e5c3fddfaa
Some NCR5380 hosts offer a .show_info method to access the contents of the various command list data structures from a procfs file. When NDEBUG is set, the same information is sent to the console during EH. The two core drivers, atari_NCR5380.c and NCR5380.c differ here. Because it is just for debugging, the easiest way to fix the discrepancy is simply remove this code. The only remaining users of NCR5380_show_info() and NCR5380_write_info() are drivers that define PSEUDO_DMA. The others have no use for the .show_info method, so don't initialize it. Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Ondrej Zary <linux@rainbow-software.org> Tested-by: Michael Schmitz <schmitzmic@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2442 lines
78 KiB
C
2442 lines
78 KiB
C
/*
|
|
* NCR 5380 generic driver routines. These should make it *trivial*
|
|
* to implement 5380 SCSI drivers under Linux with a non-trantor
|
|
* architecture.
|
|
*
|
|
* Note that these routines also work with NR53c400 family chips.
|
|
*
|
|
* Copyright 1993, Drew Eckhardt
|
|
* Visionary Computing
|
|
* (Unix and Linux consulting and custom programming)
|
|
* drew@colorado.edu
|
|
* +1 (303) 666-5836
|
|
*
|
|
* For more information, please consult
|
|
*
|
|
* NCR 5380 Family
|
|
* SCSI Protocol Controller
|
|
* Databook
|
|
*
|
|
* NCR Microelectronics
|
|
* 1635 Aeroplaza Drive
|
|
* Colorado Springs, CO 80916
|
|
* 1+ (719) 578-3400
|
|
* 1+ (800) 334-5454
|
|
*/
|
|
|
|
/*
|
|
* Revision 1.10 1998/9/2 Alan Cox
|
|
* (alan@lxorguk.ukuu.org.uk)
|
|
* Fixed up the timer lockups reported so far. Things still suck. Looking
|
|
* forward to 2.3 and per device request queues. Then it'll be possible to
|
|
* SMP thread this beast and improve life no end.
|
|
|
|
* Revision 1.9 1997/7/27 Ronald van Cuijlenborg
|
|
* (ronald.van.cuijlenborg@tip.nl or nutty@dds.nl)
|
|
* (hopefully) fixed and enhanced USLEEP
|
|
* added support for DTC3181E card (for Mustek scanner)
|
|
*
|
|
|
|
* Revision 1.8 Ingmar Baumgart
|
|
* (ingmar@gonzo.schwaben.de)
|
|
* added support for NCR53C400a card
|
|
*
|
|
|
|
* Revision 1.7 1996/3/2 Ray Van Tassle (rayvt@comm.mot.com)
|
|
* added proc_info
|
|
* added support needed for DTC 3180/3280
|
|
* fixed a couple of bugs
|
|
*
|
|
|
|
* Revision 1.5 1994/01/19 09:14:57 drew
|
|
* Fixed udelay() hack that was being used on DATAOUT phases
|
|
* instead of a proper wait for the final handshake.
|
|
*
|
|
* Revision 1.4 1994/01/19 06:44:25 drew
|
|
* *** empty log message ***
|
|
*
|
|
* Revision 1.3 1994/01/19 05:24:40 drew
|
|
* Added support for TCR LAST_BYTE_SENT bit.
|
|
*
|
|
* Revision 1.2 1994/01/15 06:14:11 drew
|
|
* REAL DMA support, bug fixes.
|
|
*
|
|
* Revision 1.1 1994/01/15 06:00:54 drew
|
|
* Initial revision
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Further development / testing that should be done :
|
|
* 1. Cleanup the NCR5380_transfer_dma function and DMA operation complete
|
|
* code so that everything does the same thing that's done at the
|
|
* end of a pseudo-DMA read operation.
|
|
*
|
|
* 2. Fix REAL_DMA (interrupt driven, polled works fine) -
|
|
* basically, transfer size needs to be reduced by one
|
|
* and the last byte read as is done with PSEUDO_DMA.
|
|
*
|
|
* 4. Test SCSI-II tagged queueing (I have no devices which support
|
|
* tagged queueing)
|
|
*/
|
|
|
|
#if (NDEBUG & NDEBUG_LISTS)
|
|
#define LIST(x,y) {printk("LINE:%d Adding %p to %p\n", __LINE__, (void*)(x), (void*)(y)); if ((x)==(y)) udelay(5); }
|
|
#define REMOVE(w,x,y,z) {printk("LINE:%d Removing: %p->%p %p->%p \n", __LINE__, (void*)(w), (void*)(x), (void*)(y), (void*)(z)); if ((x)==(y)) udelay(5); }
|
|
#else
|
|
#define LIST(x,y)
|
|
#define REMOVE(w,x,y,z)
|
|
#endif
|
|
|
|
#ifndef notyet
|
|
#undef REAL_DMA
|
|
#endif
|
|
|
|
#ifdef BOARD_REQUIRES_NO_DELAY
|
|
#define io_recovery_delay(x)
|
|
#else
|
|
#define io_recovery_delay(x) udelay(x)
|
|
#endif
|
|
|
|
/*
|
|
* Design
|
|
*
|
|
* This is a generic 5380 driver. To use it on a different platform,
|
|
* one simply writes appropriate system specific macros (ie, data
|
|
* transfer - some PC's will use the I/O bus, 68K's must use
|
|
* memory mapped) and drops this file in their 'C' wrapper.
|
|
*
|
|
* (Note from hch: unfortunately it was not enough for the different
|
|
* m68k folks and instead of improving this driver they copied it
|
|
* and hacked it up for their needs. As a consequence they lost
|
|
* most updates to this driver. Maybe someone will fix all these
|
|
* drivers to use a common core one day..)
|
|
*
|
|
* As far as command queueing, two queues are maintained for
|
|
* each 5380 in the system - commands that haven't been issued yet,
|
|
* and commands that are currently executing. This means that an
|
|
* unlimited number of commands may be queued, letting
|
|
* more commands propagate from the higher driver levels giving higher
|
|
* throughput. Note that both I_T_L and I_T_L_Q nexuses are supported,
|
|
* allowing multiple commands to propagate all the way to a SCSI-II device
|
|
* while a command is already executing.
|
|
*
|
|
*
|
|
* Issues specific to the NCR5380 :
|
|
*
|
|
* When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead
|
|
* piece of hardware that requires you to sit in a loop polling for
|
|
* the REQ signal as long as you are connected. Some devices are
|
|
* brain dead (ie, many TEXEL CD ROM drives) and won't disconnect
|
|
* while doing long seek operations. [...] These
|
|
* broken devices are the exception rather than the rule and I'd rather
|
|
* spend my time optimizing for the normal case.
|
|
*
|
|
* Architecture :
|
|
*
|
|
* At the heart of the design is a coroutine, NCR5380_main,
|
|
* which is started from a workqueue for each NCR5380 host in the
|
|
* system. It attempts to establish I_T_L or I_T_L_Q nexuses by
|
|
* removing the commands from the issue queue and calling
|
|
* NCR5380_select() if a nexus is not established.
|
|
*
|
|
* Once a nexus is established, the NCR5380_information_transfer()
|
|
* phase goes through the various phases as instructed by the target.
|
|
* if the target goes into MSG IN and sends a DISCONNECT message,
|
|
* the command structure is placed into the per instance disconnected
|
|
* queue, and NCR5380_main tries to find more work. If the target is
|
|
* idle for too long, the system will try to sleep.
|
|
*
|
|
* If a command has disconnected, eventually an interrupt will trigger,
|
|
* calling NCR5380_intr() which will in turn call NCR5380_reselect
|
|
* to reestablish a nexus. This will run main if necessary.
|
|
*
|
|
* On command termination, the done function will be called as
|
|
* appropriate.
|
|
*
|
|
* SCSI pointers are maintained in the SCp field of SCSI command
|
|
* structures, being initialized after the command is connected
|
|
* in NCR5380_select, and set as appropriate in NCR5380_information_transfer.
|
|
* Note that in violation of the standard, an implicit SAVE POINTERS operation
|
|
* is done, since some BROKEN disks fail to issue an explicit SAVE POINTERS.
|
|
*/
|
|
|
|
/*
|
|
* Using this file :
|
|
* This file a skeleton Linux SCSI driver for the NCR 5380 series
|
|
* of chips. To use it, you write an architecture specific functions
|
|
* and macros and include this file in your driver.
|
|
*
|
|
* These macros control options :
|
|
* AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be
|
|
* defined.
|
|
*
|
|
* AUTOSENSE - if defined, REQUEST SENSE will be performed automatically
|
|
* for commands that return with a CHECK CONDITION status.
|
|
*
|
|
* DIFFERENTIAL - if defined, NCR53c81 chips will use external differential
|
|
* transceivers.
|
|
*
|
|
* DONT_USE_INTR - if defined, never use interrupts, even if we probe or
|
|
* override-configure an IRQ.
|
|
*
|
|
* PSEUDO_DMA - if defined, PSEUDO DMA is used during the data transfer phases.
|
|
*
|
|
* REAL_DMA - if defined, REAL DMA is used during the data transfer phases.
|
|
*
|
|
* REAL_DMA_POLL - if defined, REAL DMA is used but the driver doesn't
|
|
* rely on phase mismatch and EOP interrupts to determine end
|
|
* of phase.
|
|
*
|
|
* Defaults for these will be provided although the user may want to adjust
|
|
* these to allocate CPU resources to the SCSI driver or "real" code.
|
|
*
|
|
* These macros MUST be defined :
|
|
*
|
|
* NCR5380_read(register) - read from the specified register
|
|
*
|
|
* NCR5380_write(register, value) - write to the specific register
|
|
*
|
|
* NCR5380_implementation_fields - additional fields needed for this
|
|
* specific implementation of the NCR5380
|
|
*
|
|
* Either real DMA *or* pseudo DMA may be implemented
|
|
* REAL functions :
|
|
* NCR5380_REAL_DMA should be defined if real DMA is to be used.
|
|
* Note that the DMA setup functions should return the number of bytes
|
|
* that they were able to program the controller for.
|
|
*
|
|
* Also note that generic i386/PC versions of these macros are
|
|
* available as NCR5380_i386_dma_write_setup,
|
|
* NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual.
|
|
*
|
|
* NCR5380_dma_write_setup(instance, src, count) - initialize
|
|
* NCR5380_dma_read_setup(instance, dst, count) - initialize
|
|
* NCR5380_dma_residual(instance); - residual count
|
|
*
|
|
* PSEUDO functions :
|
|
* NCR5380_pwrite(instance, src, count)
|
|
* NCR5380_pread(instance, dst, count);
|
|
*
|
|
* The generic driver is initialized by calling NCR5380_init(instance),
|
|
* after setting the appropriate host specific fields and ID. If the
|
|
* driver wishes to autoprobe for an IRQ line, the NCR5380_probe_irq(instance,
|
|
* possible) function may be used.
|
|
*/
|
|
|
|
static int do_abort(struct Scsi_Host *);
|
|
static void do_reset(struct Scsi_Host *);
|
|
|
|
/*
|
|
* initialize_SCp - init the scsi pointer field
|
|
* @cmd: command block to set up
|
|
*
|
|
* Set up the internal fields in the SCSI command.
|
|
*/
|
|
|
|
static inline void initialize_SCp(struct scsi_cmnd *cmd)
|
|
{
|
|
/*
|
|
* Initialize the Scsi Pointer field so that all of the commands in the
|
|
* various queues are valid.
|
|
*/
|
|
|
|
if (scsi_bufflen(cmd)) {
|
|
cmd->SCp.buffer = scsi_sglist(cmd);
|
|
cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
|
} else {
|
|
cmd->SCp.buffer = NULL;
|
|
cmd->SCp.buffers_residual = 0;
|
|
cmd->SCp.ptr = NULL;
|
|
cmd->SCp.this_residual = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* NCR5380_poll_politely2 - wait for two chip register values
|
|
* @instance: controller to poll
|
|
* @reg1: 5380 register to poll
|
|
* @bit1: Bitmask to check
|
|
* @val1: Expected value
|
|
* @reg2: Second 5380 register to poll
|
|
* @bit2: Second bitmask to check
|
|
* @val2: Second expected value
|
|
* @wait: Time-out in jiffies
|
|
*
|
|
* Polls the chip in a reasonably efficient manner waiting for an
|
|
* event to occur. After a short quick poll we begin to yield the CPU
|
|
* (if possible). In irq contexts the time-out is arbitrarily limited.
|
|
* Callers may hold locks as long as they are held in irq mode.
|
|
*
|
|
* Returns 0 if either or both event(s) occurred otherwise -ETIMEDOUT.
|
|
*/
|
|
|
|
static int NCR5380_poll_politely2(struct Scsi_Host *instance,
|
|
int reg1, int bit1, int val1,
|
|
int reg2, int bit2, int val2, int wait)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
unsigned long deadline = jiffies + wait;
|
|
unsigned long n;
|
|
|
|
/* Busy-wait for up to 10 ms */
|
|
n = min(10000U, jiffies_to_usecs(wait));
|
|
n *= hostdata->accesses_per_ms;
|
|
n /= 2000;
|
|
do {
|
|
if ((NCR5380_read(reg1) & bit1) == val1)
|
|
return 0;
|
|
if ((NCR5380_read(reg2) & bit2) == val2)
|
|
return 0;
|
|
cpu_relax();
|
|
} while (n--);
|
|
|
|
if (irqs_disabled() || in_interrupt())
|
|
return -ETIMEDOUT;
|
|
|
|
/* Repeatedly sleep for 1 ms until deadline */
|
|
while (time_is_after_jiffies(deadline)) {
|
|
schedule_timeout_uninterruptible(1);
|
|
if ((NCR5380_read(reg1) & bit1) == val1)
|
|
return 0;
|
|
if ((NCR5380_read(reg2) & bit2) == val2)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static inline int NCR5380_poll_politely(struct Scsi_Host *instance,
|
|
int reg, int bit, int val, int wait)
|
|
{
|
|
return NCR5380_poll_politely2(instance, reg, bit, val,
|
|
reg, bit, val, wait);
|
|
}
|
|
|
|
static struct {
|
|
unsigned char value;
|
|
const char *name;
|
|
} phases[] __maybe_unused = {
|
|
{PHASE_DATAOUT, "DATAOUT"},
|
|
{PHASE_DATAIN, "DATAIN"},
|
|
{PHASE_CMDOUT, "CMDOUT"},
|
|
{PHASE_STATIN, "STATIN"},
|
|
{PHASE_MSGOUT, "MSGOUT"},
|
|
{PHASE_MSGIN, "MSGIN"},
|
|
{PHASE_UNKNOWN, "UNKNOWN"}
|
|
};
|
|
|
|
#if NDEBUG
|
|
static struct {
|
|
unsigned char mask;
|
|
const char *name;
|
|
} signals[] = {
|
|
{SR_DBP, "PARITY"},
|
|
{SR_RST, "RST"},
|
|
{SR_BSY, "BSY"},
|
|
{SR_REQ, "REQ"},
|
|
{SR_MSG, "MSG"},
|
|
{SR_CD, "CD"},
|
|
{SR_IO, "IO"},
|
|
{SR_SEL, "SEL"},
|
|
{0, NULL}
|
|
},
|
|
basrs[] = {
|
|
{BASR_ATN, "ATN"},
|
|
{BASR_ACK, "ACK"},
|
|
{0, NULL}
|
|
},
|
|
icrs[] = {
|
|
{ICR_ASSERT_RST, "ASSERT RST"},
|
|
{ICR_ASSERT_ACK, "ASSERT ACK"},
|
|
{ICR_ASSERT_BSY, "ASSERT BSY"},
|
|
{ICR_ASSERT_SEL, "ASSERT SEL"},
|
|
{ICR_ASSERT_ATN, "ASSERT ATN"},
|
|
{ICR_ASSERT_DATA, "ASSERT DATA"},
|
|
{0, NULL}
|
|
},
|
|
mrs[] = {
|
|
{MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"},
|
|
{MR_TARGET, "MODE TARGET"},
|
|
{MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"},
|
|
{MR_ENABLE_PAR_INTR, "MODE PARITY INTR"},
|
|
{MR_MONITOR_BSY, "MODE MONITOR BSY"},
|
|
{MR_DMA_MODE, "MODE DMA"},
|
|
{MR_ARBITRATE, "MODE ARBITRATION"},
|
|
{0, NULL}
|
|
};
|
|
|
|
/**
|
|
* NCR5380_print - print scsi bus signals
|
|
* @instance: adapter state to dump
|
|
*
|
|
* Print the SCSI bus signals for debugging purposes
|
|
*
|
|
* Locks: caller holds hostdata lock (not essential)
|
|
*/
|
|
|
|
static void NCR5380_print(struct Scsi_Host *instance)
|
|
{
|
|
unsigned char status, data, basr, mr, icr, i;
|
|
|
|
data = NCR5380_read(CURRENT_SCSI_DATA_REG);
|
|
status = NCR5380_read(STATUS_REG);
|
|
mr = NCR5380_read(MODE_REG);
|
|
icr = NCR5380_read(INITIATOR_COMMAND_REG);
|
|
basr = NCR5380_read(BUS_AND_STATUS_REG);
|
|
|
|
printk("STATUS_REG: %02x ", status);
|
|
for (i = 0; signals[i].mask; ++i)
|
|
if (status & signals[i].mask)
|
|
printk(",%s", signals[i].name);
|
|
printk("\nBASR: %02x ", basr);
|
|
for (i = 0; basrs[i].mask; ++i)
|
|
if (basr & basrs[i].mask)
|
|
printk(",%s", basrs[i].name);
|
|
printk("\nICR: %02x ", icr);
|
|
for (i = 0; icrs[i].mask; ++i)
|
|
if (icr & icrs[i].mask)
|
|
printk(",%s", icrs[i].name);
|
|
printk("\nMODE: %02x ", mr);
|
|
for (i = 0; mrs[i].mask; ++i)
|
|
if (mr & mrs[i].mask)
|
|
printk(",%s", mrs[i].name);
|
|
printk("\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* NCR5380_print_phase - show SCSI phase
|
|
* @instance: adapter to dump
|
|
*
|
|
* Print the current SCSI phase for debugging purposes
|
|
*
|
|
* Locks: none
|
|
*/
|
|
|
|
static void NCR5380_print_phase(struct Scsi_Host *instance)
|
|
{
|
|
unsigned char status;
|
|
int i;
|
|
|
|
status = NCR5380_read(STATUS_REG);
|
|
if (!(status & SR_REQ))
|
|
printk("scsi%d : REQ not asserted, phase unknown.\n", instance->host_no);
|
|
else {
|
|
for (i = 0; (phases[i].value != PHASE_UNKNOWN) && (phases[i].value != (status & PHASE_MASK)); ++i);
|
|
printk("scsi%d : phase %s\n", instance->host_no, phases[i].name);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static int probe_irq __initdata;
|
|
|
|
/**
|
|
* probe_intr - helper for IRQ autoprobe
|
|
* @irq: interrupt number
|
|
* @dev_id: unused
|
|
* @regs: unused
|
|
*
|
|
* Set a flag to indicate the IRQ in question was received. This is
|
|
* used by the IRQ probe code.
|
|
*/
|
|
|
|
static irqreturn_t __init probe_intr(int irq, void *dev_id)
|
|
{
|
|
probe_irq = irq;
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* NCR5380_probe_irq - find the IRQ of an NCR5380
|
|
* @instance: NCR5380 controller
|
|
* @possible: bitmask of ISA IRQ lines
|
|
*
|
|
* Autoprobe for the IRQ line used by the NCR5380 by triggering an IRQ
|
|
* and then looking to see what interrupt actually turned up.
|
|
*
|
|
* Locks: none, irqs must be enabled on entry
|
|
*/
|
|
|
|
static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance,
|
|
int possible)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
unsigned long timeout;
|
|
int trying_irqs, i, mask;
|
|
|
|
for (trying_irqs = 0, i = 1, mask = 2; i < 16; ++i, mask <<= 1)
|
|
if ((mask & possible) && (request_irq(i, &probe_intr, 0, "NCR-probe", NULL) == 0))
|
|
trying_irqs |= mask;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(250);
|
|
probe_irq = NO_IRQ;
|
|
|
|
/*
|
|
* A interrupt is triggered whenever BSY = false, SEL = true
|
|
* and a bit set in the SELECT_ENABLE_REG is asserted on the
|
|
* SCSI bus.
|
|
*
|
|
* Note that the bus is only driven when the phase control signals
|
|
* (I/O, C/D, and MSG) match those in the TCR, so we must reset that
|
|
* to zero.
|
|
*/
|
|
|
|
NCR5380_write(TARGET_COMMAND_REG, 0);
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
NCR5380_write(OUTPUT_DATA_REG, hostdata->id_mask);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_SEL);
|
|
|
|
while (probe_irq == NO_IRQ && time_before(jiffies, timeout))
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
NCR5380_write(SELECT_ENABLE_REG, 0);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
for (i = 1, mask = 2; i < 16; ++i, mask <<= 1)
|
|
if (trying_irqs & mask)
|
|
free_irq(i, NULL);
|
|
|
|
return probe_irq;
|
|
}
|
|
|
|
/**
|
|
* NCR58380_info - report driver and host information
|
|
* @instance: relevant scsi host instance
|
|
*
|
|
* For use as the host template info() handler.
|
|
*
|
|
* Locks: none
|
|
*/
|
|
|
|
static const char *NCR5380_info(struct Scsi_Host *instance)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
|
|
return hostdata->info;
|
|
}
|
|
|
|
static void prepare_info(struct Scsi_Host *instance)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
|
|
snprintf(hostdata->info, sizeof(hostdata->info),
|
|
"%s, io_port 0x%lx, n_io_port %d, "
|
|
"base 0x%lx, irq %d, "
|
|
"can_queue %d, cmd_per_lun %d, "
|
|
"sg_tablesize %d, this_id %d, "
|
|
"flags { %s%s%s}, "
|
|
"options { %s} ",
|
|
instance->hostt->name, instance->io_port, instance->n_io_port,
|
|
instance->base, instance->irq,
|
|
instance->can_queue, instance->cmd_per_lun,
|
|
instance->sg_tablesize, instance->this_id,
|
|
hostdata->flags & FLAG_NO_DMA_FIXUP ? "NO_DMA_FIXUP " : "",
|
|
hostdata->flags & FLAG_NO_PSEUDO_DMA ? "NO_PSEUDO_DMA " : "",
|
|
hostdata->flags & FLAG_TOSHIBA_DELAY ? "TOSHIBA_DELAY " : "",
|
|
#ifdef AUTOPROBE_IRQ
|
|
"AUTOPROBE_IRQ "
|
|
#endif
|
|
#ifdef DIFFERENTIAL
|
|
"DIFFERENTIAL "
|
|
#endif
|
|
#ifdef REAL_DMA
|
|
"REAL_DMA "
|
|
#endif
|
|
#ifdef REAL_DMA_POLL
|
|
"REAL_DMA_POLL "
|
|
#endif
|
|
#ifdef PARITY
|
|
"PARITY "
|
|
#endif
|
|
#ifdef PSEUDO_DMA
|
|
"PSEUDO_DMA "
|
|
#endif
|
|
"");
|
|
}
|
|
|
|
#ifdef PSEUDO_DMA
|
|
/******************************************/
|
|
/*
|
|
* /proc/scsi/[dtc pas16 t128 generic]/[0-ASC_NUM_BOARD_SUPPORTED]
|
|
*
|
|
* *buffer: I/O buffer
|
|
* **start: if inout == FALSE pointer into buffer where user read should start
|
|
* offset: current offset
|
|
* length: length of buffer
|
|
* hostno: Scsi_Host host_no
|
|
* inout: TRUE - user is writing; FALSE - user is reading
|
|
*
|
|
* Return the number of bytes read from or written
|
|
*/
|
|
|
|
static int __maybe_unused NCR5380_write_info(struct Scsi_Host *instance,
|
|
char *buffer, int length)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
|
|
hostdata->spin_max_r = 0;
|
|
hostdata->spin_max_w = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused NCR5380_show_info(struct seq_file *m,
|
|
struct Scsi_Host *instance)
|
|
{
|
|
struct NCR5380_hostdata *hostdata;
|
|
|
|
hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
|
|
seq_printf(m, "Highwater I/O busy spin counts: write %d, read %d\n",
|
|
hostdata->spin_max_w, hostdata->spin_max_r);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* NCR5380_init - initialise an NCR5380
|
|
* @instance: adapter to configure
|
|
* @flags: control flags
|
|
*
|
|
* Initializes *instance and corresponding 5380 chip,
|
|
* with flags OR'd into the initial flags value.
|
|
*
|
|
* Notes : I assume that the host, hostno, and id bits have been
|
|
* set correctly. I don't care about the irq and other fields.
|
|
*
|
|
* Returns 0 for success
|
|
*
|
|
* Locks: interrupts must be enabled when we are called
|
|
*/
|
|
|
|
static int NCR5380_init(struct Scsi_Host *instance, int flags)
|
|
{
|
|
int i;
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
unsigned long deadline;
|
|
|
|
if(in_interrupt())
|
|
printk(KERN_ERR "NCR5380_init called with interrupts off!\n");
|
|
|
|
hostdata->id_mask = 1 << instance->this_id;
|
|
for (i = hostdata->id_mask; i <= 0x80; i <<= 1)
|
|
if (i > hostdata->id_mask)
|
|
hostdata->id_higher_mask |= i;
|
|
for (i = 0; i < 8; ++i)
|
|
hostdata->busy[i] = 0;
|
|
#ifdef REAL_DMA
|
|
hostdata->dmalen = 0;
|
|
#endif
|
|
spin_lock_init(&hostdata->lock);
|
|
hostdata->connected = NULL;
|
|
hostdata->issue_queue = NULL;
|
|
hostdata->disconnected_queue = NULL;
|
|
hostdata->flags = flags;
|
|
|
|
INIT_WORK(&hostdata->main_task, NCR5380_main);
|
|
hostdata->work_q = alloc_workqueue("ncr5380_%d",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM,
|
|
1, instance->host_no);
|
|
if (!hostdata->work_q)
|
|
return -ENOMEM;
|
|
|
|
hostdata->host = instance;
|
|
|
|
prepare_info(instance);
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
NCR5380_write(TARGET_COMMAND_REG, 0);
|
|
NCR5380_write(SELECT_ENABLE_REG, 0);
|
|
|
|
/* Calibrate register polling loop */
|
|
i = 0;
|
|
deadline = jiffies + 1;
|
|
do {
|
|
cpu_relax();
|
|
} while (time_is_after_jiffies(deadline));
|
|
deadline += msecs_to_jiffies(256);
|
|
do {
|
|
NCR5380_read(STATUS_REG);
|
|
++i;
|
|
cpu_relax();
|
|
} while (time_is_after_jiffies(deadline));
|
|
hostdata->accesses_per_ms = i / 256;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* NCR5380_maybe_reset_bus - Detect and correct bus wedge problems.
|
|
* @instance: adapter to check
|
|
*
|
|
* If the system crashed, it may have crashed with a connected target and
|
|
* the SCSI bus busy. Check for BUS FREE phase. If not, try to abort the
|
|
* currently established nexus, which we know nothing about. Failing that
|
|
* do a bus reset.
|
|
*
|
|
* Note that a bus reset will cause the chip to assert IRQ.
|
|
*
|
|
* Returns 0 if successful, otherwise -ENXIO.
|
|
*/
|
|
|
|
static int NCR5380_maybe_reset_bus(struct Scsi_Host *instance)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
int pass;
|
|
|
|
for (pass = 1; (NCR5380_read(STATUS_REG) & SR_BSY) && pass <= 6; ++pass) {
|
|
switch (pass) {
|
|
case 1:
|
|
case 3:
|
|
case 5:
|
|
shost_printk(KERN_ERR, instance, "SCSI bus busy, waiting up to five seconds\n");
|
|
NCR5380_poll_politely(instance,
|
|
STATUS_REG, SR_BSY, 0, 5 * HZ);
|
|
break;
|
|
case 2:
|
|
shost_printk(KERN_ERR, instance, "bus busy, attempting abort\n");
|
|
do_abort(instance);
|
|
break;
|
|
case 4:
|
|
shost_printk(KERN_ERR, instance, "bus busy, attempting reset\n");
|
|
do_reset(instance);
|
|
/* Wait after a reset; the SCSI standard calls for
|
|
* 250ms, we wait 500ms to be on the safe side.
|
|
* But some Toshiba CD-ROMs need ten times that.
|
|
*/
|
|
if (hostdata->flags & FLAG_TOSHIBA_DELAY)
|
|
msleep(2500);
|
|
else
|
|
msleep(500);
|
|
break;
|
|
case 6:
|
|
shost_printk(KERN_ERR, instance, "bus locked solid\n");
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* NCR5380_exit - remove an NCR5380
|
|
* @instance: adapter to remove
|
|
*/
|
|
|
|
static void NCR5380_exit(struct Scsi_Host *instance)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
|
|
cancel_work_sync(&hostdata->main_task);
|
|
destroy_workqueue(hostdata->work_q);
|
|
}
|
|
|
|
/**
|
|
* NCR5380_queue_command - queue a command
|
|
* @instance: the relevant SCSI adapter
|
|
* @cmd: SCSI command
|
|
*
|
|
* cmd is added to the per-instance issue queue, with minor
|
|
* twiddling done to the host specific fields of cmd. If the
|
|
* main coroutine is not running, it is restarted.
|
|
*/
|
|
|
|
static int NCR5380_queue_command(struct Scsi_Host *instance,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
struct scsi_cmnd *tmp;
|
|
unsigned long flags;
|
|
|
|
#if (NDEBUG & NDEBUG_NO_WRITE)
|
|
switch (cmd->cmnd[0]) {
|
|
case WRITE_6:
|
|
case WRITE_10:
|
|
printk("scsi%d : WRITE attempted with NO_WRITE debugging flag set\n", instance->host_no);
|
|
cmd->result = (DID_ERROR << 16);
|
|
cmd->scsi_done(cmd);
|
|
return 0;
|
|
}
|
|
#endif /* (NDEBUG & NDEBUG_NO_WRITE) */
|
|
|
|
/*
|
|
* We use the host_scribble field as a pointer to the next command
|
|
* in a queue
|
|
*/
|
|
|
|
cmd->host_scribble = NULL;
|
|
cmd->result = 0;
|
|
|
|
spin_lock_irqsave(&hostdata->lock, flags);
|
|
|
|
/*
|
|
* Insert the cmd into the issue queue. Note that REQUEST SENSE
|
|
* commands are added to the head of the queue since any command will
|
|
* clear the contingent allegiance condition that exists and the
|
|
* sense data is only guaranteed to be valid while the condition exists.
|
|
*/
|
|
|
|
if (!(hostdata->issue_queue) || (cmd->cmnd[0] == REQUEST_SENSE)) {
|
|
LIST(cmd, hostdata->issue_queue);
|
|
cmd->host_scribble = (unsigned char *) hostdata->issue_queue;
|
|
hostdata->issue_queue = cmd;
|
|
} else {
|
|
for (tmp = (struct scsi_cmnd *) hostdata->issue_queue; tmp->host_scribble; tmp = (struct scsi_cmnd *) tmp->host_scribble);
|
|
LIST(cmd, tmp);
|
|
tmp->host_scribble = (unsigned char *) cmd;
|
|
}
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
|
|
dprintk(NDEBUG_QUEUES, "scsi%d : command added to %s of queue\n", instance->host_no, (cmd->cmnd[0] == REQUEST_SENSE) ? "head" : "tail");
|
|
|
|
/* Kick off command processing */
|
|
queue_work(hostdata->work_q, &hostdata->main_task);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* NCR5380_main - NCR state machines
|
|
*
|
|
* NCR5380_main is a coroutine that runs as long as more work can
|
|
* be done on the NCR5380 host adapters in a system. Both
|
|
* NCR5380_queue_command() and NCR5380_intr() will try to start it
|
|
* in case it is not running.
|
|
*
|
|
* Locks: called as its own thread with no locks held. Takes the
|
|
* host lock and called routines may take the isa dma lock.
|
|
*/
|
|
|
|
static void NCR5380_main(struct work_struct *work)
|
|
{
|
|
struct NCR5380_hostdata *hostdata =
|
|
container_of(work, struct NCR5380_hostdata, main_task);
|
|
struct Scsi_Host *instance = hostdata->host;
|
|
struct scsi_cmnd *tmp, *prev;
|
|
int done;
|
|
|
|
spin_lock_irq(&hostdata->lock);
|
|
do {
|
|
done = 1;
|
|
|
|
if (!hostdata->connected) {
|
|
dprintk(NDEBUG_MAIN, "scsi%d : not connected\n", instance->host_no);
|
|
/*
|
|
* Search through the issue_queue for a command destined
|
|
* for a target that's not busy.
|
|
*/
|
|
for (tmp = (struct scsi_cmnd *) hostdata->issue_queue, prev = NULL; tmp; prev = tmp, tmp = (struct scsi_cmnd *) tmp->host_scribble)
|
|
{
|
|
if (prev != tmp)
|
|
dprintk(NDEBUG_LISTS, "MAIN tmp=%p target=%d busy=%d lun=%llu\n", tmp, tmp->device->id, hostdata->busy[tmp->device->id], tmp->device->lun);
|
|
/* When we find one, remove it from the issue queue. */
|
|
if (!(hostdata->busy[tmp->device->id] &
|
|
(1 << (u8)(tmp->device->lun & 0xff)))) {
|
|
if (prev) {
|
|
REMOVE(prev, prev->host_scribble, tmp, tmp->host_scribble);
|
|
prev->host_scribble = tmp->host_scribble;
|
|
} else {
|
|
REMOVE(-1, hostdata->issue_queue, tmp, tmp->host_scribble);
|
|
hostdata->issue_queue = (struct scsi_cmnd *) tmp->host_scribble;
|
|
}
|
|
tmp->host_scribble = NULL;
|
|
|
|
/*
|
|
* Attempt to establish an I_T_L nexus here.
|
|
* On success, instance->hostdata->connected is set.
|
|
* On failure, we must add the command back to the
|
|
* issue queue so we can keep trying.
|
|
*/
|
|
dprintk(NDEBUG_MAIN|NDEBUG_QUEUES, "scsi%d : main() : command for target %d lun %llu removed from issue_queue\n", instance->host_no, tmp->device->id, tmp->device->lun);
|
|
|
|
/*
|
|
* REQUEST SENSE commands are issued without tagged
|
|
* queueing, even on SCSI-II devices because the
|
|
* contingent allegiance condition exists for the
|
|
* entire unit.
|
|
*/
|
|
|
|
if (!NCR5380_select(instance, tmp)) {
|
|
/* OK or bad target */
|
|
} else {
|
|
/* Need to retry */
|
|
LIST(tmp, hostdata->issue_queue);
|
|
tmp->host_scribble = (unsigned char *) hostdata->issue_queue;
|
|
hostdata->issue_queue = tmp;
|
|
done = 0;
|
|
dprintk(NDEBUG_MAIN|NDEBUG_QUEUES, "scsi%d : main(): select() failed, returned to issue_queue\n", instance->host_no);
|
|
}
|
|
if (hostdata->connected)
|
|
break;
|
|
} /* if target/lun is not busy */
|
|
} /* for */
|
|
} /* if (!hostdata->connected) */
|
|
|
|
if (hostdata->connected
|
|
#ifdef REAL_DMA
|
|
&& !hostdata->dmalen
|
|
#endif
|
|
) {
|
|
dprintk(NDEBUG_MAIN, "scsi%d : main() : performing information transfer\n", instance->host_no);
|
|
NCR5380_information_transfer(instance);
|
|
dprintk(NDEBUG_MAIN, "scsi%d : main() : done set false\n", instance->host_no);
|
|
done = 0;
|
|
}
|
|
} while (!done);
|
|
spin_unlock_irq(&hostdata->lock);
|
|
}
|
|
|
|
#ifndef DONT_USE_INTR
|
|
|
|
/**
|
|
* NCR5380_intr - generic NCR5380 irq handler
|
|
* @irq: interrupt number
|
|
* @dev_id: device info
|
|
*
|
|
* Handle interrupts, reestablishing I_T_L or I_T_L_Q nexuses
|
|
* from the disconnected queue, and restarting NCR5380_main()
|
|
* as required.
|
|
*
|
|
* The chip can assert IRQ in any of six different conditions. The IRQ flag
|
|
* is then cleared by reading the Reset Parity/Interrupt Register (RPIR).
|
|
* Three of these six conditions are latched in the Bus and Status Register:
|
|
* - End of DMA (cleared by ending DMA Mode)
|
|
* - Parity error (cleared by reading RPIR)
|
|
* - Loss of BSY (cleared by reading RPIR)
|
|
* Two conditions have flag bits that are not latched:
|
|
* - Bus phase mismatch (non-maskable in DMA Mode, cleared by ending DMA Mode)
|
|
* - Bus reset (non-maskable)
|
|
* The remaining condition has no flag bit at all:
|
|
* - Selection/reselection
|
|
*
|
|
* Hence, establishing the cause(s) of any interrupt is partly guesswork.
|
|
* In "The DP8490 and DP5380 Comparison Guide", National Semiconductor
|
|
* claimed that "the design of the [DP8490] interrupt logic ensures
|
|
* interrupts will not be lost (they can be on the DP5380)."
|
|
* The L5380/53C80 datasheet from LOGIC Devices has more details.
|
|
*
|
|
* Checking for bus reset by reading RST is futile because of interrupt
|
|
* latency, but a bus reset will reset chip logic. Checking for parity error
|
|
* is unnecessary because that interrupt is never enabled. A Loss of BSY
|
|
* condition will clear DMA Mode. We can tell when this occurs because the
|
|
* the Busy Monitor interrupt is enabled together with DMA Mode.
|
|
*/
|
|
|
|
static irqreturn_t NCR5380_intr(int irq, void *dev_id)
|
|
{
|
|
struct Scsi_Host *instance = dev_id;
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
int handled = 0;
|
|
unsigned char basr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hostdata->lock, flags);
|
|
|
|
basr = NCR5380_read(BUS_AND_STATUS_REG);
|
|
if (basr & BASR_IRQ) {
|
|
unsigned char mr = NCR5380_read(MODE_REG);
|
|
unsigned char sr = NCR5380_read(STATUS_REG);
|
|
|
|
dprintk(NDEBUG_INTR, "scsi%d: IRQ %d, BASR 0x%02x, SR 0x%02x, MR 0x%02x\n",
|
|
instance->host_no, irq, basr, sr, mr);
|
|
|
|
#if defined(REAL_DMA)
|
|
if ((mr & MR_DMA_MODE) || (mr & MR_MONITOR_BSY)) {
|
|
/* Probably End of DMA, Phase Mismatch or Loss of BSY.
|
|
* We ack IRQ after clearing Mode Register. Workarounds
|
|
* for End of DMA errata need to happen in DMA Mode.
|
|
*/
|
|
|
|
dprintk(NDEBUG_INTR, "scsi%d: interrupt in DMA mode\n", intance->host_no);
|
|
|
|
int transferred;
|
|
|
|
if (!hostdata->connected)
|
|
panic("scsi%d : DMA interrupt with no connected cmd\n",
|
|
instance->hostno);
|
|
|
|
transferred = hostdata->dmalen - NCR5380_dma_residual(instance);
|
|
hostdata->connected->SCp.this_residual -= transferred;
|
|
hostdata->connected->SCp.ptr += transferred;
|
|
hostdata->dmalen = 0;
|
|
|
|
/* FIXME: we need to poll briefly then defer a workqueue task ! */
|
|
NCR5380_poll_politely(hostdata, BUS_AND_STATUS_REG, BASR_ACK, 0, 2 * HZ);
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
NCR5380_read(RESET_PARITY_INTERRUPT_REG);
|
|
} else
|
|
#endif /* REAL_DMA */
|
|
if ((NCR5380_read(CURRENT_SCSI_DATA_REG) & hostdata->id_mask) &&
|
|
(sr & (SR_SEL | SR_IO | SR_BSY | SR_RST)) == (SR_SEL | SR_IO)) {
|
|
/* Probably reselected */
|
|
NCR5380_write(SELECT_ENABLE_REG, 0);
|
|
NCR5380_read(RESET_PARITY_INTERRUPT_REG);
|
|
|
|
dprintk(NDEBUG_INTR, "scsi%d: interrupt with SEL and IO\n",
|
|
instance->host_no);
|
|
|
|
if (!hostdata->connected) {
|
|
NCR5380_reselect(instance);
|
|
queue_work(hostdata->work_q, &hostdata->main_task);
|
|
}
|
|
if (!hostdata->connected)
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
} else {
|
|
/* Probably Bus Reset */
|
|
NCR5380_read(RESET_PARITY_INTERRUPT_REG);
|
|
|
|
dprintk(NDEBUG_INTR, "scsi%d: unknown interrupt\n", instance->host_no);
|
|
}
|
|
handled = 1;
|
|
} else {
|
|
shost_printk(KERN_NOTICE, instance, "interrupt without IRQ bit\n");
|
|
}
|
|
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Function : int NCR5380_select(struct Scsi_Host *instance,
|
|
* struct scsi_cmnd *cmd)
|
|
*
|
|
* Purpose : establishes I_T_L or I_T_L_Q nexus for new or existing command,
|
|
* including ARBITRATION, SELECTION, and initial message out for
|
|
* IDENTIFY and queue messages.
|
|
*
|
|
* Inputs : instance - instantiation of the 5380 driver on which this
|
|
* target lives, cmd - SCSI command to execute.
|
|
*
|
|
* Returns : -1 if selection failed but should be retried.
|
|
* 0 if selection failed and should not be retried.
|
|
* 0 if selection succeeded completely (hostdata->connected == cmd).
|
|
*
|
|
* Side effects :
|
|
* If bus busy, arbitration failed, etc, NCR5380_select() will exit
|
|
* with registers as they should have been on entry - ie
|
|
* SELECT_ENABLE will be set appropriately, the NCR5380
|
|
* will cease to drive any SCSI bus signals.
|
|
*
|
|
* If successful : I_T_L or I_T_L_Q nexus will be established,
|
|
* instance->connected will be set to cmd.
|
|
* SELECT interrupt will be disabled.
|
|
*
|
|
* If failed (no target) : cmd->scsi_done() will be called, and the
|
|
* cmd->result host byte set to DID_BAD_TARGET.
|
|
*
|
|
* Locks: caller holds hostdata lock in IRQ mode
|
|
*/
|
|
|
|
static int NCR5380_select(struct Scsi_Host *instance, struct scsi_cmnd *cmd)
|
|
{
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
unsigned char tmp[3], phase;
|
|
unsigned char *data;
|
|
int len;
|
|
int err;
|
|
|
|
NCR5380_dprint(NDEBUG_ARBITRATION, instance);
|
|
dprintk(NDEBUG_ARBITRATION, "scsi%d : starting arbitration, id = %d\n", instance->host_no, instance->this_id);
|
|
|
|
/*
|
|
* Set the phase bits to 0, otherwise the NCR5380 won't drive the
|
|
* data bus during SELECTION.
|
|
*/
|
|
|
|
NCR5380_write(TARGET_COMMAND_REG, 0);
|
|
|
|
/*
|
|
* Start arbitration.
|
|
*/
|
|
|
|
NCR5380_write(OUTPUT_DATA_REG, hostdata->id_mask);
|
|
NCR5380_write(MODE_REG, MR_ARBITRATE);
|
|
|
|
/* The chip now waits for BUS FREE phase. Then after the 800 ns
|
|
* Bus Free Delay, arbitration will begin.
|
|
*/
|
|
|
|
spin_unlock_irq(&hostdata->lock);
|
|
err = NCR5380_poll_politely2(instance, MODE_REG, MR_ARBITRATE, 0,
|
|
INITIATOR_COMMAND_REG, ICR_ARBITRATION_PROGRESS,
|
|
ICR_ARBITRATION_PROGRESS, HZ);
|
|
spin_lock_irq(&hostdata->lock);
|
|
if (!(NCR5380_read(MODE_REG) & MR_ARBITRATE)) {
|
|
/* Reselection interrupt */
|
|
return -1;
|
|
}
|
|
if (err < 0) {
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
shost_printk(KERN_ERR, instance,
|
|
"select: arbitration timeout\n");
|
|
return -1;
|
|
}
|
|
spin_unlock_irq(&hostdata->lock);
|
|
|
|
/* The SCSI-2 arbitration delay is 2.4 us */
|
|
udelay(3);
|
|
|
|
/* Check for lost arbitration */
|
|
if ((NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST) || (NCR5380_read(CURRENT_SCSI_DATA_REG) & hostdata->id_higher_mask) || (NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST)) {
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
dprintk(NDEBUG_ARBITRATION, "scsi%d : lost arbitration, deasserting MR_ARBITRATE\n", instance->host_no);
|
|
spin_lock_irq(&hostdata->lock);
|
|
return -1;
|
|
}
|
|
|
|
/* After/during arbitration, BSY should be asserted.
|
|
* IBM DPES-31080 Version S31Q works now
|
|
* Tnx to Thomas_Roesch@m2.maus.de for finding this! (Roman)
|
|
*/
|
|
NCR5380_write(INITIATOR_COMMAND_REG,
|
|
ICR_BASE | ICR_ASSERT_SEL | ICR_ASSERT_BSY);
|
|
|
|
/*
|
|
* Again, bus clear + bus settle time is 1.2us, however, this is
|
|
* a minimum so we'll udelay ceil(1.2)
|
|
*/
|
|
|
|
if (hostdata->flags & FLAG_TOSHIBA_DELAY)
|
|
udelay(15);
|
|
else
|
|
udelay(2);
|
|
|
|
spin_lock_irq(&hostdata->lock);
|
|
|
|
/* NCR5380_reselect() clears MODE_REG after a reselection interrupt */
|
|
if (!(NCR5380_read(MODE_REG) & MR_ARBITRATE))
|
|
return -1;
|
|
|
|
dprintk(NDEBUG_ARBITRATION, "scsi%d : won arbitration\n", instance->host_no);
|
|
|
|
/*
|
|
* Now that we have won arbitration, start Selection process, asserting
|
|
* the host and target ID's on the SCSI bus.
|
|
*/
|
|
|
|
NCR5380_write(OUTPUT_DATA_REG, (hostdata->id_mask | (1 << scmd_id(cmd))));
|
|
|
|
/*
|
|
* Raise ATN while SEL is true before BSY goes false from arbitration,
|
|
* since this is the only way to guarantee that we'll get a MESSAGE OUT
|
|
* phase immediately after selection.
|
|
*/
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, (ICR_BASE | ICR_ASSERT_BSY | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_SEL));
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
|
|
/*
|
|
* Reselect interrupts must be turned off prior to the dropping of BSY,
|
|
* otherwise we will trigger an interrupt.
|
|
*/
|
|
NCR5380_write(SELECT_ENABLE_REG, 0);
|
|
|
|
spin_unlock_irq(&hostdata->lock);
|
|
|
|
/*
|
|
* The initiator shall then wait at least two deskew delays and release
|
|
* the BSY signal.
|
|
*/
|
|
udelay(1); /* wingel -- wait two bus deskew delay >2*45ns */
|
|
|
|
/* Reset BSY */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, (ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_SEL));
|
|
|
|
/*
|
|
* Something weird happens when we cease to drive BSY - looks
|
|
* like the board/chip is letting us do another read before the
|
|
* appropriate propagation delay has expired, and we're confusing
|
|
* a BSY signal from ourselves as the target's response to SELECTION.
|
|
*
|
|
* A small delay (the 'C++' frontend breaks the pipeline with an
|
|
* unnecessary jump, making it work on my 386-33/Trantor T128, the
|
|
* tighter 'C' code breaks and requires this) solves the problem -
|
|
* the 1 us delay is arbitrary, and only used because this delay will
|
|
* be the same on other platforms and since it works here, it should
|
|
* work there.
|
|
*
|
|
* wingel suggests that this could be due to failing to wait
|
|
* one deskew delay.
|
|
*/
|
|
|
|
udelay(1);
|
|
|
|
dprintk(NDEBUG_SELECTION, "scsi%d : selecting target %d\n", instance->host_no, scmd_id(cmd));
|
|
|
|
/*
|
|
* The SCSI specification calls for a 250 ms timeout for the actual
|
|
* selection.
|
|
*/
|
|
|
|
err = NCR5380_poll_politely(instance, STATUS_REG, SR_BSY, SR_BSY,
|
|
msecs_to_jiffies(250));
|
|
|
|
if ((NCR5380_read(STATUS_REG) & (SR_SEL | SR_IO)) == (SR_SEL | SR_IO)) {
|
|
spin_lock_irq(&hostdata->lock);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
NCR5380_reselect(instance);
|
|
if (!hostdata->connected)
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
printk("scsi%d : reselection after won arbitration?\n", instance->host_no);
|
|
return -1;
|
|
}
|
|
|
|
if (err < 0) {
|
|
spin_lock_irq(&hostdata->lock);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
cmd->result = DID_BAD_TARGET << 16;
|
|
cmd->scsi_done(cmd);
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
dprintk(NDEBUG_SELECTION, "scsi%d : target did not respond within 250ms\n",
|
|
instance->host_no);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* No less than two deskew delays after the initiator detects the
|
|
* BSY signal is true, it shall release the SEL signal and may
|
|
* change the DATA BUS. -wingel
|
|
*/
|
|
|
|
udelay(1);
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
|
|
/*
|
|
* Since we followed the SCSI spec, and raised ATN while SEL
|
|
* was true but before BSY was false during selection, the information
|
|
* transfer phase should be a MESSAGE OUT phase so that we can send the
|
|
* IDENTIFY message.
|
|
*
|
|
* If SCSI-II tagged queuing is enabled, we also send a SIMPLE_QUEUE_TAG
|
|
* message (2 bytes) with a tag ID that we increment with every command
|
|
* until it wraps back to 0.
|
|
*
|
|
* XXX - it turns out that there are some broken SCSI-II devices,
|
|
* which claim to support tagged queuing but fail when more than
|
|
* some number of commands are issued at once.
|
|
*/
|
|
|
|
/* Wait for start of REQ/ACK handshake */
|
|
|
|
err = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ);
|
|
spin_lock_irq(&hostdata->lock);
|
|
if (err < 0) {
|
|
shost_printk(KERN_ERR, instance, "select: REQ timeout\n");
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
return -1;
|
|
}
|
|
|
|
dprintk(NDEBUG_SELECTION, "scsi%d : target %d selected, going into MESSAGE OUT phase.\n", instance->host_no, cmd->device->id);
|
|
tmp[0] = IDENTIFY(((instance->irq == NO_IRQ) ? 0 : 1), cmd->device->lun);
|
|
|
|
len = 1;
|
|
cmd->tag = 0;
|
|
|
|
/* Send message(s) */
|
|
data = tmp;
|
|
phase = PHASE_MSGOUT;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
dprintk(NDEBUG_SELECTION, "scsi%d : nexus established.\n", instance->host_no);
|
|
/* XXX need to handle errors here */
|
|
|
|
hostdata->connected = cmd;
|
|
hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
|
|
|
|
initialize_SCp(cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function : int NCR5380_transfer_pio (struct Scsi_Host *instance,
|
|
* unsigned char *phase, int *count, unsigned char **data)
|
|
*
|
|
* Purpose : transfers data in given phase using polled I/O
|
|
*
|
|
* Inputs : instance - instance of driver, *phase - pointer to
|
|
* what phase is expected, *count - pointer to number of
|
|
* bytes to transfer, **data - pointer to data pointer.
|
|
*
|
|
* Returns : -1 when different phase is entered without transferring
|
|
* maximum number of bytes, 0 if all bytes or transferred or exit
|
|
* is in same phase.
|
|
*
|
|
* Also, *phase, *count, *data are modified in place.
|
|
*
|
|
* XXX Note : handling for bus free may be useful.
|
|
*/
|
|
|
|
/*
|
|
* Note : this code is not as quick as it could be, however it
|
|
* IS 100% reliable, and for the actual data transfer where speed
|
|
* counts, we will always do a pseudo DMA or DMA transfer.
|
|
*/
|
|
|
|
static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase, int *count, unsigned char **data) {
|
|
unsigned char p = *phase, tmp;
|
|
int c = *count;
|
|
unsigned char *d = *data;
|
|
|
|
if (!(p & SR_IO))
|
|
dprintk(NDEBUG_PIO, "scsi%d : pio write %d bytes\n", instance->host_no, c);
|
|
else
|
|
dprintk(NDEBUG_PIO, "scsi%d : pio read %d bytes\n", instance->host_no, c);
|
|
|
|
/*
|
|
* The NCR5380 chip will only drive the SCSI bus when the
|
|
* phase specified in the appropriate bits of the TARGET COMMAND
|
|
* REGISTER match the STATUS REGISTER
|
|
*/
|
|
|
|
NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(p));
|
|
|
|
do {
|
|
/*
|
|
* Wait for assertion of REQ, after which the phase bits will be
|
|
* valid
|
|
*/
|
|
|
|
if (NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ) < 0)
|
|
break;
|
|
|
|
dprintk(NDEBUG_HANDSHAKE, "scsi%d : REQ detected\n", instance->host_no);
|
|
|
|
/* Check for phase mismatch */
|
|
if ((NCR5380_read(STATUS_REG) & PHASE_MASK) != p) {
|
|
dprintk(NDEBUG_HANDSHAKE, "scsi%d : phase mismatch\n", instance->host_no);
|
|
NCR5380_dprint_phase(NDEBUG_HANDSHAKE, instance);
|
|
break;
|
|
}
|
|
/* Do actual transfer from SCSI bus to / from memory */
|
|
if (!(p & SR_IO))
|
|
NCR5380_write(OUTPUT_DATA_REG, *d);
|
|
else
|
|
*d = NCR5380_read(CURRENT_SCSI_DATA_REG);
|
|
|
|
++d;
|
|
|
|
/*
|
|
* The SCSI standard suggests that in MSGOUT phase, the initiator
|
|
* should drop ATN on the last byte of the message phase
|
|
* after REQ has been asserted for the handshake but before
|
|
* the initiator raises ACK.
|
|
*/
|
|
|
|
if (!(p & SR_IO)) {
|
|
if (!((p & SR_MSG) && c > 1)) {
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA);
|
|
NCR5380_dprint(NDEBUG_PIO, instance);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ACK);
|
|
} else {
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN);
|
|
NCR5380_dprint(NDEBUG_PIO, instance);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_ACK);
|
|
}
|
|
} else {
|
|
NCR5380_dprint(NDEBUG_PIO, instance);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ACK);
|
|
}
|
|
|
|
if (NCR5380_poll_politely(instance,
|
|
STATUS_REG, SR_REQ, 0, 5 * HZ) < 0)
|
|
break;
|
|
|
|
dprintk(NDEBUG_HANDSHAKE, "scsi%d : req false, handshake complete\n", instance->host_no);
|
|
|
|
/*
|
|
* We have several special cases to consider during REQ/ACK handshaking :
|
|
* 1. We were in MSGOUT phase, and we are on the last byte of the
|
|
* message. ATN must be dropped as ACK is dropped.
|
|
*
|
|
* 2. We are in a MSGIN phase, and we are on the last byte of the
|
|
* message. We must exit with ACK asserted, so that the calling
|
|
* code may raise ATN before dropping ACK to reject the message.
|
|
*
|
|
* 3. ACK and ATN are clear and the target may proceed as normal.
|
|
*/
|
|
if (!(p == PHASE_MSGIN && c == 1)) {
|
|
if (p == PHASE_MSGOUT && c > 1)
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
else
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
}
|
|
} while (--c);
|
|
|
|
dprintk(NDEBUG_PIO, "scsi%d : residual %d\n", instance->host_no, c);
|
|
|
|
*count = c;
|
|
*data = d;
|
|
tmp = NCR5380_read(STATUS_REG);
|
|
/* The phase read from the bus is valid if either REQ is (already)
|
|
* asserted or if ACK hasn't been released yet. The latter applies if
|
|
* we're in MSG IN, DATA IN or STATUS and all bytes have been received.
|
|
*/
|
|
if ((tmp & SR_REQ) || ((tmp & SR_IO) && c == 0))
|
|
*phase = tmp & PHASE_MASK;
|
|
else
|
|
*phase = PHASE_UNKNOWN;
|
|
|
|
if (!c || (*phase == p))
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* do_reset - issue a reset command
|
|
* @instance: adapter to reset
|
|
*
|
|
* Issue a reset sequence to the NCR5380 and try and get the bus
|
|
* back into sane shape.
|
|
*
|
|
* This clears the reset interrupt flag because there may be no handler for
|
|
* it. When the driver is initialized, the NCR5380_intr() handler has not yet
|
|
* been installed. And when in EH we may have released the ST DMA interrupt.
|
|
*/
|
|
|
|
static void do_reset(struct Scsi_Host *instance)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
NCR5380_write(TARGET_COMMAND_REG,
|
|
PHASE_SR_TO_TCR(NCR5380_read(STATUS_REG) & PHASE_MASK));
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_RST);
|
|
udelay(50);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
(void)NCR5380_read(RESET_PARITY_INTERRUPT_REG);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* do_abort - abort the currently established nexus by going to
|
|
* MESSAGE OUT phase and sending an ABORT message.
|
|
* @instance: relevant scsi host instance
|
|
*
|
|
* Returns 0 on success, -1 on failure.
|
|
*/
|
|
|
|
static int do_abort(struct Scsi_Host *instance)
|
|
{
|
|
unsigned char *msgptr, phase, tmp;
|
|
int len;
|
|
int rc;
|
|
|
|
/* Request message out phase */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
|
|
/*
|
|
* Wait for the target to indicate a valid phase by asserting
|
|
* REQ. Once this happens, we'll have either a MSGOUT phase
|
|
* and can immediately send the ABORT message, or we'll have some
|
|
* other phase and will have to source/sink data.
|
|
*
|
|
* We really don't care what value was on the bus or what value
|
|
* the target sees, so we just handshake.
|
|
*/
|
|
|
|
rc = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, 10 * HZ);
|
|
if (rc < 0)
|
|
goto timeout;
|
|
|
|
tmp = NCR5380_read(STATUS_REG) & PHASE_MASK;
|
|
|
|
NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(tmp));
|
|
|
|
if (tmp != PHASE_MSGOUT) {
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN | ICR_ASSERT_ACK);
|
|
rc = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, 0, 3 * HZ);
|
|
if (rc < 0)
|
|
goto timeout;
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
}
|
|
tmp = ABORT;
|
|
msgptr = &tmp;
|
|
len = 1;
|
|
phase = PHASE_MSGOUT;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &msgptr);
|
|
|
|
/*
|
|
* If we got here, and the command completed successfully,
|
|
* we're about to go into bus free state.
|
|
*/
|
|
|
|
return len ? -1 : 0;
|
|
|
|
timeout:
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
return -1;
|
|
}
|
|
|
|
#if defined(REAL_DMA) || defined(PSEUDO_DMA) || defined (REAL_DMA_POLL)
|
|
/*
|
|
* Function : int NCR5380_transfer_dma (struct Scsi_Host *instance,
|
|
* unsigned char *phase, int *count, unsigned char **data)
|
|
*
|
|
* Purpose : transfers data in given phase using either real
|
|
* or pseudo DMA.
|
|
*
|
|
* Inputs : instance - instance of driver, *phase - pointer to
|
|
* what phase is expected, *count - pointer to number of
|
|
* bytes to transfer, **data - pointer to data pointer.
|
|
*
|
|
* Returns : -1 when different phase is entered without transferring
|
|
* maximum number of bytes, 0 if all bytes or transferred or exit
|
|
* is in same phase.
|
|
*
|
|
* Also, *phase, *count, *data are modified in place.
|
|
*
|
|
* Locks: io_request lock held by caller
|
|
*/
|
|
|
|
|
|
static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase, int *count, unsigned char **data) {
|
|
register int c = *count;
|
|
register unsigned char p = *phase;
|
|
register unsigned char *d = *data;
|
|
unsigned char tmp;
|
|
int foo;
|
|
#if defined(REAL_DMA_POLL)
|
|
int cnt, toPIO;
|
|
unsigned char saved_data = 0, overrun = 0, residue;
|
|
#endif
|
|
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
|
|
if ((tmp = (NCR5380_read(STATUS_REG) & PHASE_MASK)) != p) {
|
|
*phase = tmp;
|
|
return -1;
|
|
}
|
|
#if defined(REAL_DMA) || defined(REAL_DMA_POLL)
|
|
if (p & SR_IO) {
|
|
if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS))
|
|
c -= 2;
|
|
}
|
|
dprintk(NDEBUG_DMA, "scsi%d : initializing DMA channel %d for %s, %d bytes %s %0x\n", instance->host_no, instance->dma_channel, (p & SR_IO) ? "reading" : "writing", c, (p & SR_IO) ? "to" : "from", (unsigned) d);
|
|
hostdata->dma_len = (p & SR_IO) ? NCR5380_dma_read_setup(instance, d, c) : NCR5380_dma_write_setup(instance, d, c);
|
|
#endif
|
|
|
|
NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(p));
|
|
|
|
#ifdef REAL_DMA
|
|
NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY |
|
|
MR_ENABLE_EOP_INTR);
|
|
#elif defined(REAL_DMA_POLL)
|
|
NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY);
|
|
#else
|
|
/*
|
|
* Note : on my sample board, watch-dog timeouts occurred when interrupts
|
|
* were not disabled for the duration of a single DMA transfer, from
|
|
* before the setting of DMA mode to after transfer of the last byte.
|
|
*/
|
|
|
|
if (hostdata->flags & FLAG_NO_DMA_FIXUP)
|
|
NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY |
|
|
MR_ENABLE_EOP_INTR);
|
|
else
|
|
NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY);
|
|
#endif /* def REAL_DMA */
|
|
|
|
dprintk(NDEBUG_DMA, "scsi%d : mode reg = 0x%X\n", instance->host_no, NCR5380_read(MODE_REG));
|
|
|
|
/*
|
|
* On the PAS16 at least I/O recovery delays are not needed here.
|
|
* Everyone else seems to want them.
|
|
*/
|
|
|
|
if (p & SR_IO) {
|
|
io_recovery_delay(1);
|
|
NCR5380_write(START_DMA_INITIATOR_RECEIVE_REG, 0);
|
|
} else {
|
|
io_recovery_delay(1);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA);
|
|
io_recovery_delay(1);
|
|
NCR5380_write(START_DMA_SEND_REG, 0);
|
|
io_recovery_delay(1);
|
|
}
|
|
|
|
#if defined(REAL_DMA_POLL)
|
|
do {
|
|
tmp = NCR5380_read(BUS_AND_STATUS_REG);
|
|
} while ((tmp & BASR_PHASE_MATCH) && !(tmp & (BASR_BUSY_ERROR | BASR_END_DMA_TRANSFER)));
|
|
|
|
/*
|
|
At this point, either we've completed DMA, or we have a phase mismatch,
|
|
or we've unexpectedly lost BUSY (which is a real error).
|
|
|
|
For write DMAs, we want to wait until the last byte has been
|
|
transferred out over the bus before we turn off DMA mode. Alas, there
|
|
seems to be no terribly good way of doing this on a 5380 under all
|
|
conditions. For non-scatter-gather operations, we can wait until REQ
|
|
and ACK both go false, or until a phase mismatch occurs. Gather-writes
|
|
are nastier, since the device will be expecting more data than we
|
|
are prepared to send it, and REQ will remain asserted. On a 53C8[01] we
|
|
could test LAST BIT SENT to assure transfer (I imagine this is precisely
|
|
why this signal was added to the newer chips) but on the older 538[01]
|
|
this signal does not exist. The workaround for this lack is a watchdog;
|
|
we bail out of the wait-loop after a modest amount of wait-time if
|
|
the usual exit conditions are not met. Not a terribly clean or
|
|
correct solution :-%
|
|
|
|
Reads are equally tricky due to a nasty characteristic of the NCR5380.
|
|
If the chip is in DMA mode for an READ, it will respond to a target's
|
|
REQ by latching the SCSI data into the INPUT DATA register and asserting
|
|
ACK, even if it has _already_ been notified by the DMA controller that
|
|
the current DMA transfer has completed! If the NCR5380 is then taken
|
|
out of DMA mode, this already-acknowledged byte is lost.
|
|
|
|
This is not a problem for "one DMA transfer per command" reads, because
|
|
the situation will never arise... either all of the data is DMA'ed
|
|
properly, or the target switches to MESSAGE IN phase to signal a
|
|
disconnection (either operation bringing the DMA to a clean halt).
|
|
However, in order to handle scatter-reads, we must work around the
|
|
problem. The chosen fix is to DMA N-2 bytes, then check for the
|
|
condition before taking the NCR5380 out of DMA mode. One or two extra
|
|
bytes are transferred via PIO as necessary to fill out the original
|
|
request.
|
|
*/
|
|
|
|
if (p & SR_IO) {
|
|
if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS)) {
|
|
udelay(10);
|
|
if ((NCR5380_read(BUS_AND_STATUS_REG) & (BASR_PHASE_MATCH | BASR_ACK)) ==
|
|
(BASR_PHASE_MATCH | BASR_ACK)) {
|
|
saved_data = NCR5380_read(INPUT_DATA_REGISTER);
|
|
overrun = 1;
|
|
}
|
|
}
|
|
} else {
|
|
int limit = 100;
|
|
while (((tmp = NCR5380_read(BUS_AND_STATUS_REG)) & BASR_ACK) || (NCR5380_read(STATUS_REG) & SR_REQ)) {
|
|
if (!(tmp & BASR_PHASE_MATCH))
|
|
break;
|
|
if (--limit < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
dprintk(NDEBUG_DMA, "scsi%d : polled DMA transfer complete, basr 0x%X, sr 0x%X\n", instance->host_no, tmp, NCR5380_read(STATUS_REG));
|
|
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
residue = NCR5380_dma_residual(instance);
|
|
c -= residue;
|
|
*count -= c;
|
|
*data += c;
|
|
*phase = NCR5380_read(STATUS_REG) & PHASE_MASK;
|
|
|
|
if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS) &&
|
|
*phase == p && (p & SR_IO) && residue == 0) {
|
|
if (overrun) {
|
|
dprintk(NDEBUG_DMA, "Got an input overrun, using saved byte\n");
|
|
**data = saved_data;
|
|
*data += 1;
|
|
*count -= 1;
|
|
cnt = toPIO = 1;
|
|
} else {
|
|
printk("No overrun??\n");
|
|
cnt = toPIO = 2;
|
|
}
|
|
dprintk(NDEBUG_DMA, "Doing %d-byte PIO to 0x%X\n", cnt, *data);
|
|
NCR5380_transfer_pio(instance, phase, &cnt, data);
|
|
*count -= toPIO - cnt;
|
|
}
|
|
|
|
dprintk(NDEBUG_DMA, "Return with data ptr = 0x%X, count %d, last 0x%X, next 0x%X\n", *data, *count, *(*data + *count - 1), *(*data + *count));
|
|
return 0;
|
|
|
|
#elif defined(REAL_DMA)
|
|
return 0;
|
|
#else /* defined(REAL_DMA_POLL) */
|
|
if (p & SR_IO) {
|
|
foo = NCR5380_pread(instance, d,
|
|
hostdata->flags & FLAG_NO_DMA_FIXUP ? c : c - 1);
|
|
if (!foo && !(hostdata->flags & FLAG_NO_DMA_FIXUP)) {
|
|
/*
|
|
* We can't disable DMA mode after successfully transferring
|
|
* what we plan to be the last byte, since that would open up
|
|
* a race condition where if the target asserted REQ before
|
|
* we got the DMA mode reset, the NCR5380 would have latched
|
|
* an additional byte into the INPUT DATA register and we'd
|
|
* have dropped it.
|
|
*
|
|
* The workaround was to transfer one fewer bytes than we
|
|
* intended to with the pseudo-DMA read function, wait for
|
|
* the chip to latch the last byte, read it, and then disable
|
|
* pseudo-DMA mode.
|
|
*
|
|
* After REQ is asserted, the NCR5380 asserts DRQ and ACK.
|
|
* REQ is deasserted when ACK is asserted, and not reasserted
|
|
* until ACK goes false. Since the NCR5380 won't lower ACK
|
|
* until DACK is asserted, which won't happen unless we twiddle
|
|
* the DMA port or we take the NCR5380 out of DMA mode, we
|
|
* can guarantee that we won't handshake another extra
|
|
* byte.
|
|
*/
|
|
|
|
if (NCR5380_poll_politely(instance, BUS_AND_STATUS_REG,
|
|
BASR_DRQ, BASR_DRQ, HZ) < 0) {
|
|
foo = -1;
|
|
shost_printk(KERN_ERR, instance, "PDMA read: DRQ timeout\n");
|
|
}
|
|
if (NCR5380_poll_politely(instance, STATUS_REG,
|
|
SR_REQ, 0, HZ) < 0) {
|
|
foo = -1;
|
|
shost_printk(KERN_ERR, instance, "PDMA read: !REQ timeout\n");
|
|
}
|
|
d[c - 1] = NCR5380_read(INPUT_DATA_REG);
|
|
}
|
|
} else {
|
|
foo = NCR5380_pwrite(instance, d, c);
|
|
if (!foo && !(hostdata->flags & FLAG_NO_DMA_FIXUP)) {
|
|
/*
|
|
* Wait for the last byte to be sent. If REQ is being asserted for
|
|
* the byte we're interested, we'll ACK it and it will go false.
|
|
*/
|
|
if (NCR5380_poll_politely2(instance,
|
|
BUS_AND_STATUS_REG, BASR_DRQ, BASR_DRQ,
|
|
BUS_AND_STATUS_REG, BASR_PHASE_MATCH, 0, HZ) < 0) {
|
|
foo = -1;
|
|
shost_printk(KERN_ERR, instance, "PDMA write: DRQ and phase timeout\n");
|
|
}
|
|
}
|
|
}
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
NCR5380_read(RESET_PARITY_INTERRUPT_REG);
|
|
*data = d + c;
|
|
*count = 0;
|
|
*phase = NCR5380_read(STATUS_REG) & PHASE_MASK;
|
|
return foo;
|
|
#endif /* def REAL_DMA */
|
|
}
|
|
#endif /* defined(REAL_DMA) | defined(PSEUDO_DMA) */
|
|
|
|
/*
|
|
* Function : NCR5380_information_transfer (struct Scsi_Host *instance)
|
|
*
|
|
* Purpose : run through the various SCSI phases and do as the target
|
|
* directs us to. Operates on the currently connected command,
|
|
* instance->connected.
|
|
*
|
|
* Inputs : instance, instance for which we are doing commands
|
|
*
|
|
* Side effects : SCSI things happen, the disconnected queue will be
|
|
* modified if a command disconnects, *instance->connected will
|
|
* change.
|
|
*
|
|
* XXX Note : we need to watch for bus free or a reset condition here
|
|
* to recover from an unexpected bus free condition.
|
|
*
|
|
* Locks: io_request_lock held by caller in IRQ mode
|
|
*/
|
|
|
|
static void NCR5380_information_transfer(struct Scsi_Host *instance) {
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *)instance->hostdata;
|
|
unsigned char msgout = NOP;
|
|
int sink = 0;
|
|
int len;
|
|
#if defined(PSEUDO_DMA) || defined(REAL_DMA_POLL)
|
|
int transfersize;
|
|
#endif
|
|
unsigned char *data;
|
|
unsigned char phase, tmp, extended_msg[10], old_phase = 0xff;
|
|
struct scsi_cmnd *cmd;
|
|
|
|
while ((cmd = hostdata->connected)) {
|
|
tmp = NCR5380_read(STATUS_REG);
|
|
/* We only have a valid SCSI phase when REQ is asserted */
|
|
if (tmp & SR_REQ) {
|
|
phase = (tmp & PHASE_MASK);
|
|
if (phase != old_phase) {
|
|
old_phase = phase;
|
|
NCR5380_dprint_phase(NDEBUG_INFORMATION, instance);
|
|
}
|
|
if (sink && (phase != PHASE_MSGOUT)) {
|
|
NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(tmp));
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN | ICR_ASSERT_ACK);
|
|
while (NCR5380_read(STATUS_REG) & SR_REQ);
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
sink = 0;
|
|
continue;
|
|
}
|
|
switch (phase) {
|
|
case PHASE_DATAOUT:
|
|
#if (NDEBUG & NDEBUG_NO_DATAOUT)
|
|
printk("scsi%d : NDEBUG_NO_DATAOUT set, attempted DATAOUT aborted\n", instance->host_no);
|
|
sink = 1;
|
|
do_abort(instance);
|
|
cmd->result = DID_ERROR << 16;
|
|
cmd->scsi_done(cmd);
|
|
return;
|
|
#endif
|
|
case PHASE_DATAIN:
|
|
/*
|
|
* If there is no room left in the current buffer in the
|
|
* scatter-gather list, move onto the next one.
|
|
*/
|
|
|
|
if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
|
|
++cmd->SCp.buffer;
|
|
--cmd->SCp.buffers_residual;
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
dprintk(NDEBUG_INFORMATION, "scsi%d : %d bytes and %d buffers left\n", instance->host_no, cmd->SCp.this_residual, cmd->SCp.buffers_residual);
|
|
}
|
|
/*
|
|
* The preferred transfer method is going to be
|
|
* PSEUDO-DMA for systems that are strictly PIO,
|
|
* since we can let the hardware do the handshaking.
|
|
*
|
|
* For this to work, we need to know the transfersize
|
|
* ahead of time, since the pseudo-DMA code will sit
|
|
* in an unconditional loop.
|
|
*/
|
|
|
|
#if defined(PSEUDO_DMA) || defined(REAL_DMA_POLL)
|
|
transfersize = 0;
|
|
if (!cmd->device->borken &&
|
|
!(hostdata->flags & FLAG_NO_PSEUDO_DMA))
|
|
transfersize = NCR5380_dma_xfer_len(instance, cmd, phase);
|
|
|
|
if (transfersize) {
|
|
len = transfersize;
|
|
if (NCR5380_transfer_dma(instance, &phase, &len, (unsigned char **) &cmd->SCp.ptr)) {
|
|
/*
|
|
* If the watchdog timer fires, all future accesses to this
|
|
* device will use the polled-IO.
|
|
*/
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"switching to slow handshake\n");
|
|
cmd->device->borken = 1;
|
|
sink = 1;
|
|
do_abort(instance);
|
|
cmd->result = DID_ERROR << 16;
|
|
cmd->scsi_done(cmd);
|
|
/* XXX - need to source or sink data here, as appropriate */
|
|
} else
|
|
cmd->SCp.this_residual -= transfersize - len;
|
|
} else
|
|
#endif /* defined(PSEUDO_DMA) || defined(REAL_DMA_POLL) */
|
|
{
|
|
spin_unlock_irq(&hostdata->lock);
|
|
NCR5380_transfer_pio(instance, &phase, (int *) &cmd->SCp.this_residual, (unsigned char **)
|
|
&cmd->SCp.ptr);
|
|
spin_lock_irq(&hostdata->lock);
|
|
}
|
|
break;
|
|
case PHASE_MSGIN:
|
|
len = 1;
|
|
data = &tmp;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
cmd->SCp.Message = tmp;
|
|
|
|
switch (tmp) {
|
|
case ABORT:
|
|
case COMMAND_COMPLETE:
|
|
/* Accept message by clearing ACK */
|
|
sink = 1;
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
hostdata->connected = NULL;
|
|
dprintk(NDEBUG_QUEUES, "scsi%d : command for target %d, lun %llu completed\n", instance->host_no, cmd->device->id, cmd->device->lun);
|
|
hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xFF));
|
|
|
|
/*
|
|
* I'm not sure what the correct thing to do here is :
|
|
*
|
|
* If the command that just executed is NOT a request
|
|
* sense, the obvious thing to do is to set the result
|
|
* code to the values of the stored parameters.
|
|
*
|
|
* If it was a REQUEST SENSE command, we need some way
|
|
* to differentiate between the failure code of the original
|
|
* and the failure code of the REQUEST sense - the obvious
|
|
* case is success, where we fall through and leave the result
|
|
* code unchanged.
|
|
*
|
|
* The non-obvious place is where the REQUEST SENSE failed
|
|
*/
|
|
|
|
if (cmd->cmnd[0] != REQUEST_SENSE)
|
|
cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
|
|
else if (status_byte(cmd->SCp.Status) != GOOD)
|
|
cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
|
|
|
|
if ((cmd->cmnd[0] == REQUEST_SENSE) &&
|
|
hostdata->ses.cmd_len) {
|
|
scsi_eh_restore_cmnd(cmd, &hostdata->ses);
|
|
hostdata->ses.cmd_len = 0 ;
|
|
}
|
|
|
|
if ((cmd->cmnd[0] != REQUEST_SENSE) && (status_byte(cmd->SCp.Status) == CHECK_CONDITION)) {
|
|
scsi_eh_prep_cmnd(cmd, &hostdata->ses, NULL, 0, ~0);
|
|
|
|
dprintk(NDEBUG_AUTOSENSE, "scsi%d : performing request sense\n", instance->host_no);
|
|
|
|
LIST(cmd, hostdata->issue_queue);
|
|
cmd->host_scribble = (unsigned char *)
|
|
hostdata->issue_queue;
|
|
hostdata->issue_queue = (struct scsi_cmnd *) cmd;
|
|
dprintk(NDEBUG_QUEUES, "scsi%d : REQUEST SENSE added to head of issue queue\n", instance->host_no);
|
|
} else {
|
|
cmd->scsi_done(cmd);
|
|
}
|
|
|
|
/*
|
|
* Restore phase bits to 0 so an interrupted selection,
|
|
* arbitration can resume.
|
|
*/
|
|
NCR5380_write(TARGET_COMMAND_REG, 0);
|
|
|
|
/* Enable reselect interrupts */
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
return;
|
|
case MESSAGE_REJECT:
|
|
/* Accept message by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
switch (hostdata->last_message) {
|
|
case HEAD_OF_QUEUE_TAG:
|
|
case ORDERED_QUEUE_TAG:
|
|
case SIMPLE_QUEUE_TAG:
|
|
cmd->device->simple_tags = 0;
|
|
hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case DISCONNECT:{
|
|
/* Accept message by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
LIST(cmd, hostdata->disconnected_queue);
|
|
cmd->host_scribble = (unsigned char *)
|
|
hostdata->disconnected_queue;
|
|
hostdata->connected = NULL;
|
|
hostdata->disconnected_queue = cmd;
|
|
dprintk(NDEBUG_QUEUES, "scsi%d : command for target %d lun %llu was moved from connected to" " the disconnected_queue\n", instance->host_no, cmd->device->id, cmd->device->lun);
|
|
/*
|
|
* Restore phase bits to 0 so an interrupted selection,
|
|
* arbitration can resume.
|
|
*/
|
|
NCR5380_write(TARGET_COMMAND_REG, 0);
|
|
|
|
/* Enable reselect interrupts */
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
return;
|
|
}
|
|
/*
|
|
* The SCSI data pointer is *IMPLICITLY* saved on a disconnect
|
|
* operation, in violation of the SCSI spec so we can safely
|
|
* ignore SAVE/RESTORE pointers calls.
|
|
*
|
|
* Unfortunately, some disks violate the SCSI spec and
|
|
* don't issue the required SAVE_POINTERS message before
|
|
* disconnecting, and we have to break spec to remain
|
|
* compatible.
|
|
*/
|
|
case SAVE_POINTERS:
|
|
case RESTORE_POINTERS:
|
|
/* Accept message by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
break;
|
|
case EXTENDED_MESSAGE:
|
|
/*
|
|
* Extended messages are sent in the following format :
|
|
* Byte
|
|
* 0 EXTENDED_MESSAGE == 1
|
|
* 1 length (includes one byte for code, doesn't
|
|
* include first two bytes)
|
|
* 2 code
|
|
* 3..length+1 arguments
|
|
*
|
|
* Start the extended message buffer with the EXTENDED_MESSAGE
|
|
* byte, since spi_print_msg() wants the whole thing.
|
|
*/
|
|
extended_msg[0] = EXTENDED_MESSAGE;
|
|
/* Accept first byte by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
spin_unlock_irq(&hostdata->lock);
|
|
|
|
dprintk(NDEBUG_EXTENDED, "scsi%d : receiving extended message\n", instance->host_no);
|
|
|
|
len = 2;
|
|
data = extended_msg + 1;
|
|
phase = PHASE_MSGIN;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
|
|
dprintk(NDEBUG_EXTENDED, "scsi%d : length=%d, code=0x%02x\n", instance->host_no, (int) extended_msg[1], (int) extended_msg[2]);
|
|
|
|
if (!len && extended_msg[1] > 0 &&
|
|
extended_msg[1] <= sizeof(extended_msg) - 2) {
|
|
/* Accept third byte by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
len = extended_msg[1] - 1;
|
|
data = extended_msg + 3;
|
|
phase = PHASE_MSGIN;
|
|
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
dprintk(NDEBUG_EXTENDED, "scsi%d : message received, residual %d\n", instance->host_no, len);
|
|
|
|
switch (extended_msg[2]) {
|
|
case EXTENDED_SDTR:
|
|
case EXTENDED_WDTR:
|
|
case EXTENDED_MODIFY_DATA_POINTER:
|
|
case EXTENDED_EXTENDED_IDENTIFY:
|
|
tmp = 0;
|
|
}
|
|
} else if (len) {
|
|
printk("scsi%d: error receiving extended message\n", instance->host_no);
|
|
tmp = 0;
|
|
} else {
|
|
printk("scsi%d: extended message code %02x length %d is too long\n", instance->host_no, extended_msg[2], extended_msg[1]);
|
|
tmp = 0;
|
|
}
|
|
|
|
spin_lock_irq(&hostdata->lock);
|
|
if (!hostdata->connected)
|
|
return;
|
|
|
|
/* Fall through to reject message */
|
|
|
|
/*
|
|
* If we get something weird that we aren't expecting,
|
|
* reject it.
|
|
*/
|
|
default:
|
|
if (!tmp) {
|
|
printk("scsi%d: rejecting message ", instance->host_no);
|
|
spi_print_msg(extended_msg);
|
|
printk("\n");
|
|
} else if (tmp != EXTENDED_MESSAGE)
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"rejecting unknown message %02x\n",tmp);
|
|
else
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"rejecting unknown extended message code %02x, length %d\n", extended_msg[1], extended_msg[0]);
|
|
|
|
msgout = MESSAGE_REJECT;
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN);
|
|
break;
|
|
} /* switch (tmp) */
|
|
break;
|
|
case PHASE_MSGOUT:
|
|
len = 1;
|
|
data = &msgout;
|
|
hostdata->last_message = msgout;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
if (msgout == ABORT) {
|
|
hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xFF));
|
|
hostdata->connected = NULL;
|
|
cmd->result = DID_ERROR << 16;
|
|
cmd->scsi_done(cmd);
|
|
NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask);
|
|
return;
|
|
}
|
|
msgout = NOP;
|
|
break;
|
|
case PHASE_CMDOUT:
|
|
len = cmd->cmd_len;
|
|
data = cmd->cmnd;
|
|
/*
|
|
* XXX for performance reasons, on machines with a
|
|
* PSEUDO-DMA architecture we should probably
|
|
* use the dma transfer function.
|
|
*/
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
break;
|
|
case PHASE_STATIN:
|
|
len = 1;
|
|
data = &tmp;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
cmd->SCp.Status = tmp;
|
|
break;
|
|
default:
|
|
printk("scsi%d : unknown phase\n", instance->host_no);
|
|
NCR5380_dprint(NDEBUG_ANY, instance);
|
|
} /* switch(phase) */
|
|
} else {
|
|
spin_unlock_irq(&hostdata->lock);
|
|
NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ);
|
|
spin_lock_irq(&hostdata->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function : void NCR5380_reselect (struct Scsi_Host *instance)
|
|
*
|
|
* Purpose : does reselection, initializing the instance->connected
|
|
* field to point to the scsi_cmnd for which the I_T_L or I_T_L_Q
|
|
* nexus has been reestablished,
|
|
*
|
|
* Inputs : instance - this instance of the NCR5380.
|
|
*
|
|
* Locks: io_request_lock held by caller if IRQ driven
|
|
*/
|
|
|
|
static void NCR5380_reselect(struct Scsi_Host *instance) {
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *)
|
|
instance->hostdata;
|
|
unsigned char target_mask;
|
|
unsigned char lun, phase;
|
|
int len;
|
|
unsigned char msg[3];
|
|
unsigned char *data;
|
|
struct scsi_cmnd *tmp = NULL, *prev;
|
|
|
|
/*
|
|
* Disable arbitration, etc. since the host adapter obviously
|
|
* lost, and tell an interrupted NCR5380_select() to restart.
|
|
*/
|
|
|
|
NCR5380_write(MODE_REG, MR_BASE);
|
|
|
|
target_mask = NCR5380_read(CURRENT_SCSI_DATA_REG) & ~(hostdata->id_mask);
|
|
dprintk(NDEBUG_RESELECTION, "scsi%d : reselect\n", instance->host_no);
|
|
|
|
/*
|
|
* At this point, we have detected that our SCSI ID is on the bus,
|
|
* SEL is true and BSY was false for at least one bus settle delay
|
|
* (400 ns).
|
|
*
|
|
* We must assert BSY ourselves, until the target drops the SEL
|
|
* signal.
|
|
*/
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_BSY);
|
|
if (NCR5380_poll_politely(instance,
|
|
STATUS_REG, SR_SEL, 0, 2 * HZ) < 0) {
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
return;
|
|
}
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
/*
|
|
* Wait for target to go into MSGIN.
|
|
*/
|
|
|
|
if (NCR5380_poll_politely(instance,
|
|
STATUS_REG, SR_REQ, SR_REQ, 2 * HZ) < 0) {
|
|
do_abort(instance);
|
|
return;
|
|
}
|
|
|
|
len = 1;
|
|
data = msg;
|
|
phase = PHASE_MSGIN;
|
|
NCR5380_transfer_pio(instance, &phase, &len, &data);
|
|
|
|
if (len) {
|
|
do_abort(instance);
|
|
return;
|
|
}
|
|
|
|
if (!(msg[0] & 0x80)) {
|
|
shost_printk(KERN_ERR, instance, "expecting IDENTIFY message, got ");
|
|
spi_print_msg(msg);
|
|
printk("\n");
|
|
do_abort(instance);
|
|
return;
|
|
}
|
|
lun = msg[0] & 0x07;
|
|
|
|
/*
|
|
* We need to add code for SCSI-II to track which devices have
|
|
* I_T_L_Q nexuses established, and which have simple I_T_L
|
|
* nexuses so we can chose to do additional data transfer.
|
|
*/
|
|
|
|
/*
|
|
* Find the command corresponding to the I_T_L or I_T_L_Q nexus we
|
|
* just reestablished, and remove it from the disconnected queue.
|
|
*/
|
|
|
|
for (tmp = (struct scsi_cmnd *) hostdata->disconnected_queue, prev = NULL;
|
|
tmp; prev = tmp, tmp = (struct scsi_cmnd *) tmp->host_scribble) {
|
|
if ((target_mask == (1 << tmp->device->id)) && (lun == (u8)tmp->device->lun)) {
|
|
if (prev) {
|
|
REMOVE(prev, prev->host_scribble, tmp, tmp->host_scribble);
|
|
prev->host_scribble = tmp->host_scribble;
|
|
} else {
|
|
REMOVE(-1, hostdata->disconnected_queue, tmp, tmp->host_scribble);
|
|
hostdata->disconnected_queue =
|
|
(struct scsi_cmnd *) tmp->host_scribble;
|
|
}
|
|
tmp->host_scribble = NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (!tmp) {
|
|
shost_printk(KERN_ERR, instance, "target bitmask 0x%02x lun %d not in disconnected queue.\n",
|
|
target_mask, lun);
|
|
/*
|
|
* Since we have an established nexus that we can't do anything with,
|
|
* we must abort it.
|
|
*/
|
|
do_abort(instance);
|
|
return;
|
|
}
|
|
|
|
/* Accept message by clearing ACK */
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
hostdata->connected = tmp;
|
|
dprintk(NDEBUG_RESELECTION, "scsi%d : nexus established, target = %d, lun = %llu, tag = %d\n",
|
|
instance->host_no, tmp->device->id, tmp->device->lun, tmp->tag);
|
|
}
|
|
|
|
/*
|
|
* Function : void NCR5380_dma_complete (struct Scsi_Host *instance)
|
|
*
|
|
* Purpose : called by interrupt handler when DMA finishes or a phase
|
|
* mismatch occurs (which would finish the DMA transfer).
|
|
*
|
|
* Inputs : instance - this instance of the NCR5380.
|
|
*
|
|
* Returns : pointer to the scsi_cmnd structure for which the I_T_L
|
|
* nexus has been reestablished, on failure NULL is returned.
|
|
*/
|
|
|
|
#ifdef REAL_DMA
|
|
static void NCR5380_dma_complete(NCR5380_instance * instance) {
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
int transferred;
|
|
|
|
/*
|
|
* XXX this might not be right.
|
|
*
|
|
* Wait for final byte to transfer, ie wait for ACK to go false.
|
|
*
|
|
* We should use the Last Byte Sent bit, unfortunately this is
|
|
* not available on the 5380/5381 (only the various CMOS chips)
|
|
*
|
|
* FIXME: timeout, and need to handle long timeout/irq case
|
|
*/
|
|
|
|
NCR5380_poll_politely(instance, BUS_AND_STATUS_REG, BASR_ACK, 0, 5*HZ);
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
|
|
|
|
/*
|
|
* The only places we should see a phase mismatch and have to send
|
|
* data from the same set of pointers will be the data transfer
|
|
* phases. So, residual, requested length are only important here.
|
|
*/
|
|
|
|
if (!(hostdata->connected->SCp.phase & SR_CD)) {
|
|
transferred = instance->dmalen - NCR5380_dma_residual();
|
|
hostdata->connected->SCp.this_residual -= transferred;
|
|
hostdata->connected->SCp.ptr += transferred;
|
|
}
|
|
}
|
|
#endif /* def REAL_DMA */
|
|
|
|
/*
|
|
* Function : int NCR5380_abort (struct scsi_cmnd *cmd)
|
|
*
|
|
* Purpose : abort a command
|
|
*
|
|
* Inputs : cmd - the scsi_cmnd to abort, code - code to set the
|
|
* host byte of the result field to, if zero DID_ABORTED is
|
|
* used.
|
|
*
|
|
* Returns : SUCCESS - success, FAILED on failure.
|
|
*
|
|
* XXX - there is no way to abort the command that is currently
|
|
* connected, you have to wait for it to complete. If this is
|
|
* a problem, we could implement longjmp() / setjmp(), setjmp()
|
|
* called where the loop started in NCR5380_main().
|
|
*
|
|
* Locks: host lock taken by caller
|
|
*/
|
|
|
|
static int NCR5380_abort(struct scsi_cmnd *cmd)
|
|
{
|
|
struct Scsi_Host *instance = cmd->device->host;
|
|
struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
|
|
struct scsi_cmnd *tmp, **prev;
|
|
unsigned long flags;
|
|
|
|
scmd_printk(KERN_WARNING, cmd, "aborting command\n");
|
|
|
|
spin_lock_irqsave(&hostdata->lock, flags);
|
|
|
|
NCR5380_dprint(NDEBUG_ANY, instance);
|
|
NCR5380_dprint_phase(NDEBUG_ANY, instance);
|
|
|
|
dprintk(NDEBUG_ABORT, "scsi%d : abort called\n", instance->host_no);
|
|
dprintk(NDEBUG_ABORT, " basr 0x%X, sr 0x%X\n", NCR5380_read(BUS_AND_STATUS_REG), NCR5380_read(STATUS_REG));
|
|
|
|
#if 0
|
|
/*
|
|
* Case 1 : If the command is the currently executing command,
|
|
* we'll set the aborted flag and return control so that
|
|
* information transfer routine can exit cleanly.
|
|
*/
|
|
|
|
if (hostdata->connected == cmd) {
|
|
dprintk(NDEBUG_ABORT, "scsi%d : aborting connected command\n", instance->host_no);
|
|
/*
|
|
* We should perform BSY checking, and make sure we haven't slipped
|
|
* into BUS FREE.
|
|
*/
|
|
|
|
NCR5380_write(INITIATOR_COMMAND_REG, ICR_ASSERT_ATN);
|
|
/*
|
|
* Since we can't change phases until we've completed the current
|
|
* handshake, we have to source or sink a byte of data if the current
|
|
* phase is not MSGOUT.
|
|
*/
|
|
|
|
/*
|
|
* Return control to the executing NCR drive so we can clear the
|
|
* aborted flag and get back into our main loop.
|
|
*/
|
|
|
|
return SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Case 2 : If the command hasn't been issued yet, we simply remove it
|
|
* from the issue queue.
|
|
*/
|
|
|
|
dprintk(NDEBUG_ABORT, "scsi%d : abort going into loop.\n", instance->host_no);
|
|
for (prev = (struct scsi_cmnd **) &(hostdata->issue_queue), tmp = (struct scsi_cmnd *) hostdata->issue_queue; tmp; prev = (struct scsi_cmnd **) &(tmp->host_scribble), tmp = (struct scsi_cmnd *) tmp->host_scribble)
|
|
if (cmd == tmp) {
|
|
REMOVE(5, *prev, tmp, tmp->host_scribble);
|
|
(*prev) = (struct scsi_cmnd *) tmp->host_scribble;
|
|
tmp->host_scribble = NULL;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
tmp->result = DID_ABORT << 16;
|
|
dprintk(NDEBUG_ABORT, "scsi%d : abort removed command from issue queue.\n", instance->host_no);
|
|
tmp->scsi_done(tmp);
|
|
return SUCCESS;
|
|
}
|
|
#if (NDEBUG & NDEBUG_ABORT)
|
|
/* KLL */
|
|
else if (prev == tmp)
|
|
printk(KERN_ERR "scsi%d : LOOP\n", instance->host_no);
|
|
#endif
|
|
|
|
/*
|
|
* Case 3 : If any commands are connected, we're going to fail the abort
|
|
* and let the high level SCSI driver retry at a later time or
|
|
* issue a reset.
|
|
*
|
|
* Timeouts, and therefore aborted commands, will be highly unlikely
|
|
* and handling them cleanly in this situation would make the common
|
|
* case of noresets less efficient, and would pollute our code. So,
|
|
* we fail.
|
|
*/
|
|
|
|
if (hostdata->connected) {
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
dprintk(NDEBUG_ABORT, "scsi%d : abort failed, command connected.\n", instance->host_no);
|
|
return FAILED;
|
|
}
|
|
/*
|
|
* Case 4: If the command is currently disconnected from the bus, and
|
|
* there are no connected commands, we reconnect the I_T_L or
|
|
* I_T_L_Q nexus associated with it, go into message out, and send
|
|
* an abort message.
|
|
*
|
|
* This case is especially ugly. In order to reestablish the nexus, we
|
|
* need to call NCR5380_select(). The easiest way to implement this
|
|
* function was to abort if the bus was busy, and let the interrupt
|
|
* handler triggered on the SEL for reselect take care of lost arbitrations
|
|
* where necessary, meaning interrupts need to be enabled.
|
|
*
|
|
* When interrupts are enabled, the queues may change - so we
|
|
* can't remove it from the disconnected queue before selecting it
|
|
* because that could cause a failure in hashing the nexus if that
|
|
* device reselected.
|
|
*
|
|
* Since the queues may change, we can't use the pointers from when we
|
|
* first locate it.
|
|
*
|
|
* So, we must first locate the command, and if NCR5380_select()
|
|
* succeeds, then issue the abort, relocate the command and remove
|
|
* it from the disconnected queue.
|
|
*/
|
|
|
|
for (tmp = (struct scsi_cmnd *) hostdata->disconnected_queue; tmp; tmp = (struct scsi_cmnd *) tmp->host_scribble)
|
|
if (cmd == tmp) {
|
|
dprintk(NDEBUG_ABORT, "scsi%d : aborting disconnected command.\n", instance->host_no);
|
|
|
|
if (NCR5380_select(instance, cmd)) {
|
|
spin_unlock_irq(&hostdata->lock);
|
|
return FAILED;
|
|
}
|
|
dprintk(NDEBUG_ABORT, "scsi%d : nexus reestablished.\n", instance->host_no);
|
|
|
|
do_abort(instance);
|
|
|
|
for (prev = (struct scsi_cmnd **) &(hostdata->disconnected_queue), tmp = (struct scsi_cmnd *) hostdata->disconnected_queue; tmp; prev = (struct scsi_cmnd **) &(tmp->host_scribble), tmp = (struct scsi_cmnd *) tmp->host_scribble)
|
|
if (cmd == tmp) {
|
|
REMOVE(5, *prev, tmp, tmp->host_scribble);
|
|
*prev = (struct scsi_cmnd *) tmp->host_scribble;
|
|
tmp->host_scribble = NULL;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
tmp->result = DID_ABORT << 16;
|
|
tmp->scsi_done(tmp);
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
/*
|
|
* Case 5 : If we reached this point, the command was not found in any of
|
|
* the queues.
|
|
*
|
|
* We probably reached this point because of an unlikely race condition
|
|
* between the command completing successfully and the abortion code,
|
|
* so we won't panic, but we will notify the user in case something really
|
|
* broke.
|
|
*/
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
printk(KERN_WARNING "scsi%d : warning : SCSI command probably completed successfully\n"
|
|
" before abortion\n", instance->host_no);
|
|
return FAILED;
|
|
}
|
|
|
|
|
|
/**
|
|
* NCR5380_bus_reset - reset the SCSI bus
|
|
* @cmd: SCSI command undergoing EH
|
|
*
|
|
* Returns SUCCESS
|
|
*/
|
|
|
|
static int NCR5380_bus_reset(struct scsi_cmnd *cmd)
|
|
{
|
|
struct Scsi_Host *instance = cmd->device->host;
|
|
struct NCR5380_hostdata *hostdata = shost_priv(instance);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hostdata->lock, flags);
|
|
|
|
#if (NDEBUG & NDEBUG_ANY)
|
|
scmd_printk(KERN_INFO, cmd, "performing bus reset\n");
|
|
#endif
|
|
NCR5380_dprint(NDEBUG_ANY, instance);
|
|
NCR5380_dprint_phase(NDEBUG_ANY, instance);
|
|
|
|
do_reset(instance);
|
|
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
|
|
return SUCCESS;
|
|
}
|