linux/drivers/iio/adc/qcom-spmi-adc5.c
Marijn Suijten 15b2ac6785 iio: adc: qcom-spmi-adc5: Add missing VCOIN/GPIO[134] channels
These channels are specified in downstream kernels [1] and actively used
by e.g. the Sony Seine platform on the SM6125 SoC.  Note that GPIO2
isn't used on this platform and, while the definition downstream is
identical to the other GPIOx_100K_PU definitions, has been omitted for
lack of proper testing.

[1]: https://source.codeaurora.org/quic/la/kernel/msm-4.14/tree/drivers/iio/adc/qcom-spmi-adc5.c?h=LA.UM.7.11.r1-05200-NICOBAR.0#n688

Signed-off-by: Marijn Suijten <marijn.suijten@somainline.org>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org>
Link: https://lore.kernel.org/r/20220805135729.1037079-3-marijn.suijten@somainline.org
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-08-15 22:29:59 +01:00

936 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, 2020, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/adc/qcom-vadc-common.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <dt-bindings/iio/qcom,spmi-vadc.h>
#define ADC5_USR_REVISION1 0x0
#define ADC5_USR_STATUS1 0x8
#define ADC5_USR_STATUS1_CONV_FAULT BIT(7)
#define ADC5_USR_STATUS1_REQ_STS BIT(1)
#define ADC5_USR_STATUS1_EOC BIT(0)
#define ADC5_USR_STATUS1_REQ_STS_EOC_MASK 0x3
#define ADC5_USR_STATUS2 0x9
#define ADC5_USR_STATUS2_CONV_SEQ_MASK 0x70
#define ADC5_USR_STATUS2_CONV_SEQ_MASK_SHIFT 0x5
#define ADC5_USR_IBAT_MEAS 0xf
#define ADC5_USR_IBAT_MEAS_SUPPORTED BIT(0)
#define ADC5_USR_DIG_PARAM 0x42
#define ADC5_USR_DIG_PARAM_CAL_VAL BIT(6)
#define ADC5_USR_DIG_PARAM_CAL_VAL_SHIFT 6
#define ADC5_USR_DIG_PARAM_CAL_SEL 0x30
#define ADC5_USR_DIG_PARAM_CAL_SEL_SHIFT 4
#define ADC5_USR_DIG_PARAM_DEC_RATIO_SEL 0xc
#define ADC5_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT 2
#define ADC5_USR_FAST_AVG_CTL 0x43
#define ADC5_USR_FAST_AVG_CTL_EN BIT(7)
#define ADC5_USR_FAST_AVG_CTL_SAMPLES_MASK 0x7
#define ADC5_USR_CH_SEL_CTL 0x44
#define ADC5_USR_DELAY_CTL 0x45
#define ADC5_USR_HW_SETTLE_DELAY_MASK 0xf
#define ADC5_USR_EN_CTL1 0x46
#define ADC5_USR_EN_CTL1_ADC_EN BIT(7)
#define ADC5_USR_CONV_REQ 0x47
#define ADC5_USR_CONV_REQ_REQ BIT(7)
#define ADC5_USR_DATA0 0x50
#define ADC5_USR_DATA1 0x51
#define ADC5_USR_IBAT_DATA0 0x52
#define ADC5_USR_IBAT_DATA1 0x53
#define ADC_CHANNEL_OFFSET 0x8
#define ADC_CHANNEL_MASK GENMASK(7, 0)
/*
* Conversion time varies based on the decimation, clock rate, fast average
* samples and measurements queued across different VADC peripherals.
* Set the timeout to a max of 100ms.
*/
#define ADC5_CONV_TIME_MIN_US 263
#define ADC5_CONV_TIME_MAX_US 264
#define ADC5_CONV_TIME_RETRY 400
#define ADC5_CONV_TIMEOUT msecs_to_jiffies(100)
/* Digital version >= 5.3 supports hw_settle_2 */
#define ADC5_HW_SETTLE_DIFF_MINOR 3
#define ADC5_HW_SETTLE_DIFF_MAJOR 5
/* For PMIC7 */
#define ADC_APP_SID 0x40
#define ADC_APP_SID_MASK GENMASK(3, 0)
#define ADC7_CONV_TIMEOUT msecs_to_jiffies(10)
enum adc5_cal_method {
ADC5_NO_CAL = 0,
ADC5_RATIOMETRIC_CAL,
ADC5_ABSOLUTE_CAL
};
enum adc5_cal_val {
ADC5_TIMER_CAL = 0,
ADC5_NEW_CAL
};
/**
* struct adc5_channel_prop - ADC channel property.
* @channel: channel number, refer to the channel list.
* @cal_method: calibration method.
* @cal_val: calibration value
* @decimation: sampling rate supported for the channel.
* @sid: slave id of PMIC owning the channel, for PMIC7.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @scale_fn_type: Represents the scaling function to convert voltage
* physical units desired by the client for the channel.
* @datasheet_name: Channel name used in device tree.
*/
struct adc5_channel_prop {
unsigned int channel;
enum adc5_cal_method cal_method;
enum adc5_cal_val cal_val;
unsigned int decimation;
unsigned int sid;
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int avg_samples;
enum vadc_scale_fn_type scale_fn_type;
const char *datasheet_name;
};
/**
* struct adc5_chip - ADC private structure.
* @regmap: SPMI ADC5 peripheral register map field.
* @dev: SPMI ADC5 device.
* @base: base address for the ADC peripheral.
* @nchannels: number of ADC channels.
* @chan_props: array of ADC channel properties.
* @iio_chans: array of IIO channels specification.
* @poll_eoc: use polling instead of interrupt.
* @complete: ADC result notification after interrupt is received.
* @lock: ADC lock for access to the peripheral.
* @data: software configuration data.
*/
struct adc5_chip {
struct regmap *regmap;
struct device *dev;
u16 base;
unsigned int nchannels;
struct adc5_channel_prop *chan_props;
struct iio_chan_spec *iio_chans;
bool poll_eoc;
struct completion complete;
struct mutex lock;
const struct adc5_data *data;
};
static int adc5_read(struct adc5_chip *adc, u16 offset, u8 *data, int len)
{
return regmap_bulk_read(adc->regmap, adc->base + offset, data, len);
}
static int adc5_write(struct adc5_chip *adc, u16 offset, u8 *data, int len)
{
return regmap_bulk_write(adc->regmap, adc->base + offset, data, len);
}
static int adc5_masked_write(struct adc5_chip *adc, u16 offset, u8 mask, u8 val)
{
return regmap_update_bits(adc->regmap, adc->base + offset, mask, val);
}
static int adc5_read_voltage_data(struct adc5_chip *adc, u16 *data)
{
int ret;
u8 rslt_lsb, rslt_msb;
ret = adc5_read(adc, ADC5_USR_DATA0, &rslt_lsb, sizeof(rslt_lsb));
if (ret)
return ret;
ret = adc5_read(adc, ADC5_USR_DATA1, &rslt_msb, sizeof(rslt_lsb));
if (ret)
return ret;
*data = (rslt_msb << 8) | rslt_lsb;
if (*data == ADC5_USR_DATA_CHECK) {
dev_err(adc->dev, "Invalid data:0x%x\n", *data);
return -EINVAL;
}
dev_dbg(adc->dev, "voltage raw code:0x%x\n", *data);
return 0;
}
static int adc5_poll_wait_eoc(struct adc5_chip *adc)
{
unsigned int count, retry = ADC5_CONV_TIME_RETRY;
u8 status1;
int ret;
for (count = 0; count < retry; count++) {
ret = adc5_read(adc, ADC5_USR_STATUS1, &status1,
sizeof(status1));
if (ret)
return ret;
status1 &= ADC5_USR_STATUS1_REQ_STS_EOC_MASK;
if (status1 == ADC5_USR_STATUS1_EOC)
return 0;
usleep_range(ADC5_CONV_TIME_MIN_US, ADC5_CONV_TIME_MAX_US);
}
return -ETIMEDOUT;
}
static void adc5_update_dig_param(struct adc5_chip *adc,
struct adc5_channel_prop *prop, u8 *data)
{
/* Update calibration value */
*data &= ~ADC5_USR_DIG_PARAM_CAL_VAL;
*data |= (prop->cal_val << ADC5_USR_DIG_PARAM_CAL_VAL_SHIFT);
/* Update calibration select */
*data &= ~ADC5_USR_DIG_PARAM_CAL_SEL;
*data |= (prop->cal_method << ADC5_USR_DIG_PARAM_CAL_SEL_SHIFT);
/* Update decimation ratio select */
*data &= ~ADC5_USR_DIG_PARAM_DEC_RATIO_SEL;
*data |= (prop->decimation << ADC5_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT);
}
static int adc5_configure(struct adc5_chip *adc,
struct adc5_channel_prop *prop)
{
int ret;
u8 buf[6];
/* Read registers 0x42 through 0x46 */
ret = adc5_read(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf));
if (ret)
return ret;
/* Digital param selection */
adc5_update_dig_param(adc, prop, &buf[0]);
/* Update fast average sample value */
buf[1] &= (u8) ~ADC5_USR_FAST_AVG_CTL_SAMPLES_MASK;
buf[1] |= prop->avg_samples;
/* Select ADC channel */
buf[2] = prop->channel;
/* Select HW settle delay for channel */
buf[3] &= (u8) ~ADC5_USR_HW_SETTLE_DELAY_MASK;
buf[3] |= prop->hw_settle_time;
/* Select ADC enable */
buf[4] |= ADC5_USR_EN_CTL1_ADC_EN;
/* Select CONV request */
buf[5] |= ADC5_USR_CONV_REQ_REQ;
if (!adc->poll_eoc)
reinit_completion(&adc->complete);
return adc5_write(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf));
}
static int adc7_configure(struct adc5_chip *adc,
struct adc5_channel_prop *prop)
{
int ret;
u8 conv_req = 0, buf[4];
ret = adc5_masked_write(adc, ADC_APP_SID, ADC_APP_SID_MASK, prop->sid);
if (ret)
return ret;
ret = adc5_read(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf));
if (ret)
return ret;
/* Digital param selection */
adc5_update_dig_param(adc, prop, &buf[0]);
/* Update fast average sample value */
buf[1] &= ~ADC5_USR_FAST_AVG_CTL_SAMPLES_MASK;
buf[1] |= prop->avg_samples;
/* Select ADC channel */
buf[2] = prop->channel;
/* Select HW settle delay for channel */
buf[3] &= ~ADC5_USR_HW_SETTLE_DELAY_MASK;
buf[3] |= prop->hw_settle_time;
/* Select CONV request */
conv_req = ADC5_USR_CONV_REQ_REQ;
if (!adc->poll_eoc)
reinit_completion(&adc->complete);
ret = adc5_write(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf));
if (ret)
return ret;
return adc5_write(adc, ADC5_USR_CONV_REQ, &conv_req, 1);
}
static int adc5_do_conversion(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
struct iio_chan_spec const *chan,
u16 *data_volt, u16 *data_cur)
{
int ret;
mutex_lock(&adc->lock);
ret = adc5_configure(adc, prop);
if (ret) {
dev_err(adc->dev, "ADC configure failed with %d\n", ret);
goto unlock;
}
if (adc->poll_eoc) {
ret = adc5_poll_wait_eoc(adc);
if (ret) {
dev_err(adc->dev, "EOC bit not set\n");
goto unlock;
}
} else {
ret = wait_for_completion_timeout(&adc->complete,
ADC5_CONV_TIMEOUT);
if (!ret) {
dev_dbg(adc->dev, "Did not get completion timeout.\n");
ret = adc5_poll_wait_eoc(adc);
if (ret) {
dev_err(adc->dev, "EOC bit not set\n");
goto unlock;
}
}
}
ret = adc5_read_voltage_data(adc, data_volt);
unlock:
mutex_unlock(&adc->lock);
return ret;
}
static int adc7_do_conversion(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
struct iio_chan_spec const *chan,
u16 *data_volt, u16 *data_cur)
{
int ret;
u8 status;
mutex_lock(&adc->lock);
ret = adc7_configure(adc, prop);
if (ret) {
dev_err(adc->dev, "ADC configure failed with %d\n", ret);
goto unlock;
}
/* No support for polling mode at present */
wait_for_completion_timeout(&adc->complete, ADC7_CONV_TIMEOUT);
ret = adc5_read(adc, ADC5_USR_STATUS1, &status, 1);
if (ret)
goto unlock;
if (status & ADC5_USR_STATUS1_CONV_FAULT) {
dev_err(adc->dev, "Unexpected conversion fault\n");
ret = -EIO;
goto unlock;
}
ret = adc5_read_voltage_data(adc, data_volt);
unlock:
mutex_unlock(&adc->lock);
return ret;
}
typedef int (*adc_do_conversion)(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
struct iio_chan_spec const *chan,
u16 *data_volt, u16 *data_cur);
static irqreturn_t adc5_isr(int irq, void *dev_id)
{
struct adc5_chip *adc = dev_id;
complete(&adc->complete);
return IRQ_HANDLED;
}
static int adc5_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
struct adc5_chip *adc = iio_priv(indio_dev);
int i;
for (i = 0; i < adc->nchannels; i++)
if (adc->chan_props[i].channel == iiospec->args[0])
return i;
return -EINVAL;
}
static int adc7_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
struct adc5_chip *adc = iio_priv(indio_dev);
int i, v_channel;
for (i = 0; i < adc->nchannels; i++) {
v_channel = (adc->chan_props[i].sid << ADC_CHANNEL_OFFSET) |
adc->chan_props[i].channel;
if (v_channel == iiospec->args[0])
return i;
}
return -EINVAL;
}
static int adc_read_raw_common(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask, adc_do_conversion do_conv)
{
struct adc5_chip *adc = iio_priv(indio_dev);
struct adc5_channel_prop *prop;
u16 adc_code_volt, adc_code_cur;
int ret;
prop = &adc->chan_props[chan->address];
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
ret = do_conv(adc, prop, chan,
&adc_code_volt, &adc_code_cur);
if (ret)
return ret;
ret = qcom_adc5_hw_scale(prop->scale_fn_type,
prop->prescale,
adc->data,
adc_code_volt, val);
if (ret)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int adc5_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
return adc_read_raw_common(indio_dev, chan, val, val2,
mask, adc5_do_conversion);
}
static int adc7_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
return adc_read_raw_common(indio_dev, chan, val, val2,
mask, adc7_do_conversion);
}
static const struct iio_info adc5_info = {
.read_raw = adc5_read_raw,
.of_xlate = adc5_of_xlate,
};
static const struct iio_info adc7_info = {
.read_raw = adc7_read_raw,
.of_xlate = adc7_of_xlate,
};
struct adc5_channels {
const char *datasheet_name;
unsigned int prescale_index;
enum iio_chan_type type;
long info_mask;
enum vadc_scale_fn_type scale_fn_type;
};
/* In these definitions, _pre refers to an index into adc5_prescale_ratios. */
#define ADC5_CHAN(_dname, _type, _mask, _pre, _scale) \
{ \
.datasheet_name = _dname, \
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask, \
.scale_fn_type = _scale, \
}, \
#define ADC5_CHAN_TEMP(_dname, _pre, _scale) \
ADC5_CHAN(_dname, IIO_TEMP, \
BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
#define ADC5_CHAN_VOLT(_dname, _pre, _scale) \
ADC5_CHAN(_dname, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
static const struct adc5_channels adc5_chans_pmic[ADC5_MAX_CHANNEL] = {
[ADC5_REF_GND] = ADC5_CHAN_VOLT("ref_gnd", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VBAT_SNS] = ADC5_CHAN_VOLT("vbat_sns", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VCOIN] = ADC5_CHAN_VOLT("vcoin", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0,
SCALE_HW_CALIB_PMIC_THERM)
[ADC5_USB_IN_I] = ADC5_CHAN_VOLT("usb_in_i_uv", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_USB_IN_V_16] = ADC5_CHAN_VOLT("usb_in_v_div_16", 8,
SCALE_HW_CALIB_DEFAULT)
[ADC5_CHG_TEMP] = ADC5_CHAN_TEMP("chg_temp", 0,
SCALE_HW_CALIB_PM5_CHG_TEMP)
/* Charger prescales SBUx and MID_CHG to fit within 1.8V upper unit */
[ADC5_SBUx] = ADC5_CHAN_VOLT("chg_sbux", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_MID_CHG_DIV6] = ADC5_CHAN_VOLT("chg_mid_chg", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC5_XO_THERM_100K_PU] = ADC5_CHAN_TEMP("xo_therm", 0,
SCALE_HW_CALIB_XOTHERM)
[ADC5_AMUX_THM1_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM2_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM3_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM2] = ADC5_CHAN_TEMP("amux_thm2", 0,
SCALE_HW_CALIB_PM5_SMB_TEMP)
[ADC5_GPIO1_100K_PU] = ADC5_CHAN_TEMP("gpio1_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_GPIO3_100K_PU] = ADC5_CHAN_TEMP("gpio3_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_GPIO4_100K_PU] = ADC5_CHAN_TEMP("gpio4_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
};
static const struct adc5_channels adc7_chans_pmic[ADC5_MAX_CHANNEL] = {
[ADC7_REF_GND] = ADC5_CHAN_VOLT("ref_gnd", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC7_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC7_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC7_VBAT_SNS] = ADC5_CHAN_VOLT("vbat_sns", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC7_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0,
SCALE_HW_CALIB_PMIC_THERM_PM7)
[ADC7_AMUX_THM1_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_AMUX_THM2_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_AMUX_THM3_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_AMUX_THM4_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_AMUX_THM5_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_AMUX_THM6_100K_PU] = ADC5_CHAN_TEMP("amux_thm6_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_GPIO1_100K_PU] = ADC5_CHAN_TEMP("gpio1_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_GPIO2_100K_PU] = ADC5_CHAN_TEMP("gpio2_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_GPIO3_100K_PU] = ADC5_CHAN_TEMP("gpio3_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC7_GPIO4_100K_PU] = ADC5_CHAN_TEMP("gpio4_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
};
static const struct adc5_channels adc5_chans_rev2[ADC5_MAX_CHANNEL] = {
[ADC5_REF_GND] = ADC5_CHAN_VOLT("ref_gnd", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VBAT_SNS] = ADC5_CHAN_VOLT("vbat_sns", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_VCOIN] = ADC5_CHAN_VOLT("vcoin", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0,
SCALE_HW_CALIB_PMIC_THERM)
[ADC5_AMUX_THM1_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM2_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM3_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM4_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_AMUX_THM5_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC5_XO_THERM_100K_PU] = ADC5_CHAN_TEMP("xo_therm_100k_pu", 0,
SCALE_HW_CALIB_THERM_100K_PULLUP)
};
static int adc5_get_dt_channel_data(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
struct device_node *node,
const struct adc5_data *data)
{
const char *name = node->name, *channel_name;
u32 chan, value, varr[2];
u32 sid = 0;
int ret;
struct device *dev = adc->dev;
ret = of_property_read_u32(node, "reg", &chan);
if (ret) {
dev_err(dev, "invalid channel number %s\n", name);
return ret;
}
/* Value read from "reg" is virtual channel number */
/* virtual channel number = sid << 8 | channel number */
if (adc->data->info == &adc7_info) {
sid = chan >> ADC_CHANNEL_OFFSET;
chan = chan & ADC_CHANNEL_MASK;
}
if (chan > ADC5_PARALLEL_ISENSE_VBAT_IDATA ||
!data->adc_chans[chan].datasheet_name) {
dev_err(dev, "%s invalid channel number %d\n", name, chan);
return -EINVAL;
}
/* the channel has DT description */
prop->channel = chan;
prop->sid = sid;
channel_name = of_get_property(node,
"label", NULL) ? : node->name;
if (!channel_name) {
dev_err(dev, "Invalid channel name\n");
return -EINVAL;
}
prop->datasheet_name = channel_name;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_adc5_decimation_from_dt(value, data->decimation);
if (ret < 0) {
dev_err(dev, "%02x invalid decimation %d\n",
chan, value);
return ret;
}
prop->decimation = ret;
} else {
prop->decimation = ADC5_DECIMATION_DEFAULT;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
chan, varr[0], varr[1]);
return ret;
}
prop->prescale = ret;
} else {
prop->prescale =
adc->data->adc_chans[prop->channel].prescale_index;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
if (!ret) {
u8 dig_version[2];
ret = adc5_read(adc, ADC5_USR_REVISION1, dig_version,
sizeof(dig_version));
if (ret) {
dev_err(dev, "Invalid dig version read %d\n", ret);
return ret;
}
dev_dbg(dev, "dig_ver:minor:%d, major:%d\n", dig_version[0],
dig_version[1]);
/* Digital controller >= 5.3 have hw_settle_2 option */
if ((dig_version[0] >= ADC5_HW_SETTLE_DIFF_MINOR &&
dig_version[1] >= ADC5_HW_SETTLE_DIFF_MAJOR) ||
adc->data->info == &adc7_info)
ret = qcom_adc5_hw_settle_time_from_dt(value, data->hw_settle_2);
else
ret = qcom_adc5_hw_settle_time_from_dt(value, data->hw_settle_1);
if (ret < 0) {
dev_err(dev, "%02x invalid hw-settle-time %d us\n",
chan, value);
return ret;
}
prop->hw_settle_time = ret;
} else {
prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = qcom_adc5_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid avg-samples %d\n",
chan, value);
return ret;
}
prop->avg_samples = ret;
} else {
prop->avg_samples = VADC_DEF_AVG_SAMPLES;
}
if (of_property_read_bool(node, "qcom,ratiometric"))
prop->cal_method = ADC5_RATIOMETRIC_CAL;
else
prop->cal_method = ADC5_ABSOLUTE_CAL;
/*
* Default to using timer calibration. Using a fresh calibration value
* for every conversion will increase the overall time for a request.
*/
prop->cal_val = ADC5_TIMER_CAL;
dev_dbg(dev, "%02x name %s\n", chan, name);
return 0;
}
static const struct adc5_data adc5_data_pmic = {
.full_scale_code_volt = 0x70e4,
.full_scale_code_cur = 0x2710,
.adc_chans = adc5_chans_pmic,
.info = &adc5_info,
.decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX])
{250, 420, 840},
.hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1, 2, 4, 6, 8, 10},
.hw_settle_2 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
1, 2, 4, 8, 16, 32, 64, 128},
};
static const struct adc5_data adc7_data_pmic = {
.full_scale_code_volt = 0x70e4,
.adc_chans = adc7_chans_pmic,
.info = &adc7_info,
.decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX])
{85, 340, 1360},
.hw_settle_2 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000},
};
static const struct adc5_data adc5_data_pmic_rev2 = {
.full_scale_code_volt = 0x4000,
.full_scale_code_cur = 0x1800,
.adc_chans = adc5_chans_rev2,
.info = &adc5_info,
.decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX])
{256, 512, 1024},
.hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{0, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1, 2, 4, 6, 8, 10},
.hw_settle_2 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
1, 2, 4, 8, 16, 32, 64, 128},
};
static const struct of_device_id adc5_match_table[] = {
{
.compatible = "qcom,spmi-adc5",
.data = &adc5_data_pmic,
},
{
.compatible = "qcom,spmi-adc7",
.data = &adc7_data_pmic,
},
{
.compatible = "qcom,spmi-adc-rev2",
.data = &adc5_data_pmic_rev2,
},
{ }
};
MODULE_DEVICE_TABLE(of, adc5_match_table);
static int adc5_get_dt_data(struct adc5_chip *adc, struct device_node *node)
{
const struct adc5_channels *adc_chan;
struct iio_chan_spec *iio_chan;
struct adc5_channel_prop prop, *chan_props;
struct device_node *child;
unsigned int index = 0;
int ret;
adc->nchannels = of_get_available_child_count(node);
if (!adc->nchannels)
return -EINVAL;
adc->iio_chans = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->iio_chans), GFP_KERNEL);
if (!adc->iio_chans)
return -ENOMEM;
adc->chan_props = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->chan_props), GFP_KERNEL);
if (!adc->chan_props)
return -ENOMEM;
chan_props = adc->chan_props;
iio_chan = adc->iio_chans;
adc->data = of_device_get_match_data(adc->dev);
if (!adc->data)
adc->data = &adc5_data_pmic;
for_each_available_child_of_node(node, child) {
ret = adc5_get_dt_channel_data(adc, &prop, child, adc->data);
if (ret) {
of_node_put(child);
return ret;
}
prop.scale_fn_type =
adc->data->adc_chans[prop.channel].scale_fn_type;
*chan_props = prop;
adc_chan = &adc->data->adc_chans[prop.channel];
iio_chan->channel = prop.channel;
iio_chan->datasheet_name = prop.datasheet_name;
iio_chan->extend_name = prop.datasheet_name;
iio_chan->info_mask_separate = adc_chan->info_mask;
iio_chan->type = adc_chan->type;
iio_chan->address = index;
iio_chan++;
chan_props++;
index++;
}
return 0;
}
static int adc5_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct adc5_chip *adc;
struct regmap *regmap;
int ret, irq_eoc;
u32 reg;
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
ret = of_property_read_u32(node, "reg", &reg);
if (ret < 0)
return ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->regmap = regmap;
adc->dev = dev;
adc->base = reg;
init_completion(&adc->complete);
mutex_init(&adc->lock);
ret = adc5_get_dt_data(adc, node);
if (ret) {
dev_err(dev, "adc get dt data failed\n");
return ret;
}
irq_eoc = platform_get_irq(pdev, 0);
if (irq_eoc < 0) {
if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
return irq_eoc;
adc->poll_eoc = true;
} else {
ret = devm_request_irq(dev, irq_eoc, adc5_isr, 0,
"pm-adc5", adc);
if (ret)
return ret;
}
indio_dev->name = pdev->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = adc->data->info;
indio_dev->channels = adc->iio_chans;
indio_dev->num_channels = adc->nchannels;
return devm_iio_device_register(dev, indio_dev);
}
static struct platform_driver adc5_driver = {
.driver = {
.name = "qcom-spmi-adc5",
.of_match_table = adc5_match_table,
},
.probe = adc5_probe,
};
module_platform_driver(adc5_driver);
MODULE_ALIAS("platform:qcom-spmi-adc5");
MODULE_DESCRIPTION("Qualcomm Technologies Inc. PMIC5 ADC driver");
MODULE_LICENSE("GPL v2");