linux/net/bpf/test_run.c
Toke Høiland-Jørgensen b6f1f780b3 bpf, test_run: Fix packet size check for live packet mode
The live packet mode uses some extra space at the start of each page to
cache data structures so they don't have to be rebuilt at every repetition.
This space wasn't correctly accounted for in the size checking of the
arguments supplied to userspace. In addition, the definition of the frame
size should include the size of the skb_shared_info (as there is other
logic that subtracts the size of this).

Together, these mistakes resulted in userspace being able to trip the
XDP_WARN() in xdp_update_frame_from_buff(), which syzbot discovered in
short order. Fix this by changing the frame size define and adding the
extra headroom to the bpf_prog_test_run_xdp() function. Also drop the
max_len parameter to the page_pool init, since this is related to DMA which
is not used for the page pool instance in PROG_TEST_RUN.

Fixes: b530e9e1063e ("bpf: Add "live packet" mode for XDP in BPF_PROG_RUN")
Reported-by: syzbot+0e91362d99386dc5de99@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220310225621.53374-1-toke@redhat.com
2022-03-11 22:01:26 +01:00

1593 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Facebook
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/rcupdate_trace.h>
#include <linux/sched/signal.h>
#include <net/bpf_sk_storage.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <net/net_namespace.h>
#include <net/page_pool.h>
#include <linux/error-injection.h>
#include <linux/smp.h>
#include <linux/sock_diag.h>
#include <net/xdp.h>
#define CREATE_TRACE_POINTS
#include <trace/events/bpf_test_run.h>
struct bpf_test_timer {
enum { NO_PREEMPT, NO_MIGRATE } mode;
u32 i;
u64 time_start, time_spent;
};
static void bpf_test_timer_enter(struct bpf_test_timer *t)
__acquires(rcu)
{
rcu_read_lock();
if (t->mode == NO_PREEMPT)
preempt_disable();
else
migrate_disable();
t->time_start = ktime_get_ns();
}
static void bpf_test_timer_leave(struct bpf_test_timer *t)
__releases(rcu)
{
t->time_start = 0;
if (t->mode == NO_PREEMPT)
preempt_enable();
else
migrate_enable();
rcu_read_unlock();
}
static bool bpf_test_timer_continue(struct bpf_test_timer *t, int iterations,
u32 repeat, int *err, u32 *duration)
__must_hold(rcu)
{
t->i += iterations;
if (t->i >= repeat) {
/* We're done. */
t->time_spent += ktime_get_ns() - t->time_start;
do_div(t->time_spent, t->i);
*duration = t->time_spent > U32_MAX ? U32_MAX : (u32)t->time_spent;
*err = 0;
goto reset;
}
if (signal_pending(current)) {
/* During iteration: we've been cancelled, abort. */
*err = -EINTR;
goto reset;
}
if (need_resched()) {
/* During iteration: we need to reschedule between runs. */
t->time_spent += ktime_get_ns() - t->time_start;
bpf_test_timer_leave(t);
cond_resched();
bpf_test_timer_enter(t);
}
/* Do another round. */
return true;
reset:
t->i = 0;
return false;
}
/* We put this struct at the head of each page with a context and frame
* initialised when the page is allocated, so we don't have to do this on each
* repetition of the test run.
*/
struct xdp_page_head {
struct xdp_buff orig_ctx;
struct xdp_buff ctx;
struct xdp_frame frm;
u8 data[];
};
struct xdp_test_data {
struct xdp_buff *orig_ctx;
struct xdp_rxq_info rxq;
struct net_device *dev;
struct page_pool *pp;
struct xdp_frame **frames;
struct sk_buff **skbs;
u32 batch_size;
u32 frame_cnt;
};
#define TEST_XDP_FRAME_SIZE (PAGE_SIZE - sizeof(struct xdp_page_head))
#define TEST_XDP_MAX_BATCH 256
static void xdp_test_run_init_page(struct page *page, void *arg)
{
struct xdp_page_head *head = phys_to_virt(page_to_phys(page));
struct xdp_buff *new_ctx, *orig_ctx;
u32 headroom = XDP_PACKET_HEADROOM;
struct xdp_test_data *xdp = arg;
size_t frm_len, meta_len;
struct xdp_frame *frm;
void *data;
orig_ctx = xdp->orig_ctx;
frm_len = orig_ctx->data_end - orig_ctx->data_meta;
meta_len = orig_ctx->data - orig_ctx->data_meta;
headroom -= meta_len;
new_ctx = &head->ctx;
frm = &head->frm;
data = &head->data;
memcpy(data + headroom, orig_ctx->data_meta, frm_len);
xdp_init_buff(new_ctx, TEST_XDP_FRAME_SIZE, &xdp->rxq);
xdp_prepare_buff(new_ctx, data, headroom, frm_len, true);
new_ctx->data = new_ctx->data_meta + meta_len;
xdp_update_frame_from_buff(new_ctx, frm);
frm->mem = new_ctx->rxq->mem;
memcpy(&head->orig_ctx, new_ctx, sizeof(head->orig_ctx));
}
static int xdp_test_run_setup(struct xdp_test_data *xdp, struct xdp_buff *orig_ctx)
{
struct xdp_mem_info mem = {};
struct page_pool *pp;
int err = -ENOMEM;
struct page_pool_params pp_params = {
.order = 0,
.flags = 0,
.pool_size = xdp->batch_size,
.nid = NUMA_NO_NODE,
.init_callback = xdp_test_run_init_page,
.init_arg = xdp,
};
xdp->frames = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->frames)
return -ENOMEM;
xdp->skbs = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->skbs)
goto err_skbs;
pp = page_pool_create(&pp_params);
if (IS_ERR(pp)) {
err = PTR_ERR(pp);
goto err_pp;
}
/* will copy 'mem.id' into pp->xdp_mem_id */
err = xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pp);
if (err)
goto err_mmodel;
xdp->pp = pp;
/* We create a 'fake' RXQ referencing the original dev, but with an
* xdp_mem_info pointing to our page_pool
*/
xdp_rxq_info_reg(&xdp->rxq, orig_ctx->rxq->dev, 0, 0);
xdp->rxq.mem.type = MEM_TYPE_PAGE_POOL;
xdp->rxq.mem.id = pp->xdp_mem_id;
xdp->dev = orig_ctx->rxq->dev;
xdp->orig_ctx = orig_ctx;
return 0;
err_mmodel:
page_pool_destroy(pp);
err_pp:
kvfree(xdp->skbs);
err_skbs:
kvfree(xdp->frames);
return err;
}
static void xdp_test_run_teardown(struct xdp_test_data *xdp)
{
page_pool_destroy(xdp->pp);
kfree(xdp->frames);
kfree(xdp->skbs);
}
static bool ctx_was_changed(struct xdp_page_head *head)
{
return head->orig_ctx.data != head->ctx.data ||
head->orig_ctx.data_meta != head->ctx.data_meta ||
head->orig_ctx.data_end != head->ctx.data_end;
}
static void reset_ctx(struct xdp_page_head *head)
{
if (likely(!ctx_was_changed(head)))
return;
head->ctx.data = head->orig_ctx.data;
head->ctx.data_meta = head->orig_ctx.data_meta;
head->ctx.data_end = head->orig_ctx.data_end;
xdp_update_frame_from_buff(&head->ctx, &head->frm);
}
static int xdp_recv_frames(struct xdp_frame **frames, int nframes,
struct sk_buff **skbs,
struct net_device *dev)
{
gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
int i, n;
LIST_HEAD(list);
n = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, (void **)skbs);
if (unlikely(n == 0)) {
for (i = 0; i < nframes; i++)
xdp_return_frame(frames[i]);
return -ENOMEM;
}
for (i = 0; i < nframes; i++) {
struct xdp_frame *xdpf = frames[i];
struct sk_buff *skb = skbs[i];
skb = __xdp_build_skb_from_frame(xdpf, skb, dev);
if (!skb) {
xdp_return_frame(xdpf);
continue;
}
list_add_tail(&skb->list, &list);
}
netif_receive_skb_list(&list);
return 0;
}
static int xdp_test_run_batch(struct xdp_test_data *xdp, struct bpf_prog *prog,
u32 repeat)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
int err = 0, act, ret, i, nframes = 0, batch_sz;
struct xdp_frame **frames = xdp->frames;
struct xdp_page_head *head;
struct xdp_frame *frm;
bool redirect = false;
struct xdp_buff *ctx;
struct page *page;
batch_sz = min_t(u32, repeat, xdp->batch_size);
local_bh_disable();
xdp_set_return_frame_no_direct();
for (i = 0; i < batch_sz; i++) {
page = page_pool_dev_alloc_pages(xdp->pp);
if (!page) {
err = -ENOMEM;
goto out;
}
head = phys_to_virt(page_to_phys(page));
reset_ctx(head);
ctx = &head->ctx;
frm = &head->frm;
xdp->frame_cnt++;
act = bpf_prog_run_xdp(prog, ctx);
/* if program changed pkt bounds we need to update the xdp_frame */
if (unlikely(ctx_was_changed(head))) {
ret = xdp_update_frame_from_buff(ctx, frm);
if (ret) {
xdp_return_buff(ctx);
continue;
}
}
switch (act) {
case XDP_TX:
/* we can't do a real XDP_TX since we're not in the
* driver, so turn it into a REDIRECT back to the same
* index
*/
ri->tgt_index = xdp->dev->ifindex;
ri->map_id = INT_MAX;
ri->map_type = BPF_MAP_TYPE_UNSPEC;
fallthrough;
case XDP_REDIRECT:
redirect = true;
ret = xdp_do_redirect_frame(xdp->dev, ctx, frm, prog);
if (ret)
xdp_return_buff(ctx);
break;
case XDP_PASS:
frames[nframes++] = frm;
break;
default:
bpf_warn_invalid_xdp_action(NULL, prog, act);
fallthrough;
case XDP_DROP:
xdp_return_buff(ctx);
break;
}
}
out:
if (redirect)
xdp_do_flush();
if (nframes) {
ret = xdp_recv_frames(frames, nframes, xdp->skbs, xdp->dev);
if (ret)
err = ret;
}
xdp_clear_return_frame_no_direct();
local_bh_enable();
return err;
}
static int bpf_test_run_xdp_live(struct bpf_prog *prog, struct xdp_buff *ctx,
u32 repeat, u32 batch_size, u32 *time)
{
struct xdp_test_data xdp = { .batch_size = batch_size };
struct bpf_test_timer t = { .mode = NO_MIGRATE };
int ret;
if (!repeat)
repeat = 1;
ret = xdp_test_run_setup(&xdp, ctx);
if (ret)
return ret;
bpf_test_timer_enter(&t);
do {
xdp.frame_cnt = 0;
ret = xdp_test_run_batch(&xdp, prog, repeat - t.i);
if (unlikely(ret < 0))
break;
} while (bpf_test_timer_continue(&t, xdp.frame_cnt, repeat, &ret, time));
bpf_test_timer_leave(&t);
xdp_test_run_teardown(&xdp);
return ret;
}
static int bpf_test_run(struct bpf_prog *prog, void *ctx, u32 repeat,
u32 *retval, u32 *time, bool xdp)
{
struct bpf_prog_array_item item = {.prog = prog};
struct bpf_run_ctx *old_ctx;
struct bpf_cg_run_ctx run_ctx;
struct bpf_test_timer t = { NO_MIGRATE };
enum bpf_cgroup_storage_type stype;
int ret;
for_each_cgroup_storage_type(stype) {
item.cgroup_storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
if (IS_ERR(item.cgroup_storage[stype])) {
item.cgroup_storage[stype] = NULL;
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return -ENOMEM;
}
}
if (!repeat)
repeat = 1;
bpf_test_timer_enter(&t);
old_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
do {
run_ctx.prog_item = &item;
if (xdp)
*retval = bpf_prog_run_xdp(prog, ctx);
else
*retval = bpf_prog_run(prog, ctx);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, time));
bpf_reset_run_ctx(old_ctx);
bpf_test_timer_leave(&t);
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return ret;
}
static int bpf_test_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
struct skb_shared_info *sinfo, u32 size,
u32 retval, u32 duration)
{
void __user *data_out = u64_to_user_ptr(kattr->test.data_out);
int err = -EFAULT;
u32 copy_size = size;
/* Clamp copy if the user has provided a size hint, but copy the full
* buffer if not to retain old behaviour.
*/
if (kattr->test.data_size_out &&
copy_size > kattr->test.data_size_out) {
copy_size = kattr->test.data_size_out;
err = -ENOSPC;
}
if (data_out) {
int len = sinfo ? copy_size - sinfo->xdp_frags_size : copy_size;
if (len < 0) {
err = -ENOSPC;
goto out;
}
if (copy_to_user(data_out, data, len))
goto out;
if (sinfo) {
int i, offset = len;
u32 data_len;
for (i = 0; i < sinfo->nr_frags; i++) {
skb_frag_t *frag = &sinfo->frags[i];
if (offset >= copy_size) {
err = -ENOSPC;
break;
}
data_len = min_t(u32, copy_size - offset,
skb_frag_size(frag));
if (copy_to_user(data_out + offset,
skb_frag_address(frag),
data_len))
goto out;
offset += data_len;
}
}
}
if (copy_to_user(&uattr->test.data_size_out, &size, sizeof(size)))
goto out;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
if (copy_to_user(&uattr->test.duration, &duration, sizeof(duration)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
/* Integer types of various sizes and pointer combinations cover variety of
* architecture dependent calling conventions. 7+ can be supported in the
* future.
*/
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"Global functions as their definitions will be in vmlinux BTF");
int noinline bpf_fentry_test1(int a)
{
return a + 1;
}
EXPORT_SYMBOL_GPL(bpf_fentry_test1);
ALLOW_ERROR_INJECTION(bpf_fentry_test1, ERRNO);
int noinline bpf_fentry_test2(int a, u64 b)
{
return a + b;
}
int noinline bpf_fentry_test3(char a, int b, u64 c)
{
return a + b + c;
}
int noinline bpf_fentry_test4(void *a, char b, int c, u64 d)
{
return (long)a + b + c + d;
}
int noinline bpf_fentry_test5(u64 a, void *b, short c, int d, u64 e)
{
return a + (long)b + c + d + e;
}
int noinline bpf_fentry_test6(u64 a, void *b, short c, int d, void *e, u64 f)
{
return a + (long)b + c + d + (long)e + f;
}
struct bpf_fentry_test_t {
struct bpf_fentry_test_t *a;
};
int noinline bpf_fentry_test7(struct bpf_fentry_test_t *arg)
{
return (long)arg;
}
int noinline bpf_fentry_test8(struct bpf_fentry_test_t *arg)
{
return (long)arg->a;
}
int noinline bpf_modify_return_test(int a, int *b)
{
*b += 1;
return a + *b;
}
u64 noinline bpf_kfunc_call_test1(struct sock *sk, u32 a, u64 b, u32 c, u64 d)
{
return a + b + c + d;
}
int noinline bpf_kfunc_call_test2(struct sock *sk, u32 a, u32 b)
{
return a + b;
}
struct sock * noinline bpf_kfunc_call_test3(struct sock *sk)
{
return sk;
}
struct prog_test_member {
u64 c;
};
struct prog_test_ref_kfunc {
int a;
int b;
struct prog_test_member memb;
struct prog_test_ref_kfunc *next;
};
static struct prog_test_ref_kfunc prog_test_struct = {
.a = 42,
.b = 108,
.next = &prog_test_struct,
};
noinline struct prog_test_ref_kfunc *
bpf_kfunc_call_test_acquire(unsigned long *scalar_ptr)
{
/* randomly return NULL */
if (get_jiffies_64() % 2)
return NULL;
return &prog_test_struct;
}
noinline void bpf_kfunc_call_test_release(struct prog_test_ref_kfunc *p)
{
}
noinline void bpf_kfunc_call_memb_release(struct prog_test_member *p)
{
}
struct prog_test_pass1 {
int x0;
struct {
int x1;
struct {
int x2;
struct {
int x3;
};
};
};
};
struct prog_test_pass2 {
int len;
short arr1[4];
struct {
char arr2[4];
unsigned long arr3[8];
} x;
};
struct prog_test_fail1 {
void *p;
int x;
};
struct prog_test_fail2 {
int x8;
struct prog_test_pass1 x;
};
struct prog_test_fail3 {
int len;
char arr1[2];
char arr2[];
};
noinline void bpf_kfunc_call_test_pass_ctx(struct __sk_buff *skb)
{
}
noinline void bpf_kfunc_call_test_pass1(struct prog_test_pass1 *p)
{
}
noinline void bpf_kfunc_call_test_pass2(struct prog_test_pass2 *p)
{
}
noinline void bpf_kfunc_call_test_fail1(struct prog_test_fail1 *p)
{
}
noinline void bpf_kfunc_call_test_fail2(struct prog_test_fail2 *p)
{
}
noinline void bpf_kfunc_call_test_fail3(struct prog_test_fail3 *p)
{
}
noinline void bpf_kfunc_call_test_mem_len_pass1(void *mem, int mem__sz)
{
}
noinline void bpf_kfunc_call_test_mem_len_fail1(void *mem, int len)
{
}
noinline void bpf_kfunc_call_test_mem_len_fail2(u64 *mem, int len)
{
}
__diag_pop();
ALLOW_ERROR_INJECTION(bpf_modify_return_test, ERRNO);
BTF_SET_START(test_sk_check_kfunc_ids)
BTF_ID(func, bpf_kfunc_call_test1)
BTF_ID(func, bpf_kfunc_call_test2)
BTF_ID(func, bpf_kfunc_call_test3)
BTF_ID(func, bpf_kfunc_call_test_acquire)
BTF_ID(func, bpf_kfunc_call_test_release)
BTF_ID(func, bpf_kfunc_call_memb_release)
BTF_ID(func, bpf_kfunc_call_test_pass_ctx)
BTF_ID(func, bpf_kfunc_call_test_pass1)
BTF_ID(func, bpf_kfunc_call_test_pass2)
BTF_ID(func, bpf_kfunc_call_test_fail1)
BTF_ID(func, bpf_kfunc_call_test_fail2)
BTF_ID(func, bpf_kfunc_call_test_fail3)
BTF_ID(func, bpf_kfunc_call_test_mem_len_pass1)
BTF_ID(func, bpf_kfunc_call_test_mem_len_fail1)
BTF_ID(func, bpf_kfunc_call_test_mem_len_fail2)
BTF_SET_END(test_sk_check_kfunc_ids)
BTF_SET_START(test_sk_acquire_kfunc_ids)
BTF_ID(func, bpf_kfunc_call_test_acquire)
BTF_SET_END(test_sk_acquire_kfunc_ids)
BTF_SET_START(test_sk_release_kfunc_ids)
BTF_ID(func, bpf_kfunc_call_test_release)
BTF_ID(func, bpf_kfunc_call_memb_release)
BTF_SET_END(test_sk_release_kfunc_ids)
BTF_SET_START(test_sk_ret_null_kfunc_ids)
BTF_ID(func, bpf_kfunc_call_test_acquire)
BTF_SET_END(test_sk_ret_null_kfunc_ids)
static void *bpf_test_init(const union bpf_attr *kattr, u32 user_size,
u32 size, u32 headroom, u32 tailroom)
{
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
void *data;
if (size < ETH_HLEN || size > PAGE_SIZE - headroom - tailroom)
return ERR_PTR(-EINVAL);
if (user_size > size)
return ERR_PTR(-EMSGSIZE);
data = kzalloc(size + headroom + tailroom, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (copy_from_user(data + headroom, data_in, user_size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
return data;
}
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_fentry_test_t arg = {};
u16 side_effect = 0, ret = 0;
int b = 2, err = -EFAULT;
u32 retval = 0;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
switch (prog->expected_attach_type) {
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
if (bpf_fentry_test1(1) != 2 ||
bpf_fentry_test2(2, 3) != 5 ||
bpf_fentry_test3(4, 5, 6) != 15 ||
bpf_fentry_test4((void *)7, 8, 9, 10) != 34 ||
bpf_fentry_test5(11, (void *)12, 13, 14, 15) != 65 ||
bpf_fentry_test6(16, (void *)17, 18, 19, (void *)20, 21) != 111 ||
bpf_fentry_test7((struct bpf_fentry_test_t *)0) != 0 ||
bpf_fentry_test8(&arg) != 0)
goto out;
break;
case BPF_MODIFY_RETURN:
ret = bpf_modify_return_test(1, &b);
if (b != 2)
side_effect = 1;
break;
default:
goto out;
}
retval = ((u32)side_effect << 16) | ret;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
struct bpf_raw_tp_test_run_info {
struct bpf_prog *prog;
void *ctx;
u32 retval;
};
static void
__bpf_prog_test_run_raw_tp(void *data)
{
struct bpf_raw_tp_test_run_info *info = data;
rcu_read_lock();
info->retval = bpf_prog_run(info->prog, info->ctx);
rcu_read_unlock();
}
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
struct bpf_raw_tp_test_run_info info;
int cpu = kattr->test.cpu, err = 0;
int current_cpu;
/* doesn't support data_in/out, ctx_out, duration, or repeat */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > MAX_BPF_FUNC_ARGS * sizeof(u64))
return -EINVAL;
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 && cpu != 0)
return -EINVAL;
if (ctx_size_in) {
info.ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(info.ctx))
return PTR_ERR(info.ctx);
} else {
info.ctx = NULL;
}
info.prog = prog;
current_cpu = get_cpu();
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 ||
cpu == current_cpu) {
__bpf_prog_test_run_raw_tp(&info);
} else if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
/* smp_call_function_single() also checks cpu_online()
* after csd_lock(). However, since cpu is from user
* space, let's do an extra quick check to filter out
* invalid value before smp_call_function_single().
*/
err = -ENXIO;
} else {
err = smp_call_function_single(cpu, __bpf_prog_test_run_raw_tp,
&info, 1);
}
put_cpu();
if (!err &&
copy_to_user(&uattr->test.retval, &info.retval, sizeof(u32)))
err = -EFAULT;
kfree(info.ctx);
return err;
}
static void *bpf_ctx_init(const union bpf_attr *kattr, u32 max_size)
{
void __user *data_in = u64_to_user_ptr(kattr->test.ctx_in);
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
u32 size = kattr->test.ctx_size_in;
void *data;
int err;
if (!data_in && !data_out)
return NULL;
data = kzalloc(max_size, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (data_in) {
err = bpf_check_uarg_tail_zero(USER_BPFPTR(data_in), max_size, size);
if (err) {
kfree(data);
return ERR_PTR(err);
}
size = min_t(u32, max_size, size);
if (copy_from_user(data, data_in, size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
}
return data;
}
static int bpf_ctx_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
u32 size)
{
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
int err = -EFAULT;
u32 copy_size = size;
if (!data || !data_out)
return 0;
if (copy_size > kattr->test.ctx_size_out) {
copy_size = kattr->test.ctx_size_out;
err = -ENOSPC;
}
if (copy_to_user(data_out, data, copy_size))
goto out;
if (copy_to_user(&uattr->test.ctx_size_out, &size, sizeof(size)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
return err;
}
/**
* range_is_zero - test whether buffer is initialized
* @buf: buffer to check
* @from: check from this position
* @to: check up until (excluding) this position
*
* This function returns true if the there is a non-zero byte
* in the buf in the range [from,to).
*/
static inline bool range_is_zero(void *buf, size_t from, size_t to)
{
return !memchr_inv((u8 *)buf + from, 0, to - from);
}
static int convert___skb_to_skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return 0;
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(__skb, 0, offsetof(struct __sk_buff, mark)))
return -EINVAL;
/* mark is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, mark),
offsetof(struct __sk_buff, priority)))
return -EINVAL;
/* priority is allowed */
/* ingress_ifindex is allowed */
/* ifindex is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, ifindex),
offsetof(struct __sk_buff, cb)))
return -EINVAL;
/* cb is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, cb),
offsetof(struct __sk_buff, tstamp)))
return -EINVAL;
/* tstamp is allowed */
/* wire_len is allowed */
/* gso_segs is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
offsetof(struct __sk_buff, gso_size)))
return -EINVAL;
/* gso_size is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_size),
offsetof(struct __sk_buff, hwtstamp)))
return -EINVAL;
/* hwtstamp is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, hwtstamp),
sizeof(struct __sk_buff)))
return -EINVAL;
skb->mark = __skb->mark;
skb->priority = __skb->priority;
skb->skb_iif = __skb->ingress_ifindex;
skb->tstamp = __skb->tstamp;
memcpy(&cb->data, __skb->cb, QDISC_CB_PRIV_LEN);
if (__skb->wire_len == 0) {
cb->pkt_len = skb->len;
} else {
if (__skb->wire_len < skb->len ||
__skb->wire_len > GSO_MAX_SIZE)
return -EINVAL;
cb->pkt_len = __skb->wire_len;
}
if (__skb->gso_segs > GSO_MAX_SEGS)
return -EINVAL;
skb_shinfo(skb)->gso_segs = __skb->gso_segs;
skb_shinfo(skb)->gso_size = __skb->gso_size;
skb_shinfo(skb)->hwtstamps.hwtstamp = __skb->hwtstamp;
return 0;
}
static void convert_skb_to___skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return;
__skb->mark = skb->mark;
__skb->priority = skb->priority;
__skb->ingress_ifindex = skb->skb_iif;
__skb->ifindex = skb->dev->ifindex;
__skb->tstamp = skb->tstamp;
memcpy(__skb->cb, &cb->data, QDISC_CB_PRIV_LEN);
__skb->wire_len = cb->pkt_len;
__skb->gso_segs = skb_shinfo(skb)->gso_segs;
__skb->hwtstamp = skb_shinfo(skb)->hwtstamps.hwtstamp;
}
static struct proto bpf_dummy_proto = {
.name = "bpf_dummy",
.owner = THIS_MODULE,
.obj_size = sizeof(struct sock),
};
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool is_l2 = false, is_direct_pkt_access = false;
struct net *net = current->nsproxy->net_ns;
struct net_device *dev = net->loopback_dev;
u32 size = kattr->test.data_size_in;
u32 repeat = kattr->test.repeat;
struct __sk_buff *ctx = NULL;
u32 retval, duration;
int hh_len = ETH_HLEN;
struct sk_buff *skb;
struct sock *sk;
void *data;
int ret;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in,
size, NET_SKB_PAD + NET_IP_ALIGN,
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (IS_ERR(data))
return PTR_ERR(data);
ctx = bpf_ctx_init(kattr, sizeof(struct __sk_buff));
if (IS_ERR(ctx)) {
kfree(data);
return PTR_ERR(ctx);
}
switch (prog->type) {
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
is_l2 = true;
fallthrough;
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_XMIT:
is_direct_pkt_access = true;
break;
default:
break;
}
sk = sk_alloc(net, AF_UNSPEC, GFP_USER, &bpf_dummy_proto, 1);
if (!sk) {
kfree(data);
kfree(ctx);
return -ENOMEM;
}
sock_init_data(NULL, sk);
skb = build_skb(data, 0);
if (!skb) {
kfree(data);
kfree(ctx);
sk_free(sk);
return -ENOMEM;
}
skb->sk = sk;
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
__skb_put(skb, size);
if (ctx && ctx->ifindex > 1) {
dev = dev_get_by_index(net, ctx->ifindex);
if (!dev) {
ret = -ENODEV;
goto out;
}
}
skb->protocol = eth_type_trans(skb, dev);
skb_reset_network_header(skb);
switch (skb->protocol) {
case htons(ETH_P_IP):
sk->sk_family = AF_INET;
if (sizeof(struct iphdr) <= skb_headlen(skb)) {
sk->sk_rcv_saddr = ip_hdr(skb)->saddr;
sk->sk_daddr = ip_hdr(skb)->daddr;
}
break;
#if IS_ENABLED(CONFIG_IPV6)
case htons(ETH_P_IPV6):
sk->sk_family = AF_INET6;
if (sizeof(struct ipv6hdr) <= skb_headlen(skb)) {
sk->sk_v6_rcv_saddr = ipv6_hdr(skb)->saddr;
sk->sk_v6_daddr = ipv6_hdr(skb)->daddr;
}
break;
#endif
default:
break;
}
if (is_l2)
__skb_push(skb, hh_len);
if (is_direct_pkt_access)
bpf_compute_data_pointers(skb);
ret = convert___skb_to_skb(skb, ctx);
if (ret)
goto out;
ret = bpf_test_run(prog, skb, repeat, &retval, &duration, false);
if (ret)
goto out;
if (!is_l2) {
if (skb_headroom(skb) < hh_len) {
int nhead = HH_DATA_ALIGN(hh_len - skb_headroom(skb));
if (pskb_expand_head(skb, nhead, 0, GFP_USER)) {
ret = -ENOMEM;
goto out;
}
}
memset(__skb_push(skb, hh_len), 0, hh_len);
}
convert_skb_to___skb(skb, ctx);
size = skb->len;
/* bpf program can never convert linear skb to non-linear */
if (WARN_ON_ONCE(skb_is_nonlinear(skb)))
size = skb_headlen(skb);
ret = bpf_test_finish(kattr, uattr, skb->data, NULL, size, retval,
duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct __sk_buff));
out:
if (dev && dev != net->loopback_dev)
dev_put(dev);
kfree_skb(skb);
sk_free(sk);
kfree(ctx);
return ret;
}
static int xdp_convert_md_to_buff(struct xdp_md *xdp_md, struct xdp_buff *xdp)
{
unsigned int ingress_ifindex, rx_queue_index;
struct netdev_rx_queue *rxqueue;
struct net_device *device;
if (!xdp_md)
return 0;
if (xdp_md->egress_ifindex != 0)
return -EINVAL;
ingress_ifindex = xdp_md->ingress_ifindex;
rx_queue_index = xdp_md->rx_queue_index;
if (!ingress_ifindex && rx_queue_index)
return -EINVAL;
if (ingress_ifindex) {
device = dev_get_by_index(current->nsproxy->net_ns,
ingress_ifindex);
if (!device)
return -ENODEV;
if (rx_queue_index >= device->real_num_rx_queues)
goto free_dev;
rxqueue = __netif_get_rx_queue(device, rx_queue_index);
if (!xdp_rxq_info_is_reg(&rxqueue->xdp_rxq))
goto free_dev;
xdp->rxq = &rxqueue->xdp_rxq;
/* The device is now tracked in the xdp->rxq for later
* dev_put()
*/
}
xdp->data = xdp->data_meta + xdp_md->data;
return 0;
free_dev:
dev_put(device);
return -EINVAL;
}
static void xdp_convert_buff_to_md(struct xdp_buff *xdp, struct xdp_md *xdp_md)
{
if (!xdp_md)
return;
xdp_md->data = xdp->data - xdp->data_meta;
xdp_md->data_end = xdp->data_end - xdp->data_meta;
if (xdp_md->ingress_ifindex)
dev_put(xdp->rxq->dev);
}
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool do_live = (kattr->test.flags & BPF_F_TEST_XDP_LIVE_FRAMES);
u32 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
u32 batch_size = kattr->test.batch_size;
u32 retval = 0, duration, max_data_sz;
u32 size = kattr->test.data_size_in;
u32 headroom = XDP_PACKET_HEADROOM;
u32 repeat = kattr->test.repeat;
struct netdev_rx_queue *rxqueue;
struct skb_shared_info *sinfo;
struct xdp_buff xdp = {};
int i, ret = -EINVAL;
struct xdp_md *ctx;
void *data;
if (prog->expected_attach_type == BPF_XDP_DEVMAP ||
prog->expected_attach_type == BPF_XDP_CPUMAP)
return -EINVAL;
if (kattr->test.flags & ~BPF_F_TEST_XDP_LIVE_FRAMES)
return -EINVAL;
if (do_live) {
if (!batch_size)
batch_size = NAPI_POLL_WEIGHT;
else if (batch_size > TEST_XDP_MAX_BATCH)
return -E2BIG;
headroom += sizeof(struct xdp_page_head);
} else if (batch_size) {
return -EINVAL;
}
ctx = bpf_ctx_init(kattr, sizeof(struct xdp_md));
if (IS_ERR(ctx))
return PTR_ERR(ctx);
if (ctx) {
/* There can't be user provided data before the meta data */
if (ctx->data_meta || ctx->data_end != size ||
ctx->data > ctx->data_end ||
unlikely(xdp_metalen_invalid(ctx->data)) ||
(do_live && (kattr->test.data_out || kattr->test.ctx_out)))
goto free_ctx;
/* Meta data is allocated from the headroom */
headroom -= ctx->data;
}
max_data_sz = 4096 - headroom - tailroom;
if (size > max_data_sz) {
/* disallow live data mode for jumbo frames */
if (do_live)
goto free_ctx;
size = max_data_sz;
}
data = bpf_test_init(kattr, size, max_data_sz, headroom, tailroom);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
goto free_ctx;
}
rxqueue = __netif_get_rx_queue(current->nsproxy->net_ns->loopback_dev, 0);
rxqueue->xdp_rxq.frag_size = headroom + max_data_sz + tailroom;
xdp_init_buff(&xdp, rxqueue->xdp_rxq.frag_size, &rxqueue->xdp_rxq);
xdp_prepare_buff(&xdp, data, headroom, size, true);
sinfo = xdp_get_shared_info_from_buff(&xdp);
ret = xdp_convert_md_to_buff(ctx, &xdp);
if (ret)
goto free_data;
if (unlikely(kattr->test.data_size_in > size)) {
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
while (size < kattr->test.data_size_in) {
struct page *page;
skb_frag_t *frag;
u32 data_len;
if (sinfo->nr_frags == MAX_SKB_FRAGS) {
ret = -ENOMEM;
goto out;
}
page = alloc_page(GFP_KERNEL);
if (!page) {
ret = -ENOMEM;
goto out;
}
frag = &sinfo->frags[sinfo->nr_frags++];
__skb_frag_set_page(frag, page);
data_len = min_t(u32, kattr->test.data_size_in - size,
PAGE_SIZE);
skb_frag_size_set(frag, data_len);
if (copy_from_user(page_address(page), data_in + size,
data_len)) {
ret = -EFAULT;
goto out;
}
sinfo->xdp_frags_size += data_len;
size += data_len;
}
xdp_buff_set_frags_flag(&xdp);
}
if (repeat > 1)
bpf_prog_change_xdp(NULL, prog);
if (do_live)
ret = bpf_test_run_xdp_live(prog, &xdp, repeat, batch_size, &duration);
else
ret = bpf_test_run(prog, &xdp, repeat, &retval, &duration, true);
/* We convert the xdp_buff back to an xdp_md before checking the return
* code so the reference count of any held netdevice will be decremented
* even if the test run failed.
*/
xdp_convert_buff_to_md(&xdp, ctx);
if (ret)
goto out;
size = xdp.data_end - xdp.data_meta + sinfo->xdp_frags_size;
ret = bpf_test_finish(kattr, uattr, xdp.data_meta, sinfo, size,
retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct xdp_md));
out:
if (repeat > 1)
bpf_prog_change_xdp(prog, NULL);
free_data:
for (i = 0; i < sinfo->nr_frags; i++)
__free_page(skb_frag_page(&sinfo->frags[i]));
kfree(data);
free_ctx:
kfree(ctx);
return ret;
}
static int verify_user_bpf_flow_keys(struct bpf_flow_keys *ctx)
{
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(ctx, 0, offsetof(struct bpf_flow_keys, flags)))
return -EINVAL;
/* flags is allowed */
if (!range_is_zero(ctx, offsetofend(struct bpf_flow_keys, flags),
sizeof(struct bpf_flow_keys)))
return -EINVAL;
return 0;
}
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
u32 size = kattr->test.data_size_in;
struct bpf_flow_dissector ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_flow_keys *user_ctx;
struct bpf_flow_keys flow_keys;
const struct ethhdr *eth;
unsigned int flags = 0;
u32 retval, duration;
void *data;
int ret;
if (prog->type != BPF_PROG_TYPE_FLOW_DISSECTOR)
return -EINVAL;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (size < ETH_HLEN)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in, size, 0, 0);
if (IS_ERR(data))
return PTR_ERR(data);
eth = (struct ethhdr *)data;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(struct bpf_flow_keys));
if (IS_ERR(user_ctx)) {
kfree(data);
return PTR_ERR(user_ctx);
}
if (user_ctx) {
ret = verify_user_bpf_flow_keys(user_ctx);
if (ret)
goto out;
flags = user_ctx->flags;
}
ctx.flow_keys = &flow_keys;
ctx.data = data;
ctx.data_end = (__u8 *)data + size;
bpf_test_timer_enter(&t);
do {
retval = bpf_flow_dissect(prog, &ctx, eth->h_proto, ETH_HLEN,
size, flags);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
ret = bpf_test_finish(kattr, uattr, &flow_keys, NULL,
sizeof(flow_keys), retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx,
sizeof(struct bpf_flow_keys));
out:
kfree(user_ctx);
kfree(data);
return ret;
}
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
struct bpf_prog_array *progs = NULL;
struct bpf_sk_lookup_kern ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_sk_lookup *user_ctx;
u32 retval, duration;
int ret = -EINVAL;
if (prog->type != BPF_PROG_TYPE_SK_LOOKUP)
return -EINVAL;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (kattr->test.data_in || kattr->test.data_size_in || kattr->test.data_out ||
kattr->test.data_size_out)
return -EINVAL;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(*user_ctx));
if (IS_ERR(user_ctx))
return PTR_ERR(user_ctx);
if (!user_ctx)
return -EINVAL;
if (user_ctx->sk)
goto out;
if (!range_is_zero(user_ctx, offsetofend(typeof(*user_ctx), local_port), sizeof(*user_ctx)))
goto out;
if (user_ctx->local_port > U16_MAX) {
ret = -ERANGE;
goto out;
}
ctx.family = (u16)user_ctx->family;
ctx.protocol = (u16)user_ctx->protocol;
ctx.dport = (u16)user_ctx->local_port;
ctx.sport = user_ctx->remote_port;
switch (ctx.family) {
case AF_INET:
ctx.v4.daddr = (__force __be32)user_ctx->local_ip4;
ctx.v4.saddr = (__force __be32)user_ctx->remote_ip4;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
ctx.v6.daddr = (struct in6_addr *)user_ctx->local_ip6;
ctx.v6.saddr = (struct in6_addr *)user_ctx->remote_ip6;
break;
#endif
default:
ret = -EAFNOSUPPORT;
goto out;
}
progs = bpf_prog_array_alloc(1, GFP_KERNEL);
if (!progs) {
ret = -ENOMEM;
goto out;
}
progs->items[0].prog = prog;
bpf_test_timer_enter(&t);
do {
ctx.selected_sk = NULL;
retval = BPF_PROG_SK_LOOKUP_RUN_ARRAY(progs, ctx, bpf_prog_run);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
user_ctx->cookie = 0;
if (ctx.selected_sk) {
if (ctx.selected_sk->sk_reuseport && !ctx.no_reuseport) {
ret = -EOPNOTSUPP;
goto out;
}
user_ctx->cookie = sock_gen_cookie(ctx.selected_sk);
}
ret = bpf_test_finish(kattr, uattr, NULL, NULL, 0, retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx, sizeof(*user_ctx));
out:
bpf_prog_array_free(progs);
kfree(user_ctx);
return ret;
}
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
void *ctx = NULL;
u32 retval;
int err = 0;
/* doesn't support data_in/out, ctx_out, duration, or repeat or flags */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.flags ||
kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > U16_MAX)
return -EINVAL;
if (ctx_size_in) {
ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
}
rcu_read_lock_trace();
retval = bpf_prog_run_pin_on_cpu(prog, ctx);
rcu_read_unlock_trace();
if (copy_to_user(&uattr->test.retval, &retval, sizeof(u32))) {
err = -EFAULT;
goto out;
}
if (ctx_size_in)
if (copy_to_user(ctx_in, ctx, ctx_size_in))
err = -EFAULT;
out:
kfree(ctx);
return err;
}
static const struct btf_kfunc_id_set bpf_prog_test_kfunc_set = {
.owner = THIS_MODULE,
.check_set = &test_sk_check_kfunc_ids,
.acquire_set = &test_sk_acquire_kfunc_ids,
.release_set = &test_sk_release_kfunc_ids,
.ret_null_set = &test_sk_ret_null_kfunc_ids,
};
static int __init bpf_prog_test_run_init(void)
{
return register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_prog_test_kfunc_set);
}
late_initcall(bpf_prog_test_run_init);