e500059ba5
Currently __slab_alloc() disables irqs around the whole ___slab_alloc(). This includes cases where this is not needed, such as when the allocation ends up in the page allocator and has to awkwardly enable irqs back based on gfp flags. Also the whole kmem_cache_alloc_bulk() is executed with irqs disabled even when it hits the __slab_alloc() slow path, and long periods with disabled interrupts are undesirable. As a first step towards reducing irq disabled periods, move irq handling into ___slab_alloc(). Callers will instead prevent the s->cpu_slab percpu pointer from becoming invalid via get_cpu_ptr(), thus preempt_disable(). This does not protect against modification by an irq handler, which is still done by disabled irq for most of ___slab_alloc(). As a small immediate benefit, slab_out_of_memory() from ___slab_alloc() is now called with irqs enabled. kmem_cache_alloc_bulk() disables irqs for its fastpath and then re-enables them before calling ___slab_alloc(), which then disables them at its discretion. The whole kmem_cache_alloc_bulk() operation also disables preemption. When ___slab_alloc() calls new_slab() to allocate a new page, re-enable preemption, because new_slab() will re-enable interrupts in contexts that allow blocking (this will be improved by later patches). The patch itself will thus increase overhead a bit due to disabled preemption (on configs where it matters) and increased disabling/enabling irqs in kmem_cache_alloc_bulk(), but that will be gradually improved in the following patches. Note in __slab_alloc() we need to change the #ifdef CONFIG_PREEMPT guard to CONFIG_PREEMPT_COUNT to make sure preempt disable/enable is properly paired in all configurations. On configs without involuntary preemption and debugging the re-read of kmem_cache_cpu pointer is still compiled out as it was before. [ Mike Galbraith <efault@gmx.de>: Fix kmem_cache_alloc_bulk() error path ] Signed-off-by: Vlastimil Babka <vbabka@suse.cz>