6f14a21066
Intel Barlow Ridge is the first USB4 v2 controller from Intel. The controller exposes standard USB4 PCI class ID in typical configurations, however there is a way to configure it so that it uses a special class ID to allow using s different driver than the Windows inbox one. For this reason add the Barlow Ridge PCI ID to the Linux driver too so that the driver can attach regardless of the class ID. Tested-by: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
1563 lines
40 KiB
C
1563 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Thunderbolt driver - NHI driver
|
|
*
|
|
* The NHI (native host interface) is the pci device that allows us to send and
|
|
* receive frames from the thunderbolt bus.
|
|
*
|
|
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
|
|
* Copyright (C) 2018, Intel Corporation
|
|
*/
|
|
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/property.h>
|
|
#include <linux/string_helpers.h>
|
|
|
|
#include "nhi.h"
|
|
#include "nhi_regs.h"
|
|
#include "tb.h"
|
|
|
|
#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
|
|
|
|
#define RING_FIRST_USABLE_HOPID 1
|
|
/*
|
|
* Used with QUIRK_E2E to specify an unused HopID the Rx credits are
|
|
* transferred.
|
|
*/
|
|
#define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID
|
|
/*
|
|
* Minimal number of vectors when we use MSI-X. Two for control channel
|
|
* Rx/Tx and the rest four are for cross domain DMA paths.
|
|
*/
|
|
#define MSIX_MIN_VECS 6
|
|
#define MSIX_MAX_VECS 16
|
|
|
|
#define NHI_MAILBOX_TIMEOUT 500 /* ms */
|
|
|
|
/* Host interface quirks */
|
|
#define QUIRK_AUTO_CLEAR_INT BIT(0)
|
|
#define QUIRK_E2E BIT(1)
|
|
|
|
static bool host_reset = true;
|
|
module_param(host_reset, bool, 0444);
|
|
MODULE_PARM_DESC(host_reset, "reset USBv2 host router (default: true)");
|
|
|
|
static int ring_interrupt_index(const struct tb_ring *ring)
|
|
{
|
|
int bit = ring->hop;
|
|
if (!ring->is_tx)
|
|
bit += ring->nhi->hop_count;
|
|
return bit;
|
|
}
|
|
|
|
static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring)
|
|
{
|
|
if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
|
|
u32 val;
|
|
|
|
val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
|
|
iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
|
|
} else {
|
|
iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring);
|
|
}
|
|
}
|
|
|
|
static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring)
|
|
{
|
|
if (nhi->quirks & QUIRK_AUTO_CLEAR_INT)
|
|
ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring);
|
|
else
|
|
iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring);
|
|
}
|
|
|
|
/*
|
|
* ring_interrupt_active() - activate/deactivate interrupts for a single ring
|
|
*
|
|
* ring->nhi->lock must be held.
|
|
*/
|
|
static void ring_interrupt_active(struct tb_ring *ring, bool active)
|
|
{
|
|
int index = ring_interrupt_index(ring) / 32 * 4;
|
|
int reg = REG_RING_INTERRUPT_BASE + index;
|
|
int interrupt_bit = ring_interrupt_index(ring) & 31;
|
|
int mask = 1 << interrupt_bit;
|
|
u32 old, new;
|
|
|
|
if (ring->irq > 0) {
|
|
u32 step, shift, ivr, misc;
|
|
void __iomem *ivr_base;
|
|
int auto_clear_bit;
|
|
int index;
|
|
|
|
if (ring->is_tx)
|
|
index = ring->hop;
|
|
else
|
|
index = ring->hop + ring->nhi->hop_count;
|
|
|
|
/*
|
|
* Intel routers support a bit that isn't part of
|
|
* the USB4 spec to ask the hardware to clear
|
|
* interrupt status bits automatically since
|
|
* we already know which interrupt was triggered.
|
|
*
|
|
* Other routers explicitly disable auto-clear
|
|
* to prevent conditions that may occur where two
|
|
* MSIX interrupts are simultaneously active and
|
|
* reading the register clears both of them.
|
|
*/
|
|
misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
|
|
if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
|
|
auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
|
|
else
|
|
auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
|
|
if (!(misc & auto_clear_bit))
|
|
iowrite32(misc | auto_clear_bit,
|
|
ring->nhi->iobase + REG_DMA_MISC);
|
|
|
|
ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
|
|
step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
|
|
shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
|
|
ivr = ioread32(ivr_base + step);
|
|
ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
|
|
if (active)
|
|
ivr |= ring->vector << shift;
|
|
iowrite32(ivr, ivr_base + step);
|
|
}
|
|
|
|
old = ioread32(ring->nhi->iobase + reg);
|
|
if (active)
|
|
new = old | mask;
|
|
else
|
|
new = old & ~mask;
|
|
|
|
dev_dbg(&ring->nhi->pdev->dev,
|
|
"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
|
|
active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
|
|
|
|
if (new == old)
|
|
dev_WARN(&ring->nhi->pdev->dev,
|
|
"interrupt for %s %d is already %s\n",
|
|
RING_TYPE(ring), ring->hop,
|
|
active ? "enabled" : "disabled");
|
|
|
|
if (active)
|
|
iowrite32(new, ring->nhi->iobase + reg);
|
|
else
|
|
nhi_mask_interrupt(ring->nhi, mask, index);
|
|
}
|
|
|
|
/*
|
|
* nhi_disable_interrupts() - disable interrupts for all rings
|
|
*
|
|
* Use only during init and shutdown.
|
|
*/
|
|
static void nhi_disable_interrupts(struct tb_nhi *nhi)
|
|
{
|
|
int i = 0;
|
|
/* disable interrupts */
|
|
for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
|
|
nhi_mask_interrupt(nhi, ~0, 4 * i);
|
|
|
|
/* clear interrupt status bits */
|
|
for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
|
|
nhi_clear_interrupt(nhi, 4 * i);
|
|
}
|
|
|
|
/* ring helper methods */
|
|
|
|
static void __iomem *ring_desc_base(struct tb_ring *ring)
|
|
{
|
|
void __iomem *io = ring->nhi->iobase;
|
|
io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
|
|
io += ring->hop * 16;
|
|
return io;
|
|
}
|
|
|
|
static void __iomem *ring_options_base(struct tb_ring *ring)
|
|
{
|
|
void __iomem *io = ring->nhi->iobase;
|
|
io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
|
|
io += ring->hop * 32;
|
|
return io;
|
|
}
|
|
|
|
static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
|
|
{
|
|
/*
|
|
* The other 16-bits in the register is read-only and writes to it
|
|
* are ignored by the hardware so we can save one ioread32() by
|
|
* filling the read-only bits with zeroes.
|
|
*/
|
|
iowrite32(cons, ring_desc_base(ring) + 8);
|
|
}
|
|
|
|
static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
|
|
{
|
|
/* See ring_iowrite_cons() above for explanation */
|
|
iowrite32(prod << 16, ring_desc_base(ring) + 8);
|
|
}
|
|
|
|
static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
|
|
{
|
|
iowrite32(value, ring_desc_base(ring) + offset);
|
|
}
|
|
|
|
static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
|
|
{
|
|
iowrite32(value, ring_desc_base(ring) + offset);
|
|
iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
|
|
}
|
|
|
|
static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
|
|
{
|
|
iowrite32(value, ring_options_base(ring) + offset);
|
|
}
|
|
|
|
static bool ring_full(struct tb_ring *ring)
|
|
{
|
|
return ((ring->head + 1) % ring->size) == ring->tail;
|
|
}
|
|
|
|
static bool ring_empty(struct tb_ring *ring)
|
|
{
|
|
return ring->head == ring->tail;
|
|
}
|
|
|
|
/*
|
|
* ring_write_descriptors() - post frames from ring->queue to the controller
|
|
*
|
|
* ring->lock is held.
|
|
*/
|
|
static void ring_write_descriptors(struct tb_ring *ring)
|
|
{
|
|
struct ring_frame *frame, *n;
|
|
struct ring_desc *descriptor;
|
|
list_for_each_entry_safe(frame, n, &ring->queue, list) {
|
|
if (ring_full(ring))
|
|
break;
|
|
list_move_tail(&frame->list, &ring->in_flight);
|
|
descriptor = &ring->descriptors[ring->head];
|
|
descriptor->phys = frame->buffer_phy;
|
|
descriptor->time = 0;
|
|
descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
|
|
if (ring->is_tx) {
|
|
descriptor->length = frame->size;
|
|
descriptor->eof = frame->eof;
|
|
descriptor->sof = frame->sof;
|
|
}
|
|
ring->head = (ring->head + 1) % ring->size;
|
|
if (ring->is_tx)
|
|
ring_iowrite_prod(ring, ring->head);
|
|
else
|
|
ring_iowrite_cons(ring, ring->head);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ring_work() - progress completed frames
|
|
*
|
|
* If the ring is shutting down then all frames are marked as canceled and
|
|
* their callbacks are invoked.
|
|
*
|
|
* Otherwise we collect all completed frame from the ring buffer, write new
|
|
* frame to the ring buffer and invoke the callbacks for the completed frames.
|
|
*/
|
|
static void ring_work(struct work_struct *work)
|
|
{
|
|
struct tb_ring *ring = container_of(work, typeof(*ring), work);
|
|
struct ring_frame *frame;
|
|
bool canceled = false;
|
|
unsigned long flags;
|
|
LIST_HEAD(done);
|
|
|
|
spin_lock_irqsave(&ring->lock, flags);
|
|
|
|
if (!ring->running) {
|
|
/* Move all frames to done and mark them as canceled. */
|
|
list_splice_tail_init(&ring->in_flight, &done);
|
|
list_splice_tail_init(&ring->queue, &done);
|
|
canceled = true;
|
|
goto invoke_callback;
|
|
}
|
|
|
|
while (!ring_empty(ring)) {
|
|
if (!(ring->descriptors[ring->tail].flags
|
|
& RING_DESC_COMPLETED))
|
|
break;
|
|
frame = list_first_entry(&ring->in_flight, typeof(*frame),
|
|
list);
|
|
list_move_tail(&frame->list, &done);
|
|
if (!ring->is_tx) {
|
|
frame->size = ring->descriptors[ring->tail].length;
|
|
frame->eof = ring->descriptors[ring->tail].eof;
|
|
frame->sof = ring->descriptors[ring->tail].sof;
|
|
frame->flags = ring->descriptors[ring->tail].flags;
|
|
}
|
|
ring->tail = (ring->tail + 1) % ring->size;
|
|
}
|
|
ring_write_descriptors(ring);
|
|
|
|
invoke_callback:
|
|
/* allow callbacks to schedule new work */
|
|
spin_unlock_irqrestore(&ring->lock, flags);
|
|
while (!list_empty(&done)) {
|
|
frame = list_first_entry(&done, typeof(*frame), list);
|
|
/*
|
|
* The callback may reenqueue or delete frame.
|
|
* Do not hold on to it.
|
|
*/
|
|
list_del_init(&frame->list);
|
|
if (frame->callback)
|
|
frame->callback(ring, frame, canceled);
|
|
}
|
|
}
|
|
|
|
int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&ring->lock, flags);
|
|
if (ring->running) {
|
|
list_add_tail(&frame->list, &ring->queue);
|
|
ring_write_descriptors(ring);
|
|
} else {
|
|
ret = -ESHUTDOWN;
|
|
}
|
|
spin_unlock_irqrestore(&ring->lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
|
|
|
|
/**
|
|
* tb_ring_poll() - Poll one completed frame from the ring
|
|
* @ring: Ring to poll
|
|
*
|
|
* This function can be called when @start_poll callback of the @ring
|
|
* has been called. It will read one completed frame from the ring and
|
|
* return it to the caller. Returns %NULL if there is no more completed
|
|
* frames.
|
|
*/
|
|
struct ring_frame *tb_ring_poll(struct tb_ring *ring)
|
|
{
|
|
struct ring_frame *frame = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ring->lock, flags);
|
|
if (!ring->running)
|
|
goto unlock;
|
|
if (ring_empty(ring))
|
|
goto unlock;
|
|
|
|
if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
|
|
frame = list_first_entry(&ring->in_flight, typeof(*frame),
|
|
list);
|
|
list_del_init(&frame->list);
|
|
|
|
if (!ring->is_tx) {
|
|
frame->size = ring->descriptors[ring->tail].length;
|
|
frame->eof = ring->descriptors[ring->tail].eof;
|
|
frame->sof = ring->descriptors[ring->tail].sof;
|
|
frame->flags = ring->descriptors[ring->tail].flags;
|
|
}
|
|
|
|
ring->tail = (ring->tail + 1) % ring->size;
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock_irqrestore(&ring->lock, flags);
|
|
return frame;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_poll);
|
|
|
|
static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
|
|
{
|
|
int idx = ring_interrupt_index(ring);
|
|
int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
|
|
int bit = idx % 32;
|
|
u32 val;
|
|
|
|
val = ioread32(ring->nhi->iobase + reg);
|
|
if (mask)
|
|
val &= ~BIT(bit);
|
|
else
|
|
val |= BIT(bit);
|
|
iowrite32(val, ring->nhi->iobase + reg);
|
|
}
|
|
|
|
/* Both @nhi->lock and @ring->lock should be held */
|
|
static void __ring_interrupt(struct tb_ring *ring)
|
|
{
|
|
if (!ring->running)
|
|
return;
|
|
|
|
if (ring->start_poll) {
|
|
__ring_interrupt_mask(ring, true);
|
|
ring->start_poll(ring->poll_data);
|
|
} else {
|
|
schedule_work(&ring->work);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tb_ring_poll_complete() - Re-start interrupt for the ring
|
|
* @ring: Ring to re-start the interrupt
|
|
*
|
|
* This will re-start (unmask) the ring interrupt once the user is done
|
|
* with polling.
|
|
*/
|
|
void tb_ring_poll_complete(struct tb_ring *ring)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ring->nhi->lock, flags);
|
|
spin_lock(&ring->lock);
|
|
if (ring->start_poll)
|
|
__ring_interrupt_mask(ring, false);
|
|
spin_unlock(&ring->lock);
|
|
spin_unlock_irqrestore(&ring->nhi->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
|
|
|
|
static void ring_clear_msix(const struct tb_ring *ring)
|
|
{
|
|
int bit;
|
|
|
|
if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
|
|
return;
|
|
|
|
bit = ring_interrupt_index(ring) & 31;
|
|
if (ring->is_tx)
|
|
iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
|
|
else
|
|
iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
|
|
4 * (ring->nhi->hop_count / 32));
|
|
}
|
|
|
|
static irqreturn_t ring_msix(int irq, void *data)
|
|
{
|
|
struct tb_ring *ring = data;
|
|
|
|
spin_lock(&ring->nhi->lock);
|
|
ring_clear_msix(ring);
|
|
spin_lock(&ring->lock);
|
|
__ring_interrupt(ring);
|
|
spin_unlock(&ring->lock);
|
|
spin_unlock(&ring->nhi->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
|
|
{
|
|
struct tb_nhi *nhi = ring->nhi;
|
|
unsigned long irqflags;
|
|
int ret;
|
|
|
|
if (!nhi->pdev->msix_enabled)
|
|
return 0;
|
|
|
|
ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ring->vector = ret;
|
|
|
|
ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
|
|
if (ret < 0)
|
|
goto err_ida_remove;
|
|
|
|
ring->irq = ret;
|
|
|
|
irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
|
|
ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
|
|
if (ret)
|
|
goto err_ida_remove;
|
|
|
|
return 0;
|
|
|
|
err_ida_remove:
|
|
ida_simple_remove(&nhi->msix_ida, ring->vector);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ring_release_msix(struct tb_ring *ring)
|
|
{
|
|
if (ring->irq <= 0)
|
|
return;
|
|
|
|
free_irq(ring->irq, ring);
|
|
ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
|
|
ring->vector = 0;
|
|
ring->irq = 0;
|
|
}
|
|
|
|
static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
|
|
{
|
|
unsigned int start_hop = RING_FIRST_USABLE_HOPID;
|
|
int ret = 0;
|
|
|
|
if (nhi->quirks & QUIRK_E2E) {
|
|
start_hop = RING_FIRST_USABLE_HOPID + 1;
|
|
if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
|
|
dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
|
|
ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
|
|
ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
|
|
}
|
|
}
|
|
|
|
spin_lock_irq(&nhi->lock);
|
|
|
|
if (ring->hop < 0) {
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Automatically allocate HopID from the non-reserved
|
|
* range 1 .. hop_count - 1.
|
|
*/
|
|
for (i = start_hop; i < nhi->hop_count; i++) {
|
|
if (ring->is_tx) {
|
|
if (!nhi->tx_rings[i]) {
|
|
ring->hop = i;
|
|
break;
|
|
}
|
|
} else {
|
|
if (!nhi->rx_rings[i]) {
|
|
ring->hop = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ring->hop > 0 && ring->hop < start_hop) {
|
|
dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
|
|
ret = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
|
|
dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
|
|
ret = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
if (ring->is_tx && nhi->tx_rings[ring->hop]) {
|
|
dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
|
|
ring->hop);
|
|
ret = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
|
|
dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
|
|
ring->hop);
|
|
ret = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
|
|
if (ring->is_tx)
|
|
nhi->tx_rings[ring->hop] = ring;
|
|
else
|
|
nhi->rx_rings[ring->hop] = ring;
|
|
|
|
err_unlock:
|
|
spin_unlock_irq(&nhi->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
|
|
bool transmit, unsigned int flags,
|
|
int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
|
|
void (*start_poll)(void *),
|
|
void *poll_data)
|
|
{
|
|
struct tb_ring *ring = NULL;
|
|
|
|
dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
|
|
transmit ? "TX" : "RX", hop, size);
|
|
|
|
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
|
|
if (!ring)
|
|
return NULL;
|
|
|
|
spin_lock_init(&ring->lock);
|
|
INIT_LIST_HEAD(&ring->queue);
|
|
INIT_LIST_HEAD(&ring->in_flight);
|
|
INIT_WORK(&ring->work, ring_work);
|
|
|
|
ring->nhi = nhi;
|
|
ring->hop = hop;
|
|
ring->is_tx = transmit;
|
|
ring->size = size;
|
|
ring->flags = flags;
|
|
ring->e2e_tx_hop = e2e_tx_hop;
|
|
ring->sof_mask = sof_mask;
|
|
ring->eof_mask = eof_mask;
|
|
ring->head = 0;
|
|
ring->tail = 0;
|
|
ring->running = false;
|
|
ring->start_poll = start_poll;
|
|
ring->poll_data = poll_data;
|
|
|
|
ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
|
|
size * sizeof(*ring->descriptors),
|
|
&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
|
|
if (!ring->descriptors)
|
|
goto err_free_ring;
|
|
|
|
if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
|
|
goto err_free_descs;
|
|
|
|
if (nhi_alloc_hop(nhi, ring))
|
|
goto err_release_msix;
|
|
|
|
return ring;
|
|
|
|
err_release_msix:
|
|
ring_release_msix(ring);
|
|
err_free_descs:
|
|
dma_free_coherent(&ring->nhi->pdev->dev,
|
|
ring->size * sizeof(*ring->descriptors),
|
|
ring->descriptors, ring->descriptors_dma);
|
|
err_free_ring:
|
|
kfree(ring);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* tb_ring_alloc_tx() - Allocate DMA ring for transmit
|
|
* @nhi: Pointer to the NHI the ring is to be allocated
|
|
* @hop: HopID (ring) to allocate
|
|
* @size: Number of entries in the ring
|
|
* @flags: Flags for the ring
|
|
*/
|
|
struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
|
|
unsigned int flags)
|
|
{
|
|
return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
|
|
|
|
/**
|
|
* tb_ring_alloc_rx() - Allocate DMA ring for receive
|
|
* @nhi: Pointer to the NHI the ring is to be allocated
|
|
* @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
|
|
* @size: Number of entries in the ring
|
|
* @flags: Flags for the ring
|
|
* @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
|
|
* @sof_mask: Mask of PDF values that start a frame
|
|
* @eof_mask: Mask of PDF values that end a frame
|
|
* @start_poll: If not %NULL the ring will call this function when an
|
|
* interrupt is triggered and masked, instead of callback
|
|
* in each Rx frame.
|
|
* @poll_data: Optional data passed to @start_poll
|
|
*/
|
|
struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
|
|
unsigned int flags, int e2e_tx_hop,
|
|
u16 sof_mask, u16 eof_mask,
|
|
void (*start_poll)(void *), void *poll_data)
|
|
{
|
|
return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
|
|
start_poll, poll_data);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
|
|
|
|
/**
|
|
* tb_ring_start() - enable a ring
|
|
* @ring: Ring to start
|
|
*
|
|
* Must not be invoked in parallel with tb_ring_stop().
|
|
*/
|
|
void tb_ring_start(struct tb_ring *ring)
|
|
{
|
|
u16 frame_size;
|
|
u32 flags;
|
|
|
|
spin_lock_irq(&ring->nhi->lock);
|
|
spin_lock(&ring->lock);
|
|
if (ring->nhi->going_away)
|
|
goto err;
|
|
if (ring->running) {
|
|
dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
|
|
goto err;
|
|
}
|
|
dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
|
|
RING_TYPE(ring), ring->hop);
|
|
|
|
if (ring->flags & RING_FLAG_FRAME) {
|
|
/* Means 4096 */
|
|
frame_size = 0;
|
|
flags = RING_FLAG_ENABLE;
|
|
} else {
|
|
frame_size = TB_FRAME_SIZE;
|
|
flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
|
|
}
|
|
|
|
ring_iowrite64desc(ring, ring->descriptors_dma, 0);
|
|
if (ring->is_tx) {
|
|
ring_iowrite32desc(ring, ring->size, 12);
|
|
ring_iowrite32options(ring, 0, 4); /* time releated ? */
|
|
ring_iowrite32options(ring, flags, 0);
|
|
} else {
|
|
u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
|
|
|
|
ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
|
|
ring_iowrite32options(ring, sof_eof_mask, 4);
|
|
ring_iowrite32options(ring, flags, 0);
|
|
}
|
|
|
|
/*
|
|
* Now that the ring valid bit is set we can configure E2E if
|
|
* enabled for the ring.
|
|
*/
|
|
if (ring->flags & RING_FLAG_E2E) {
|
|
if (!ring->is_tx) {
|
|
u32 hop;
|
|
|
|
hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
|
|
hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
|
|
flags |= hop;
|
|
|
|
dev_dbg(&ring->nhi->pdev->dev,
|
|
"enabling E2E for %s %d with TX HopID %d\n",
|
|
RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
|
|
} else {
|
|
dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
|
|
RING_TYPE(ring), ring->hop);
|
|
}
|
|
|
|
flags |= RING_FLAG_E2E_FLOW_CONTROL;
|
|
ring_iowrite32options(ring, flags, 0);
|
|
}
|
|
|
|
ring_interrupt_active(ring, true);
|
|
ring->running = true;
|
|
err:
|
|
spin_unlock(&ring->lock);
|
|
spin_unlock_irq(&ring->nhi->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_start);
|
|
|
|
/**
|
|
* tb_ring_stop() - shutdown a ring
|
|
* @ring: Ring to stop
|
|
*
|
|
* Must not be invoked from a callback.
|
|
*
|
|
* This method will disable the ring. Further calls to
|
|
* tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
|
|
* called.
|
|
*
|
|
* All enqueued frames will be canceled and their callbacks will be executed
|
|
* with frame->canceled set to true (on the callback thread). This method
|
|
* returns only after all callback invocations have finished.
|
|
*/
|
|
void tb_ring_stop(struct tb_ring *ring)
|
|
{
|
|
spin_lock_irq(&ring->nhi->lock);
|
|
spin_lock(&ring->lock);
|
|
dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
|
|
RING_TYPE(ring), ring->hop);
|
|
if (ring->nhi->going_away)
|
|
goto err;
|
|
if (!ring->running) {
|
|
dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
|
|
RING_TYPE(ring), ring->hop);
|
|
goto err;
|
|
}
|
|
ring_interrupt_active(ring, false);
|
|
|
|
ring_iowrite32options(ring, 0, 0);
|
|
ring_iowrite64desc(ring, 0, 0);
|
|
ring_iowrite32desc(ring, 0, 8);
|
|
ring_iowrite32desc(ring, 0, 12);
|
|
ring->head = 0;
|
|
ring->tail = 0;
|
|
ring->running = false;
|
|
|
|
err:
|
|
spin_unlock(&ring->lock);
|
|
spin_unlock_irq(&ring->nhi->lock);
|
|
|
|
/*
|
|
* schedule ring->work to invoke callbacks on all remaining frames.
|
|
*/
|
|
schedule_work(&ring->work);
|
|
flush_work(&ring->work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_stop);
|
|
|
|
/*
|
|
* tb_ring_free() - free ring
|
|
*
|
|
* When this method returns all invocations of ring->callback will have
|
|
* finished.
|
|
*
|
|
* Ring must be stopped.
|
|
*
|
|
* Must NOT be called from ring_frame->callback!
|
|
*/
|
|
void tb_ring_free(struct tb_ring *ring)
|
|
{
|
|
spin_lock_irq(&ring->nhi->lock);
|
|
/*
|
|
* Dissociate the ring from the NHI. This also ensures that
|
|
* nhi_interrupt_work cannot reschedule ring->work.
|
|
*/
|
|
if (ring->is_tx)
|
|
ring->nhi->tx_rings[ring->hop] = NULL;
|
|
else
|
|
ring->nhi->rx_rings[ring->hop] = NULL;
|
|
|
|
if (ring->running) {
|
|
dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
|
|
RING_TYPE(ring), ring->hop);
|
|
}
|
|
spin_unlock_irq(&ring->nhi->lock);
|
|
|
|
ring_release_msix(ring);
|
|
|
|
dma_free_coherent(&ring->nhi->pdev->dev,
|
|
ring->size * sizeof(*ring->descriptors),
|
|
ring->descriptors, ring->descriptors_dma);
|
|
|
|
ring->descriptors = NULL;
|
|
ring->descriptors_dma = 0;
|
|
|
|
|
|
dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
|
|
ring->hop);
|
|
|
|
/*
|
|
* ring->work can no longer be scheduled (it is scheduled only
|
|
* by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
|
|
* to finish before freeing the ring.
|
|
*/
|
|
flush_work(&ring->work);
|
|
kfree(ring);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tb_ring_free);
|
|
|
|
/**
|
|
* nhi_mailbox_cmd() - Send a command through NHI mailbox
|
|
* @nhi: Pointer to the NHI structure
|
|
* @cmd: Command to send
|
|
* @data: Data to be send with the command
|
|
*
|
|
* Sends mailbox command to the firmware running on NHI. Returns %0 in
|
|
* case of success and negative errno in case of failure.
|
|
*/
|
|
int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
|
|
{
|
|
ktime_t timeout;
|
|
u32 val;
|
|
|
|
iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
|
|
|
|
val = ioread32(nhi->iobase + REG_INMAIL_CMD);
|
|
val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
|
|
val |= REG_INMAIL_OP_REQUEST | cmd;
|
|
iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
|
|
|
|
timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
|
|
do {
|
|
val = ioread32(nhi->iobase + REG_INMAIL_CMD);
|
|
if (!(val & REG_INMAIL_OP_REQUEST))
|
|
break;
|
|
usleep_range(10, 20);
|
|
} while (ktime_before(ktime_get(), timeout));
|
|
|
|
if (val & REG_INMAIL_OP_REQUEST)
|
|
return -ETIMEDOUT;
|
|
if (val & REG_INMAIL_ERROR)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nhi_mailbox_mode() - Return current firmware operation mode
|
|
* @nhi: Pointer to the NHI structure
|
|
*
|
|
* The function reads current firmware operation mode using NHI mailbox
|
|
* registers and returns it to the caller.
|
|
*/
|
|
enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
|
|
{
|
|
u32 val;
|
|
|
|
val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
|
|
val &= REG_OUTMAIL_CMD_OPMODE_MASK;
|
|
val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
|
|
|
|
return (enum nhi_fw_mode)val;
|
|
}
|
|
|
|
static void nhi_interrupt_work(struct work_struct *work)
|
|
{
|
|
struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
|
|
int value = 0; /* Suppress uninitialized usage warning. */
|
|
int bit;
|
|
int hop = -1;
|
|
int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
|
|
struct tb_ring *ring;
|
|
|
|
spin_lock_irq(&nhi->lock);
|
|
|
|
/*
|
|
* Starting at REG_RING_NOTIFY_BASE there are three status bitfields
|
|
* (TX, RX, RX overflow). We iterate over the bits and read a new
|
|
* dwords as required. The registers are cleared on read.
|
|
*/
|
|
for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
|
|
if (bit % 32 == 0)
|
|
value = ioread32(nhi->iobase
|
|
+ REG_RING_NOTIFY_BASE
|
|
+ 4 * (bit / 32));
|
|
if (++hop == nhi->hop_count) {
|
|
hop = 0;
|
|
type++;
|
|
}
|
|
if ((value & (1 << (bit % 32))) == 0)
|
|
continue;
|
|
if (type == 2) {
|
|
dev_warn(&nhi->pdev->dev,
|
|
"RX overflow for ring %d\n",
|
|
hop);
|
|
continue;
|
|
}
|
|
if (type == 0)
|
|
ring = nhi->tx_rings[hop];
|
|
else
|
|
ring = nhi->rx_rings[hop];
|
|
if (ring == NULL) {
|
|
dev_warn(&nhi->pdev->dev,
|
|
"got interrupt for inactive %s ring %d\n",
|
|
type ? "RX" : "TX",
|
|
hop);
|
|
continue;
|
|
}
|
|
|
|
spin_lock(&ring->lock);
|
|
__ring_interrupt(ring);
|
|
spin_unlock(&ring->lock);
|
|
}
|
|
spin_unlock_irq(&nhi->lock);
|
|
}
|
|
|
|
static irqreturn_t nhi_msi(int irq, void *data)
|
|
{
|
|
struct tb_nhi *nhi = data;
|
|
schedule_work(&nhi->interrupt_work);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
struct tb_nhi *nhi = tb->nhi;
|
|
int ret;
|
|
|
|
ret = tb_domain_suspend_noirq(tb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nhi->ops && nhi->ops->suspend_noirq) {
|
|
ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nhi_suspend_noirq(struct device *dev)
|
|
{
|
|
return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
|
|
}
|
|
|
|
static int nhi_freeze_noirq(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
|
|
return tb_domain_freeze_noirq(tb);
|
|
}
|
|
|
|
static int nhi_thaw_noirq(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
|
|
return tb_domain_thaw_noirq(tb);
|
|
}
|
|
|
|
static bool nhi_wake_supported(struct pci_dev *pdev)
|
|
{
|
|
u8 val;
|
|
|
|
/*
|
|
* If power rails are sustainable for wakeup from S4 this
|
|
* property is set by the BIOS.
|
|
*/
|
|
if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
|
|
return !!val;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int nhi_poweroff_noirq(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
bool wakeup;
|
|
|
|
wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
|
|
return __nhi_suspend_noirq(dev, wakeup);
|
|
}
|
|
|
|
static void nhi_enable_int_throttling(struct tb_nhi *nhi)
|
|
{
|
|
/* Throttling is specified in 256ns increments */
|
|
u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Configure interrupt throttling for all vectors even if we
|
|
* only use few.
|
|
*/
|
|
for (i = 0; i < MSIX_MAX_VECS; i++) {
|
|
u32 reg = REG_INT_THROTTLING_RATE + i * 4;
|
|
iowrite32(throttle, nhi->iobase + reg);
|
|
}
|
|
}
|
|
|
|
static int nhi_resume_noirq(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
struct tb_nhi *nhi = tb->nhi;
|
|
int ret;
|
|
|
|
/*
|
|
* Check that the device is still there. It may be that the user
|
|
* unplugged last device which causes the host controller to go
|
|
* away on PCs.
|
|
*/
|
|
if (!pci_device_is_present(pdev)) {
|
|
nhi->going_away = true;
|
|
} else {
|
|
if (nhi->ops && nhi->ops->resume_noirq) {
|
|
ret = nhi->ops->resume_noirq(nhi);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
nhi_enable_int_throttling(tb->nhi);
|
|
}
|
|
|
|
return tb_domain_resume_noirq(tb);
|
|
}
|
|
|
|
static int nhi_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
|
|
return tb_domain_suspend(tb);
|
|
}
|
|
|
|
static void nhi_complete(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
|
|
/*
|
|
* If we were runtime suspended when system suspend started,
|
|
* schedule runtime resume now. It should bring the domain back
|
|
* to functional state.
|
|
*/
|
|
if (pm_runtime_suspended(&pdev->dev))
|
|
pm_runtime_resume(&pdev->dev);
|
|
else
|
|
tb_domain_complete(tb);
|
|
}
|
|
|
|
static int nhi_runtime_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
struct tb_nhi *nhi = tb->nhi;
|
|
int ret;
|
|
|
|
ret = tb_domain_runtime_suspend(tb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nhi->ops && nhi->ops->runtime_suspend) {
|
|
ret = nhi->ops->runtime_suspend(tb->nhi);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int nhi_runtime_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
struct tb_nhi *nhi = tb->nhi;
|
|
int ret;
|
|
|
|
if (nhi->ops && nhi->ops->runtime_resume) {
|
|
ret = nhi->ops->runtime_resume(nhi);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
nhi_enable_int_throttling(nhi);
|
|
return tb_domain_runtime_resume(tb);
|
|
}
|
|
|
|
static void nhi_shutdown(struct tb_nhi *nhi)
|
|
{
|
|
int i;
|
|
|
|
dev_dbg(&nhi->pdev->dev, "shutdown\n");
|
|
|
|
for (i = 0; i < nhi->hop_count; i++) {
|
|
if (nhi->tx_rings[i])
|
|
dev_WARN(&nhi->pdev->dev,
|
|
"TX ring %d is still active\n", i);
|
|
if (nhi->rx_rings[i])
|
|
dev_WARN(&nhi->pdev->dev,
|
|
"RX ring %d is still active\n", i);
|
|
}
|
|
nhi_disable_interrupts(nhi);
|
|
/*
|
|
* We have to release the irq before calling flush_work. Otherwise an
|
|
* already executing IRQ handler could call schedule_work again.
|
|
*/
|
|
if (!nhi->pdev->msix_enabled) {
|
|
devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
|
|
flush_work(&nhi->interrupt_work);
|
|
}
|
|
ida_destroy(&nhi->msix_ida);
|
|
|
|
if (nhi->ops && nhi->ops->shutdown)
|
|
nhi->ops->shutdown(nhi);
|
|
}
|
|
|
|
static void nhi_check_quirks(struct tb_nhi *nhi)
|
|
{
|
|
if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
|
|
/*
|
|
* Intel hardware supports auto clear of the interrupt
|
|
* status register right after interrupt is being
|
|
* issued.
|
|
*/
|
|
nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
|
|
|
|
switch (nhi->pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
|
|
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
|
|
/*
|
|
* Falcon Ridge controller needs the end-to-end
|
|
* flow control workaround to avoid losing Rx
|
|
* packets when RING_FLAG_E2E is set.
|
|
*/
|
|
nhi->quirks |= QUIRK_E2E;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
|
|
{
|
|
if (!pdev->external_facing ||
|
|
!device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
|
|
return 0;
|
|
*(bool *)data = true;
|
|
return 1; /* Stop walking */
|
|
}
|
|
|
|
static void nhi_check_iommu(struct tb_nhi *nhi)
|
|
{
|
|
struct pci_bus *bus = nhi->pdev->bus;
|
|
bool port_ok = false;
|
|
|
|
/*
|
|
* Ideally what we'd do here is grab every PCI device that
|
|
* represents a tunnelling adapter for this NHI and check their
|
|
* status directly, but unfortunately USB4 seems to make it
|
|
* obnoxiously difficult to reliably make any correlation.
|
|
*
|
|
* So for now we'll have to bodge it... Hoping that the system
|
|
* is at least sane enough that an adapter is in the same PCI
|
|
* segment as its NHI, if we can find *something* on that segment
|
|
* which meets the requirements for Kernel DMA Protection, we'll
|
|
* take that to imply that firmware is aware and has (hopefully)
|
|
* done the right thing in general. We need to know that the PCI
|
|
* layer has seen the ExternalFacingPort property which will then
|
|
* inform the IOMMU layer to enforce the complete "untrusted DMA"
|
|
* flow, but also that the IOMMU driver itself can be trusted not
|
|
* to have been subverted by a pre-boot DMA attack.
|
|
*/
|
|
while (bus->parent)
|
|
bus = bus->parent;
|
|
|
|
pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
|
|
|
|
nhi->iommu_dma_protection = port_ok;
|
|
dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
|
|
str_enabled_disabled(port_ok));
|
|
}
|
|
|
|
static void nhi_reset(struct tb_nhi *nhi)
|
|
{
|
|
ktime_t timeout;
|
|
u32 val;
|
|
|
|
val = ioread32(nhi->iobase + REG_CAPS);
|
|
/* Reset only v2 and later routers */
|
|
if (FIELD_GET(REG_CAPS_VERSION_MASK, val) < REG_CAPS_VERSION_2)
|
|
return;
|
|
|
|
if (!host_reset) {
|
|
dev_dbg(&nhi->pdev->dev, "skipping host router reset\n");
|
|
return;
|
|
}
|
|
|
|
iowrite32(REG_RESET_HRR, nhi->iobase + REG_RESET);
|
|
msleep(100);
|
|
|
|
timeout = ktime_add_ms(ktime_get(), 500);
|
|
do {
|
|
val = ioread32(nhi->iobase + REG_RESET);
|
|
if (!(val & REG_RESET_HRR)) {
|
|
dev_warn(&nhi->pdev->dev, "host router reset successful\n");
|
|
return;
|
|
}
|
|
usleep_range(10, 20);
|
|
} while (ktime_before(ktime_get(), timeout));
|
|
|
|
dev_warn(&nhi->pdev->dev, "timeout resetting host router\n");
|
|
}
|
|
|
|
static int nhi_init_msi(struct tb_nhi *nhi)
|
|
{
|
|
struct pci_dev *pdev = nhi->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int res, irq, nvec;
|
|
|
|
/* In case someone left them on. */
|
|
nhi_disable_interrupts(nhi);
|
|
|
|
nhi_enable_int_throttling(nhi);
|
|
|
|
ida_init(&nhi->msix_ida);
|
|
|
|
/*
|
|
* The NHI has 16 MSI-X vectors or a single MSI. We first try to
|
|
* get all MSI-X vectors and if we succeed, each ring will have
|
|
* one MSI-X. If for some reason that does not work out, we
|
|
* fallback to a single MSI.
|
|
*/
|
|
nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
|
|
PCI_IRQ_MSIX);
|
|
if (nvec < 0) {
|
|
nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
|
|
if (nvec < 0)
|
|
return nvec;
|
|
|
|
INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
|
|
|
|
irq = pci_irq_vector(nhi->pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
res = devm_request_irq(&pdev->dev, irq, nhi_msi,
|
|
IRQF_NO_SUSPEND, "thunderbolt", nhi);
|
|
if (res)
|
|
return dev_err_probe(dev, res, "request_irq failed, aborting\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool nhi_imr_valid(struct pci_dev *pdev)
|
|
{
|
|
u8 val;
|
|
|
|
if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
|
|
return !!val;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct tb *nhi_select_cm(struct tb_nhi *nhi)
|
|
{
|
|
struct tb *tb;
|
|
|
|
/*
|
|
* USB4 case is simple. If we got control of any of the
|
|
* capabilities, we use software CM.
|
|
*/
|
|
if (tb_acpi_is_native())
|
|
return tb_probe(nhi);
|
|
|
|
/*
|
|
* Either firmware based CM is running (we did not get control
|
|
* from the firmware) or this is pre-USB4 PC so try first
|
|
* firmware CM and then fallback to software CM.
|
|
*/
|
|
tb = icm_probe(nhi);
|
|
if (!tb)
|
|
tb = tb_probe(nhi);
|
|
|
|
return tb;
|
|
}
|
|
|
|
static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct tb_nhi *nhi;
|
|
struct tb *tb;
|
|
int res;
|
|
|
|
if (!nhi_imr_valid(pdev))
|
|
return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n");
|
|
|
|
res = pcim_enable_device(pdev);
|
|
if (res)
|
|
return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n");
|
|
|
|
res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
|
|
if (res)
|
|
return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n");
|
|
|
|
nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
|
|
if (!nhi)
|
|
return -ENOMEM;
|
|
|
|
nhi->pdev = pdev;
|
|
nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
|
|
/* cannot fail - table is allocated in pcim_iomap_regions */
|
|
nhi->iobase = pcim_iomap_table(pdev)[0];
|
|
nhi->hop_count = ioread32(nhi->iobase + REG_CAPS) & 0x3ff;
|
|
dev_dbg(dev, "total paths: %d\n", nhi->hop_count);
|
|
|
|
nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
|
|
sizeof(*nhi->tx_rings), GFP_KERNEL);
|
|
nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
|
|
sizeof(*nhi->rx_rings), GFP_KERNEL);
|
|
if (!nhi->tx_rings || !nhi->rx_rings)
|
|
return -ENOMEM;
|
|
|
|
nhi_check_quirks(nhi);
|
|
nhi_check_iommu(nhi);
|
|
|
|
nhi_reset(nhi);
|
|
|
|
res = nhi_init_msi(nhi);
|
|
if (res)
|
|
return dev_err_probe(dev, res, "cannot enable MSI, aborting\n");
|
|
|
|
spin_lock_init(&nhi->lock);
|
|
|
|
res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (res)
|
|
return dev_err_probe(dev, res, "failed to set DMA mask\n");
|
|
|
|
pci_set_master(pdev);
|
|
|
|
if (nhi->ops && nhi->ops->init) {
|
|
res = nhi->ops->init(nhi);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
tb = nhi_select_cm(nhi);
|
|
if (!tb)
|
|
return dev_err_probe(dev, -ENODEV,
|
|
"failed to determine connection manager, aborting\n");
|
|
|
|
dev_dbg(dev, "NHI initialized, starting thunderbolt\n");
|
|
|
|
res = tb_domain_add(tb);
|
|
if (res) {
|
|
/*
|
|
* At this point the RX/TX rings might already have been
|
|
* activated. Do a proper shutdown.
|
|
*/
|
|
tb_domain_put(tb);
|
|
nhi_shutdown(nhi);
|
|
return res;
|
|
}
|
|
pci_set_drvdata(pdev, tb);
|
|
|
|
device_wakeup_enable(&pdev->dev);
|
|
|
|
pm_runtime_allow(&pdev->dev);
|
|
pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_put_autosuspend(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nhi_remove(struct pci_dev *pdev)
|
|
{
|
|
struct tb *tb = pci_get_drvdata(pdev);
|
|
struct tb_nhi *nhi = tb->nhi;
|
|
|
|
pm_runtime_get_sync(&pdev->dev);
|
|
pm_runtime_dont_use_autosuspend(&pdev->dev);
|
|
pm_runtime_forbid(&pdev->dev);
|
|
|
|
tb_domain_remove(tb);
|
|
nhi_shutdown(nhi);
|
|
}
|
|
|
|
/*
|
|
* The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
|
|
* the tunnels asap. A corresponding pci quirk blocks the downstream bridges
|
|
* resume_noirq until we are done.
|
|
*/
|
|
static const struct dev_pm_ops nhi_pm_ops = {
|
|
.suspend_noirq = nhi_suspend_noirq,
|
|
.resume_noirq = nhi_resume_noirq,
|
|
.freeze_noirq = nhi_freeze_noirq, /*
|
|
* we just disable hotplug, the
|
|
* pci-tunnels stay alive.
|
|
*/
|
|
.thaw_noirq = nhi_thaw_noirq,
|
|
.restore_noirq = nhi_resume_noirq,
|
|
.suspend = nhi_suspend,
|
|
.poweroff_noirq = nhi_poweroff_noirq,
|
|
.poweroff = nhi_suspend,
|
|
.complete = nhi_complete,
|
|
.runtime_suspend = nhi_runtime_suspend,
|
|
.runtime_resume = nhi_runtime_resume,
|
|
};
|
|
|
|
static struct pci_device_id nhi_ids[] = {
|
|
/*
|
|
* We have to specify class, the TB bridges use the same device and
|
|
* vendor (sub)id on gen 1 and gen 2 controllers.
|
|
*/
|
|
{
|
|
.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
|
|
.vendor = PCI_VENDOR_ID_INTEL,
|
|
.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
|
|
.subvendor = 0x2222, .subdevice = 0x1111,
|
|
},
|
|
{
|
|
.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
|
|
.vendor = PCI_VENDOR_ID_INTEL,
|
|
.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
|
|
.subvendor = 0x2222, .subdevice = 0x1111,
|
|
},
|
|
{
|
|
.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
|
|
.vendor = PCI_VENDOR_ID_INTEL,
|
|
.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
|
|
.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
|
|
},
|
|
{
|
|
.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
|
|
.vendor = PCI_VENDOR_ID_INTEL,
|
|
.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
|
|
.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
|
|
},
|
|
|
|
/* Thunderbolt 3 */
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
/* Thunderbolt 4 */
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1),
|
|
.driver_data = (kernel_ulong_t)&icl_nhi_ops },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI) },
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI) },
|
|
|
|
/* Any USB4 compliant host */
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
|
|
|
|
{ 0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, nhi_ids);
|
|
MODULE_DESCRIPTION("Thunderbolt/USB4 core driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static struct pci_driver nhi_driver = {
|
|
.name = "thunderbolt",
|
|
.id_table = nhi_ids,
|
|
.probe = nhi_probe,
|
|
.remove = nhi_remove,
|
|
.shutdown = nhi_remove,
|
|
.driver.pm = &nhi_pm_ops,
|
|
};
|
|
|
|
static int __init nhi_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = tb_domain_init();
|
|
if (ret)
|
|
return ret;
|
|
ret = pci_register_driver(&nhi_driver);
|
|
if (ret)
|
|
tb_domain_exit();
|
|
return ret;
|
|
}
|
|
|
|
static void __exit nhi_unload(void)
|
|
{
|
|
pci_unregister_driver(&nhi_driver);
|
|
tb_domain_exit();
|
|
}
|
|
|
|
rootfs_initcall(nhi_init);
|
|
module_exit(nhi_unload);
|