|
/* Check for a power fault */
|
|
if (func->status == 0xFF) {
|
|
/* power fault occurred, but it was benign */
|
|
rc = POWER_FAILURE;
|
|
func->status = 0;
|
|
} else
|
|
rc = cpqhp_valid_replace(ctrl, func);
|
|
|
|
if (!rc) {
|
|
/* It must be the same board */
|
|
|
|
rc = cpqhp_configure_board(ctrl, func);
|
|
|
|
/* If configuration fails, turn it off
|
|
* Get slot won't work for devices behind
|
|
* bridges, but in this case it will always be
|
|
* called for the "base" bus/dev/func of an
|
|
* adapter.
|
|
*/
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
slot_disable(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
else
|
|
return 1;
|
|
|
|
} else {
|
|
/* Something is wrong
|
|
|
|
* Get slot won't work for devices behind bridges, but
|
|
* in this case it will always be called for the "base"
|
|
* bus/dev/func of an adapter.
|
|
*/
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
slot_disable(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
}
|
|
|
|
}
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* board_added - Called after a board has been added to the system.
|
|
* @func: PCI device/function info
|
|
* @ctrl: hotplug controller
|
|
*
|
|
* Turns power on for the board.
|
|
* Configures board.
|
|
*/
|
|
static u32 board_added(struct pci_func *func, struct controller *ctrl)
|
|
{
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
u8 adapter_speed;
|
|
int index;
|
|
u32 temp_register = 0xFFFFFFFF;
|
|
u32 rc = 0;
|
|
struct pci_func *new_slot = NULL;
|
|
struct pci_bus *bus = ctrl->pci_bus;
|
|
struct resource_lists res_lists;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
|
|
__func__, func->device, ctrl->slot_device_offset, hp_slot);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
/* turn on board without attaching to the bus */
|
|
enable_slot_power(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Change bits in slot power register to force another shift out
|
|
* NOTE: this is to work around the timer bug
|
|
*/
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
adapter_speed = get_adapter_speed(ctrl, hp_slot);
|
|
if (bus->cur_bus_speed != adapter_speed)
|
|
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
|
|
rc = WRONG_BUS_FREQUENCY;
|
|
|
|
/* turn off board without attaching to the bus */
|
|
disable_slot_power(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
|
|
/* turn on board and blink green LED */
|
|
|
|
dbg("%s: before down\n", __func__);
|
|
mutex_lock(&ctrl->crit_sect);
|
|
dbg("%s: after down\n", __func__);
|
|
|
|
dbg("%s: before slot_enable\n", __func__);
|
|
slot_enable(ctrl, hp_slot);
|
|
|
|
dbg("%s: before green_LED_blink\n", __func__);
|
|
green_LED_blink(ctrl, hp_slot);
|
|
|
|
dbg("%s: before amber_LED_blink\n", __func__);
|
|
amber_LED_off(ctrl, hp_slot);
|
|
|
|
dbg("%s: before set_SOGO\n", __func__);
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
dbg("%s: before wait_for_ctrl_irq\n", __func__);
|
|
wait_for_ctrl_irq(ctrl);
|
|
dbg("%s: after wait_for_ctrl_irq\n", __func__);
|
|
|
|
dbg("%s: before up\n", __func__);
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
dbg("%s: after up\n", __func__);
|
|
|
|
/* Wait for ~1 second because of hot plug spec */
|
|
dbg("%s: before long_delay\n", __func__);
|
|
long_delay(1*HZ);
|
|
dbg("%s: after long_delay\n", __func__);
|
|
|
|
dbg("%s: func status = %x\n", __func__, func->status);
|
|
/* Check for a power fault */
|
|
if (func->status == 0xFF) {
|
|
/* power fault occurred, but it was benign */
|
|
temp_register = 0xFFFFFFFF;
|
|
dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
|
|
rc = POWER_FAILURE;
|
|
func->status = 0;
|
|
} else {
|
|
/* Get vendor/device ID u32 */
|
|
ctrl->pci_bus->number = func->bus;
|
|
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
|
|
dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
|
|
dbg("%s: temp_register is %x\n", __func__, temp_register);
|
|
|
|
if (rc != 0) {
|
|
/* Something's wrong here */
|
|
temp_register = 0xFFFFFFFF;
|
|
dbg("%s: temp register set to %x by error\n", __func__, temp_register);
|
|
}
|
|
/* Preset return code. It will be changed later if things go okay. */
|
|
rc = NO_ADAPTER_PRESENT;
|
|
}
|
|
|
|
/* All F's is an empty slot or an invalid board */
|
|
if (temp_register != 0xFFFFFFFF) {
|
|
res_lists.io_head = ctrl->io_head;
|
|
res_lists.mem_head = ctrl->mem_head;
|
|
res_lists.p_mem_head = ctrl->p_mem_head;
|
|
res_lists.bus_head = ctrl->bus_head;
|
|
res_lists.irqs = NULL;
|
|
|
|
rc = configure_new_device(ctrl, func, 0, &res_lists);
|
|
|
|
dbg("%s: back from configure_new_device\n", __func__);
|
|
ctrl->io_head = res_lists.io_head;
|
|
ctrl->mem_head = res_lists.mem_head;
|
|
ctrl->p_mem_head = res_lists.p_mem_head;
|
|
ctrl->bus_head = res_lists.bus_head;
|
|
|
|
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
|
|
|
|
if (rc) {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
slot_disable(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
return rc;
|
|
} else {
|
|
cpqhp_save_slot_config(ctrl, func);
|
|
}
|
|
|
|
|
|
func->status = 0;
|
|
func->switch_save = 0x10;
|
|
func->is_a_board = 0x01;
|
|
|
|
/* next, we will instantiate the linux pci_dev structures (with
|
|
* appropriate driver notification, if already present) */
|
|
dbg("%s: configure linux pci_dev structure\n", __func__);
|
|
index = 0;
|
|
do {
|
|
new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
|
|
if (new_slot && !new_slot->pci_dev)
|
|
cpqhp_configure_device(ctrl, new_slot);
|
|
} while (new_slot);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
green_LED_on(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
} else {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
slot_disable(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* remove_board - Turns off slot and LEDs
|
|
* @func: PCI device/function info
|
|
* @replace_flag: whether replacing or adding a new device
|
|
* @ctrl: target controller
|
|
*/
|
|
static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
|
|
{
|
|
int index;
|
|
u8 skip = 0;
|
|
u8 device;
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
struct resource_lists res_lists;
|
|
struct pci_func *temp_func;
|
|
|
|
if (cpqhp_unconfigure_device(func))
|
|
return 1;
|
|
|
|
device = func->device;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
|
|
|
|
/* When we get here, it is safe to change base address registers.
|
|
* We will attempt to save the base address register lengths */
|
|
if (replace_flag || !ctrl->add_support)
|
|
cpqhp_save_base_addr_length(ctrl, func);
|
|
else if (!func->bus_head && !func->mem_head &&
|
|
!func->p_mem_head && !func->io_head) {
|
|
/* Here we check to see if we've saved any of the board's
|
|
* resources already. If so, we'll skip the attempt to
|
|
* determine what's being used. */
|
|
index = 0;
|
|
temp_func = cpqhp_slot_find(func->bus, func->device, index++);
|
|
while (temp_func) {
|
|
if (temp_func->bus_head || temp_func->mem_head
|
|
|| temp_func->p_mem_head || temp_func->io_head) {
|
|
skip = 1;
|
|
break;
|
|
}
|
|
temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
|
|
}
|
|
|
|
if (!skip)
|
|
cpqhp_save_used_resources(ctrl, func);
|
|
}
|
|
/* Change status to shutdown */
|
|
if (func->is_a_board)
|
|
func->status = 0x01;
|
|
func->configured = 0;
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
green_LED_off(ctrl, hp_slot);
|
|
slot_disable(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* turn off SERR for slot */
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
|
|
temp_byte &= ~(0x01 << hp_slot);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (!replace_flag && ctrl->add_support) {
|
|
while (func) {
|
|
res_lists.io_head = ctrl->io_head;
|
|
res_lists.mem_head = ctrl->mem_head;
|
|
res_lists.p_mem_head = ctrl->p_mem_head;
|
|
res_lists.bus_head = ctrl->bus_head;
|
|
|
|
cpqhp_return_board_resources(func, &res_lists);
|
|
|
|
ctrl->io_head = res_lists.io_head;
|
|
ctrl->mem_head = res_lists.mem_head;
|
|
ctrl->p_mem_head = res_lists.p_mem_head;
|
|
ctrl->bus_head = res_lists.bus_head;
|
|
|
|
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
|
|
|
|
if (is_bridge(func)) {
|
|
bridge_slot_remove(func);
|
|
} else
|
|
slot_remove(func);
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, 0);
|
|
}
|
|
|
|
/* Setup slot structure with entry for empty slot */
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->switch_save = 0x10;
|
|
func->is_a_board = 0;
|
|
func->p_task_event = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pushbutton_helper_thread(struct timer_list *t)
|
|
{
|
|
pushbutton_pending = t;
|
|
|
|
wake_up_process(cpqhp_event_thread);
|
|
}
|
|
|
|
|
|
/* this is the main worker thread */
|
|
static int event_thread(void *data)
|
|
{
|
|
struct controller *ctrl;
|
|
|
|
while (1) {
|
|
dbg("!!!!event_thread sleeping\n");
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
/* Do stuff here */
|
|
if (pushbutton_pending)
|
|
cpqhp_pushbutton_thread(pushbutton_pending);
|
|
else
|
|
for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
|
|
interrupt_event_handler(ctrl);
|
|
}
|
|
dbg("event_thread signals exit\n");
|
|
return 0;
|
|
}
|
|
|
|
int cpqhp_event_start_thread(void)
|
|
{
|
|
cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
|
|
if (IS_ERR(cpqhp_event_thread)) {
|
|
err("Can't start up our event thread\n");
|
|
return PTR_ERR(cpqhp_event_thread);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void cpqhp_event_stop_thread(void)
|
|
{
|
|
kthread_stop(cpqhp_event_thread);
|
|
}
|
|
|
|
|
|
static void interrupt_event_handler(struct controller *ctrl)
|
|
{
|
|
int loop;
|
|
int change = 1;
|
|
struct pci_func *func;
|
|
u8 hp_slot;
|
|
struct slot *p_slot;
|
|
|
|
while (change) {
|
|
change = 0;
|
|
|
|
for (loop = 0; loop < 10; loop++) {
|
|
/* dbg("loop %d\n", loop); */
|
|
if (ctrl->event_queue[loop].event_type != 0) {
|
|
hp_slot = ctrl->event_queue[loop].hp_slot;
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
|
|
if (!func)
|
|
return;
|
|
|
|
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
if (!p_slot)
|
|
return;
|
|
|
|
dbg("hp_slot %d, func %p, p_slot %p\n",
|
|
hp_slot, func, p_slot);
|
|
|
|
if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
|
|
dbg("button pressed\n");
|
|
} else if (ctrl->event_queue[loop].event_type ==
|
|
INT_BUTTON_CANCEL) {
|
|
dbg("button cancel\n");
|
|
del_timer(&p_slot->task_event);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
if (p_slot->state == BLINKINGOFF_STATE) {
|
|
/* slot is on */
|
|
dbg("turn on green LED\n");
|
|
green_LED_on(ctrl, hp_slot);
|
|
} else if (p_slot->state == BLINKINGON_STATE) {
|
|
/* slot is off */
|
|
dbg("turn off green LED\n");
|
|
green_LED_off(ctrl, hp_slot);
|
|
}
|
|
|
|
info(msg_button_cancel, p_slot->number);
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
|
|
amber_LED_off(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
}
|
|
/*** button Released (No action on press...) */
|
|
else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
|
|
dbg("button release\n");
|
|
|
|
if (is_slot_enabled(ctrl, hp_slot)) {
|
|
dbg("slot is on\n");
|
|
p_slot->state = BLINKINGOFF_STATE;
|
|
info(msg_button_off, p_slot->number);
|
|
} else {
|
|
dbg("slot is off\n");
|
|
p_slot->state = BLINKINGON_STATE;
|
|
info(msg_button_on, p_slot->number);
|
|
}
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
dbg("blink green LED and turn off amber\n");
|
|
|
|
amber_LED_off(ctrl, hp_slot);
|
|
green_LED_blink(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
timer_setup(&p_slot->task_event,
|
|
pushbutton_helper_thread,
|
|
0);
|
|
p_slot->hp_slot = hp_slot;
|
|
p_slot->ctrl = ctrl;
|
|
/* p_slot->physical_slot = physical_slot; */
|
|
p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
|
|
|
|
dbg("add_timer p_slot = %p\n", p_slot);
|
|
add_timer(&p_slot->task_event);
|
|
}
|
|
/***********POWER FAULT */
|
|
else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
|
|
dbg("power fault\n");
|
|
}
|
|
|
|
ctrl->event_queue[loop].event_type = 0;
|
|
|
|
change = 1;
|
|
}
|
|
} /* End of FOR loop */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_pushbutton_thread - handle pushbutton events
|
|
* @t: pointer to struct timer_list which holds all timer-related callbacks
|
|
*
|
|
* Scheduled procedure to handle blocking stuff for the pushbuttons.
|
|
* Handles all pending events and exits.
|
|
*/
|
|
void cpqhp_pushbutton_thread(struct timer_list *t)
|
|
{
|
|
u8 hp_slot;
|
|
struct pci_func *func;
|
|
struct slot *p_slot = from_timer(p_slot, t, task_event);
|
|
struct controller *ctrl = (struct controller *) p_slot->ctrl;
|
|
|
|
pushbutton_pending = NULL;
|
|
hp_slot = p_slot->hp_slot;
|
|
|
|
if (is_slot_enabled(ctrl, hp_slot)) {
|
|
p_slot->state = POWEROFF_STATE;
|
|
/* power Down board */
|
|
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
|
|
dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
|
|
if (!func) {
|
|
dbg("Error! func NULL in %s\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (cpqhp_process_SS(ctrl, func) != 0) {
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_on(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
}
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
} else {
|
|
p_slot->state = POWERON_STATE;
|
|
/* slot is off */
|
|
|
|
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
|
|
dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
|
|
if (!func) {
|
|
dbg("Error! func NULL in %s\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (ctrl != NULL) {
|
|
if (cpqhp_process_SI(ctrl, func) != 0) {
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
}
|
|
}
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
}
|
|
}
|
|
|
|
|
|
int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
|
|
{
|
|
u8 device, hp_slot;
|
|
u16 temp_word;
|
|
u32 tempdword;
|
|
int rc;
|
|
struct slot *p_slot;
|
|
|
|
tempdword = 0;
|
|
|
|
device = func->device;
|
|
hp_slot = device - ctrl->slot_device_offset;
|
|
p_slot = cpqhp_find_slot(ctrl, device);
|
|
|
|
/* Check to see if the interlock is closed */
|
|
tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
if (tempdword & (0x01 << hp_slot))
|
|
return 1;
|
|
|
|
if (func->is_a_board) {
|
|
rc = board_replaced(func, ctrl);
|
|
} else {
|
|
/* add board */
|
|
slot_remove(func);
|
|
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->is_a_board = 1;
|
|
|
|
/* We have to save the presence info for these slots */
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
func->switch_save = 0;
|
|
} else {
|
|
func->switch_save = 0x10;
|
|
}
|
|
|
|
rc = board_added(func, ctrl);
|
|
if (rc) {
|
|
if (is_bridge(func)) {
|
|
bridge_slot_remove(func);
|
|
} else
|
|
slot_remove(func);
|
|
|
|
/* Setup slot structure with entry for empty slot */
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->is_a_board = 0;
|
|
|
|
/* We have to save the presence info for these slots */
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |=
|
|
(temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
func->switch_save = 0;
|
|
} else {
|
|
func->switch_save = 0x10;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rc)
|
|
dbg("%s: rc = %d\n", __func__, rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
|
|
{
|
|
u8 device, class_code, header_type, BCR;
|
|
u8 index = 0;
|
|
u8 replace_flag;
|
|
u32 rc = 0;
|
|
unsigned int devfn;
|
|
struct slot *p_slot;
|
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
|
|
|
device = func->device;
|
|
func = cpqhp_slot_find(ctrl->bus, device, index++);
|
|
p_slot = cpqhp_find_slot(ctrl, device);
|
|
|
|
/* Make sure there are no video controllers here */
|
|
while (func && !rc) {
|
|
pci_bus->number = func->bus;
|
|
devfn = PCI_DEVFN(func->device, func->function);
|
|
|
|
/* Check the Class Code */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (class_code == PCI_BASE_CLASS_DISPLAY) {
|
|
/* Display/Video adapter (not supported) */
|
|
rc = REMOVE_NOT_SUPPORTED;
|
|
} else {
|
|
/* See if it's a bridge */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* If it's a bridge, check the VGA Enable bit */
|
|
if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* If the VGA Enable bit is set, remove isn't
|
|
* supported */
|
|
if (BCR & PCI_BRIDGE_CTL_VGA)
|
|
rc = REMOVE_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, index++);
|
|
}
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, 0);
|
|
if ((func != NULL) && !rc) {
|
|
/* FIXME: Replace flag should be passed into process_SS */
|
|
replace_flag = !(ctrl->add_support);
|
|
rc = remove_board(func, replace_flag, ctrl);
|
|
} else if (!rc) {
|
|
rc = 1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* switch_leds - switch the leds, go from one site to the other.
|
|
* @ctrl: controller to use
|
|
* @num_of_slots: number of slots to use
|
|
* @work_LED: LED control value
|
|
* @direction: 1 to start from the left side, 0 to start right.
|
|
*/
|
|
static void switch_leds(struct controller *ctrl, const int num_of_slots,
|
|
u32 *work_LED, const int direction)
|
|
{
|
|
int loop;
|
|
|
|
for (loop = 0; loop < num_of_slots; loop++) {
|
|
if (direction)
|
|
*work_LED = *work_LED >> 1;
|
|
else
|
|
*work_LED = *work_LED << 1;
|
|
writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((2*HZ)/10);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cpqhp_hardware_test - runs hardware tests
|
|
* @ctrl: target controller
|
|
* @test_num: the number written to the "test" file in sysfs.
|
|
*
|
|
* For hot plug ctrl folks to play with.
|
|
*/
|
|
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
|
|
{
|
|
u32 save_LED;
|
|
u32 work_LED;
|
|
int loop;
|
|
int num_of_slots;
|
|
|
|
num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
|
|
|
|
switch (test_num) {
|
|
case 1:
|
|
/* Do stuff here! */
|
|
|
|
/* Do that funky LED thing */
|
|
/* so we can restore them later */
|
|
save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
|
|
work_LED = 0x01010101;
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
|
|
work_LED = 0x01010000;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
work_LED = 0x00000101;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
|
|
work_LED = 0x01010000;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
for (loop = 0; loop < num_of_slots; loop++) {
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((3*HZ)/10);
|
|
work_LED = work_LED >> 16;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((3*HZ)/10);
|
|
work_LED = work_LED << 16;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
work_LED = work_LED << 1;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
}
|
|
|
|
/* put it back the way it was */
|
|
writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
break;
|
|
case 2:
|
|
/* Do other stuff here! */
|
|
break;
|
|
case 3:
|
|
/* and more... */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* configure_new_device - Configures the PCI header information of one board.
|
|
* @ctrl: pointer to controller structure
|
|
* @func: pointer to function structure
|
|
* @behind_bridge: 1 if this is a recursive call, 0 if not
|
|
* @resources: pointer to set of resource lists
|
|
*
|
|
* Returns 0 if success.
|
|
*/
|
|
static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
|
|
u8 behind_bridge, struct resource_lists *resources)
|
|
{
|
|
u8 temp_byte, function, max_functions, stop_it;
|
|
int rc;
|
|
u32 ID;
|
|
struct pci_func *new_slot;
|
|
int index;
|
|
|
|
new_slot = func;
|
|
|
|
dbg("%s\n", __func__);
|
|
/* Check for Multi-function device */
|
|
ctrl->pci_bus->number = func->bus;
|
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
|
|
if (rc) {
|
|
dbg("%s: rc = %d\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
if (temp_byte & 0x80) /* Multi-function device */
|
|
max_functions = 8;
|
|
else
|
|
max_functions = 1;
|
|
|
|
function = 0;
|
|
|
|
do {
|
|
rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
|
|
|
|
if (rc) {
|
|
dbg("configure_new_function failed %d\n", rc);
|
|
index = 0;
|
|
|
|
while (new_slot) {
|
|
new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
|
|
|
|
if (new_slot)
|
|
cpqhp_return_board_resources(new_slot, resources);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
function++;
|
|
|
|
stop_it = 0;
|
|
|
|
/* The following loop skips to the next present function
|
|
* and creates a board structure */
|
|
|
|
while ((function < max_functions) && (!stop_it)) {
|
|
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
|
|
|
|
if (PCI_POSSIBLE_ERROR(ID)) {
|
|
function++;
|
|
} else {
|
|
/* Setup slot structure. */
|
|
new_slot = cpqhp_slot_create(func->bus);
|
|
|
|
if (new_slot == NULL)
|
|
return 1;
|
|
|
|
new_slot->bus = func->bus;
|
|
new_slot->device = func->device;
|
|
new_slot->function = function;
|
|
new_slot->is_a_board = 1;
|
|
new_slot->status = 0;
|
|
|
|
stop_it++;
|
|
}
|
|
}
|
|
|
|
} while (function < max_functions);
|
|
dbg("returning from configure_new_device\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Configuration logic that involves the hotplug data structures and
|
|
* their bookkeeping
|
|
*/
|
|
|
|
|
|
/**
|
|
* configure_new_function - Configures the PCI header information of one device
|
|
* @ctrl: pointer to controller structure
|
|
* @func: pointer to function structure
|
|
* @behind_bridge: 1 if this is a recursive call, 0 if not
|
|
* @resources: pointer to set of resource lists
|
|
*
|
|
* Calls itself recursively for bridged devices.
|
|
* Returns 0 if success.
|
|
*/
|
|
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
|
|
u8 behind_bridge,
|
|
struct resource_lists *resources)
|
|
{
|
|
int cloop;
|
|
u8 IRQ = 0;
|
|
u8 temp_byte;
|
|
u8 device;
|
|
u8 class_code;
|
|
u16 command;
|
|
u16 temp_word;
|
|
u32 temp_dword;
|
|
u32 rc;
|
|
u32 temp_register;
|
|
u32 base;
|
|
u32 ID;
|
|
unsigned int devfn;
|
|
struct pci_resource *mem_node;
|
|
struct pci_resource *p_mem_node;
|
|
struct pci_resource *io_node;
|
|
struct pci_resource *bus_node;
|
|
struct pci_resource *hold_mem_node;
|
|
struct pci_resource *hold_p_mem_node;
|
|
struct pci_resource *hold_IO_node;
|
|
struct pci_resource *hold_bus_node;
|
|
struct irq_mapping irqs;
|
|
struct pci_func *new_slot;
|
|
struct pci_bus *pci_bus;
|
|
struct resource_lists temp_resources;
|
|
|
|
pci_bus = ctrl->pci_bus;
|
|
pci_bus->number = func->bus;
|
|
devfn = PCI_DEVFN(func->device, func->function);
|
|
|
|
/* Check for Bridge */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
|
|
/* set Primary bus */
|
|
dbg("set Primary bus = %d\n", func->bus);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* find range of buses to use */
|
|
dbg("find ranges of buses to use\n");
|
|
bus_node = get_max_resource(&(resources->bus_head), 1);
|
|
|
|
/* If we don't have any buses to allocate, we can't continue */
|
|
if (!bus_node)
|
|
return -ENOMEM;
|
|
|
|
/* set Secondary bus */
|
|
temp_byte = bus_node->base;
|
|
dbg("set Secondary bus = %d\n", bus_node->base);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set subordinate bus */
|
|
temp_byte = bus_node->base + bus_node->length - 1;
|
|
dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set subordinate Latency Timer and base Latency Timer */
|
|
temp_byte = 0x40;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set Cache Line size */
|
|
temp_byte = 0x08;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Setup the IO, memory, and prefetchable windows */
|
|
io_node = get_max_resource(&(resources->io_head), 0x1000);
|
|
if (!io_node)
|
|
return -ENOMEM;
|
|
mem_node = get_max_resource(&(resources->mem_head), 0x100000);
|
|
if (!mem_node)
|
|
return -ENOMEM;
|
|
p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
|
|
if (!p_mem_node)
|
|
return -ENOMEM;
|
|
dbg("Setup the IO, memory, and prefetchable windows\n");
|
|
dbg("io_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
|
|
io_node->length, io_node->next);
|
|
dbg("mem_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
|
|
mem_node->length, mem_node->next);
|
|
dbg("p_mem_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
|
|
p_mem_node->length, p_mem_node->next);
|
|
|
|
/* set up the IRQ info */
|
|
if (!resources->irqs) {
|
|
irqs.barber_pole = 0;
|
|
irqs.interrupt[0] = 0;
|
|
irqs.interrupt[1] = 0;
|
|
irqs.interrupt[2] = 0;
|
|
irqs.interrupt[3] = 0;
|
|
irqs.valid_INT = 0;
|
|
} else {
|
|
irqs.barber_pole = resources->irqs->barber_pole;
|
|
irqs.interrupt[0] = resources->irqs->interrupt[0];
|
|
irqs.interrupt[1] = resources->irqs->interrupt[1];
|
|
irqs.interrupt[2] = resources->irqs->interrupt[2];
|
|
irqs.interrupt[3] = resources->irqs->interrupt[3];
|
|
irqs.valid_INT = resources->irqs->valid_INT;
|
|
}
|
|
|
|
/* set up resource lists that are now aligned on top and bottom
|
|
* for anything behind the bridge. */
|
|
temp_resources.bus_head = bus_node;
|
|
temp_resources.io_head = io_node;
|
|
temp_resources.mem_head = mem_node;
|
|
temp_resources.p_mem_head = p_mem_node;
|
|
temp_resources.irqs = &irqs;
|
|
|
|
/* Make copies of the nodes we are going to pass down so that
|
|
* if there is a problem,we can just use these to free resources
|
|
*/
|
|
hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
|
|
hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
|
|
hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
|
|
hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
|
|
|
|
if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
|
|
kfree(hold_bus_node);
|
|
kfree(hold_IO_node);
|
|
kfree(hold_mem_node);
|
|
kfree(hold_p_mem_node);
|
|
|
|
return 1;
|
|
}
|
|
|
|
memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
|
|
|
|
bus_node->base += 1;
|
|
bus_node->length -= 1;
|
|
bus_node->next = NULL;
|
|
|
|
/* If we have IO resources copy them and fill in the bridge's
|
|
* IO range registers */
|
|
memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
|
|
io_node->next = NULL;
|
|
|
|
/* set IO base and Limit registers */
|
|
temp_byte = io_node->base >> 8;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
|
|
|
|
temp_byte = (io_node->base + io_node->length - 1) >> 8;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
|
|
|
|
/* Copy the memory resources and fill in the bridge's memory
|
|
* range registers.
|
|
*/
|
|
memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
|
|
mem_node->next = NULL;
|
|
|
|
/* set Mem base and Limit registers */
|
|
temp_word = mem_node->base >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
|
|
|
|
temp_word = (mem_node->base + mem_node->length - 1) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
|
|
p_mem_node->next = NULL;
|
|
|
|
/* set Pre Mem base and Limit registers */
|
|
temp_word = p_mem_node->base >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
|
|
|
|
temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
/* Adjust this to compensate for extra adjustment in first loop
|
|
*/
|
|
irqs.barber_pole--;
|
|
|
|
rc = 0;
|
|
|
|
/* Here we actually find the devices and configure them */
|
|
for (device = 0; (device <= 0x1F) && !rc; device++) {
|
|
irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
|
|
|
|
ID = 0xFFFFFFFF;
|
|
pci_bus->number = hold_bus_node->base;
|
|
pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
|
|
pci_bus->number = func->bus;
|
|
|
|
if (!PCI_POSSIBLE_ERROR(ID)) { /* device present */
|
|
/* Setup slot structure. */
|
|
new_slot = cpqhp_slot_create(hold_bus_node->base);
|
|
|
|
if (new_slot == NULL) {
|
|
rc = -ENOMEM;
|
|
continue;
|
|
}
|
|
|
|
new_slot->bus = hold_bus_node->base;
|
|
new_slot->device = device;
|
|
new_slot->function = 0;
|
|
new_slot->is_a_board = 1;
|
|
new_slot->status = 0;
|
|
|
|
rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
|
|
dbg("configure_new_device rc=0x%x\n", rc);
|
|
} /* End of IF (device in slot?) */
|
|
} /* End of FOR loop */
|
|
|
|
if (rc)
|
|
goto free_and_out;
|
|
/* save the interrupt routing information */
|
|
if (resources->irqs) {
|
|
resources->irqs->interrupt[0] = irqs.interrupt[0];
|
|
resources->irqs->interrupt[1] = irqs.interrupt[1];
|
|
resources->irqs->interrupt[2] = irqs.interrupt[2];
|
|
resources->irqs->interrupt[3] = irqs.interrupt[3];
|
|
resources->irqs->valid_INT = irqs.valid_INT;
|
|
} else if (!behind_bridge) {
|
|
/* We need to hook up the interrupts here */
|
|
for (cloop = 0; cloop < 4; cloop++) {
|
|
if (irqs.valid_INT & (0x01 << cloop)) {
|
|
rc = cpqhp_set_irq(func->bus, func->device,
|
|
cloop + 1, irqs.interrupt[cloop]);
|
|
if (rc)
|
|
goto free_and_out;
|
|
}
|
|
} /* end of for loop */
|
|
}
|
|
/* Return unused bus resources
|
|
* First use the temporary node to store information for
|
|
* the board */
|
|
if (bus_node && temp_resources.bus_head) {
|
|
hold_bus_node->length = bus_node->base - hold_bus_node->base;
|
|
|
|
hold_bus_node->next = func->bus_head;
|
|
func->bus_head = hold_bus_node;
|
|
|
|
temp_byte = temp_resources.bus_head->base - 1;
|
|
|
|
/* set subordinate bus */
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
|
|
|
|
if (temp_resources.bus_head->length == 0) {
|
|
kfree(temp_resources.bus_head);
|
|
temp_resources.bus_head = NULL;
|
|
} else {
|
|
return_resource(&(resources->bus_head), temp_resources.bus_head);
|
|
}
|
|
}
|
|
|
|
/* If we have IO space available and there is some left,
|
|
* return the unused portion */
|
|
if (hold_IO_node && temp_resources.io_head) {
|
|
io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
|
|
&hold_IO_node, 0x1000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (io_node) {
|
|
hold_IO_node->base = io_node->base + io_node->length;
|
|
|
|
temp_byte = (hold_IO_node->base) >> 8;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
}
|
|
|
|
io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (io_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_IO_node->length = io_node->base - hold_IO_node->base;
|
|
|
|
/* If we used any, add it to the board's list */
|
|
if (hold_IO_node->length) {
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
|
|
temp_byte = (io_node->base - 1) >> 8;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
} else {
|
|
/* it doesn't need any IO */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
kfree(hold_IO_node);
|
|
}
|
|
} else {
|
|
/* it used most of the range */
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
}
|
|
} else if (hold_IO_node) {
|
|
/* it used the whole range */
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
}
|
|
/* If we have memory space available and there is some left,
|
|
* return the unused portion */
|
|
if (hold_mem_node && temp_resources.mem_head) {
|
|
mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
|
|
&hold_mem_node, 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (mem_node) {
|
|
hold_mem_node->base = mem_node->base + mem_node->length;
|
|
|
|
temp_word = (hold_mem_node->base) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
|
|
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
}
|
|
|
|
mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (mem_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_mem_node->length = mem_node->base - hold_mem_node->base;
|
|
|
|
if (hold_mem_node->length) {
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
|
|
/* configure end address */
|
|
temp_word = (mem_node->base - 1) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
/* Return unused resources to the pool */
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
} else {
|
|
/* it doesn't need any Mem */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
kfree(hold_mem_node);
|
|
}
|
|
} else {
|
|
/* it used most of the range */
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
}
|
|
} else if (hold_mem_node) {
|
|
/* it used the whole range */
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
}
|
|
/* If we have prefetchable memory space available and there
|
|
* is some left at the end, return the unused portion */
|
|
if (temp_resources.p_mem_head) {
|
|
p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
|
|
&hold_p_mem_node, 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (p_mem_node) {
|
|
hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
|
|
|
|
temp_word = (hold_p_mem_node->base) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
}
|
|
|
|
p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (p_mem_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
|
|
|
|
/* If we used any, add it to the board's list */
|
|
if (hold_p_mem_node->length) {
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
|
|
temp_word = (p_mem_node->base - 1) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
} else {
|
|
/* it doesn't need any PMem */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
kfree(hold_p_mem_node);
|
|
}
|
|
} else {
|
|
/* it used the most of the range */
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
}
|
|
} else if (hold_p_mem_node) {
|
|
/* it used the whole range */
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
}
|
|
/* We should be configuring an IRQ and the bridge's base address
|
|
* registers if it needs them. Although we have never seen such
|
|
* a device */
|
|
|
|
/* enable card */
|
|
command = 0x0157; /* = PCI_COMMAND_IO |
|
|
* PCI_COMMAND_MEMORY |
|
|
* PCI_COMMAND_MASTER |
|
|
* PCI_COMMAND_INVALIDATE |
|
|
* PCI_COMMAND_PARITY |
|
|
* PCI_COMMAND_SERR */
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
|
|
|
|
/* set Bridge Control Register */
|
|
command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
|
|
* PCI_BRIDGE_CTL_SERR |
|
|
* PCI_BRIDGE_CTL_NO_ISA */
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
|
|
} else if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
|
|
/* Standard device */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
|
|
|
|
if (class_code == PCI_BASE_CLASS_DISPLAY) {
|
|
/* Display (video) adapter (not supported) */
|
|
return DEVICE_TYPE_NOT_SUPPORTED;
|
|
}
|
|
/* Figure out IO and memory needs */
|
|
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
|
|
temp_register = 0xFFFFFFFF;
|
|
|
|
dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
|
|
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
|
|
|
rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
|
|
dbg("CND: base = 0x%x\n", temp_register);
|
|
|
|
if (temp_register) { /* If this register is implemented */
|
|
if ((temp_register & 0x03L) == 0x01) {
|
|
/* Map IO */
|
|
|
|
/* set base = amount of IO space */
|
|
base = temp_register & 0xFFFFFFFC;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
io_node = get_io_resource(&(resources->io_head), base);
|
|
if (!io_node)
|
|
return -ENOMEM;
|
|
dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
|
|
io_node->base, io_node->length, io_node->next);
|
|
dbg("func (%p) io_head (%p)\n", func, func->io_head);
|
|
|
|
/* allocate the resource to the board */
|
|
base = io_node->base;
|
|
io_node->next = func->io_head;
|
|
func->io_head = io_node;
|
|
} else if ((temp_register & 0x0BL) == 0x08) {
|
|
/* Map prefetchable memory */
|
|
base = temp_register & 0xFFFFFFF0;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
p_mem_node = get_resource(&(resources->p_mem_head), base);
|
|
|
|
/* allocate the resource to the board */
|
|
if (p_mem_node) {
|
|
base = p_mem_node->base;
|
|
|
|
p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = p_mem_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else if ((temp_register & 0x0BL) == 0x00) {
|
|
/* Map memory */
|
|
base = temp_register & 0xFFFFFFF0;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
mem_node = get_resource(&(resources->mem_head), base);
|
|
|
|
/* allocate the resource to the board */
|
|
if (mem_node) {
|
|
base = mem_node->base;
|
|
|
|
mem_node->next = func->mem_head;
|
|
func->mem_head = mem_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else {
|
|
/* Reserved bits or requesting space below 1M */
|
|
return NOT_ENOUGH_RESOURCES;
|
|
}
|
|
|
|
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
|
|
|
|
/* Check for 64-bit base */
|
|
if ((temp_register & 0x07L) == 0x04) {
|
|
cloop += 4;
|
|
|
|
/* Upper 32 bits of address always zero
|
|
* on today's systems */
|
|
/* FIXME this is probably not true on
|
|
* Alpha and ia64??? */
|
|
base = 0;
|
|
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
|
|
}
|
|
}
|
|
} /* End of base register loop */
|
|
if (cpqhp_legacy_mode) {
|
|
/* Figure out which interrupt pin this function uses */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn,
|
|
PCI_INTERRUPT_PIN, &temp_byte);
|
|
|
|
/* If this function needs an interrupt and we are behind
|
|
* a bridge and the pin is tied to something that's
|
|
* already mapped, set this one the same */
|
|
if (temp_byte && resources->irqs &&
|
|
(resources->irqs->valid_INT &
|
|
(0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
|
|
/* We have to share with something already set up */
|
|
IRQ = resources->irqs->interrupt[(temp_byte +
|
|
resources->irqs->barber_pole - 1) & 0x03];
|
|
} else {
|
|
/* Program IRQ based on card type */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
|
|
|
|
if (class_code == PCI_BASE_CLASS_STORAGE)
|
|
IRQ = cpqhp_disk_irq;
|
|
else
|
|
IRQ = cpqhp_nic_irq;
|
|
}
|
|
|
|
/* IRQ Line */
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
|
|
}
|
|
|
|
if (!behind_bridge) {
|
|
rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
|
|
if (rc)
|
|
return 1;
|
|
} else {
|
|
/* TBD - this code may also belong in the other clause
|
|
* of this If statement */
|
|
resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
|
|
resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
|
|
}
|
|
|
|
/* Latency Timer */
|
|
temp_byte = 0x40;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn,
|
|
PCI_LATENCY_TIMER, temp_byte);
|
|
|
|
/* Cache Line size */
|
|
temp_byte = 0x08;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn,
|
|
PCI_CACHE_LINE_SIZE, temp_byte);
|
|
|
|
/* disable ROM base Address */
|
|
temp_dword = 0x00L;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn,
|
|
PCI_ROM_ADDRESS, temp_dword);
|
|
|
|
/* enable card */
|
|
temp_word = 0x0157; /* = PCI_COMMAND_IO |
|
|
* PCI_COMMAND_MEMORY |
|
|
* PCI_COMMAND_MASTER |
|
|
* PCI_COMMAND_INVALIDATE |
|
|
* PCI_COMMAND_PARITY |
|
|
* PCI_COMMAND_SERR */
|
|
rc = pci_bus_write_config_word(pci_bus, devfn,
|
|
PCI_COMMAND, temp_word);
|
|
} else { /* End of Not-A-Bridge else */
|
|
/* It's some strange type of PCI adapter (Cardbus?) */
|
|
return DEVICE_TYPE_NOT_SUPPORTED;
|
|
}
|
|
|
|
func->configured = 1;
|
|
|
|
return 0;
|
|
free_and_out:
|
|
cpqhp_destroy_resource_list(&temp_resources);
|
|
|
|
return_resource(&(resources->bus_head), hold_bus_node);
|
|
return_resource(&(resources->io_head), hold_IO_node);
|
|
return_resource(&(resources->mem_head), hold_mem_node);
|
|
return_resource(&(resources->p_mem_head), hold_p_mem_node);
|
|
return rc;
|
|
}
|