4720852ed9
This commit fixes poor delayed ACK behavior that can cause poor TCP
latency in a particular boundary condition: when an application makes
a TCP socket write that is an exact multiple of the MSS size.
The problem is that there is painful boundary discontinuity in the
current delayed ACK behavior. With the current delayed ACK behavior,
we have:
(1) If an app reads data when > 1*MSS is unacknowledged, then
tcp_cleanup_rbuf() ACKs immediately because of:
tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
(2) If an app reads all received data, and the packets were < 1*MSS,
and either (a) the app is not ping-pong or (b) we received two
packets < 1*MSS, then tcp_cleanup_rbuf() ACKs immediately beecause
of:
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
!inet_csk_in_pingpong_mode(sk))) &&
(3) *However*: if an app reads exactly 1*MSS of data,
tcp_cleanup_rbuf() does not send an immediate ACK. This is true
even if the app is not ping-pong and the 1*MSS of data had the PSH
bit set, suggesting the sending application completed an
application write.
Thus if the app is not ping-pong, we have this painful case where
>1*MSS gets an immediate ACK, and <1*MSS gets an immediate ACK, but a
write whose last skb is an exact multiple of 1*MSS can get a 40ms
delayed ACK. This means that any app that transfers data in one
direction and takes care to align write size or packet size with MSS
can suffer this problem. With receive zero copy making 4KB MSS values
more common, it is becoming more common to have application writes
naturally align with MSS, and more applications are likely to
encounter this delayed ACK problem.
The fix in this commit is to refine the delayed ACK heuristics with a
simple check: immediately ACK a received 1*MSS skb with PSH bit set if
the app reads all data. Why? If an skb has a len of exactly 1*MSS and
has the PSH bit set then it is likely the end of an application
write. So more data may not be arriving soon, and yet the data sender
may be waiting for an ACK if cwnd-bound or using TX zero copy. Thus we
set ICSK_ACK_PUSHED in this case so that tcp_cleanup_rbuf() will send
an ACK immediately if the app reads all of the data and is not
ping-pong. Note that this logic is also executed for the case where
len > MSS, but in that case this logic does not matter (and does not
hurt) because tcp_cleanup_rbuf() will always ACK immediately if the
app reads data and there is more than an MSS of unACKed data.
Fixes:
|
||
---|---|---|
.. | ||
bpfilter | ||
netfilter | ||
af_inet.c | ||
ah4.c | ||
arp.c | ||
bpf_tcp_ca.c | ||
cipso_ipv4.c | ||
datagram.c | ||
devinet.c | ||
esp4_offload.c | ||
esp4.c | ||
fib_frontend.c | ||
fib_lookup.h | ||
fib_notifier.c | ||
fib_rules.c | ||
fib_semantics.c | ||
fib_trie.c | ||
fou_bpf.c | ||
fou_core.c | ||
fou_nl.c | ||
fou_nl.h | ||
gre_demux.c | ||
gre_offload.c | ||
icmp.c | ||
igmp.c | ||
inet_connection_sock.c | ||
inet_diag.c | ||
inet_fragment.c | ||
inet_hashtables.c | ||
inet_timewait_sock.c | ||
inetpeer.c | ||
ip_forward.c | ||
ip_fragment.c | ||
ip_gre.c | ||
ip_input.c | ||
ip_options.c | ||
ip_output.c | ||
ip_sockglue.c | ||
ip_tunnel_core.c | ||
ip_tunnel.c | ||
ip_vti.c | ||
ipcomp.c | ||
ipconfig.c | ||
ipip.c | ||
ipmr_base.c | ||
ipmr.c | ||
Kconfig | ||
Makefile | ||
metrics.c | ||
netfilter.c | ||
netlink.c | ||
nexthop.c | ||
ping.c | ||
proc.c | ||
protocol.c | ||
raw_diag.c | ||
raw.c | ||
route.c | ||
syncookies.c | ||
sysctl_net_ipv4.c | ||
tcp_bbr.c | ||
tcp_bic.c | ||
tcp_bpf.c | ||
tcp_cdg.c | ||
tcp_cong.c | ||
tcp_cubic.c | ||
tcp_dctcp.c | ||
tcp_dctcp.h | ||
tcp_diag.c | ||
tcp_fastopen.c | ||
tcp_highspeed.c | ||
tcp_htcp.c | ||
tcp_hybla.c | ||
tcp_illinois.c | ||
tcp_input.c | ||
tcp_ipv4.c | ||
tcp_lp.c | ||
tcp_metrics.c | ||
tcp_minisocks.c | ||
tcp_nv.c | ||
tcp_offload.c | ||
tcp_output.c | ||
tcp_plb.c | ||
tcp_rate.c | ||
tcp_recovery.c | ||
tcp_scalable.c | ||
tcp_timer.c | ||
tcp_ulp.c | ||
tcp_vegas.c | ||
tcp_vegas.h | ||
tcp_veno.c | ||
tcp_westwood.c | ||
tcp_yeah.c | ||
tcp.c | ||
tunnel4.c | ||
udp_bpf.c | ||
udp_diag.c | ||
udp_impl.h | ||
udp_offload.c | ||
udp_tunnel_core.c | ||
udp_tunnel_nic.c | ||
udp_tunnel_stub.c | ||
udp.c | ||
udplite.c | ||
xfrm4_input.c | ||
xfrm4_output.c | ||
xfrm4_policy.c | ||
xfrm4_protocol.c | ||
xfrm4_state.c | ||
xfrm4_tunnel.c |