Mark Rutland e85094c31d arm64: stackleak: fix current_top_of_stack()
Due to some historical confusion, arm64's current_top_of_stack() isn't
what the stackleak code expects. This could in theory result in a number
of problems, and practically results in an unnecessary performance hit.
We can avoid this by aligning the arm64 implementation with the x86
implementation.

The arm64 implementation of current_top_of_stack() was added
specifically for stackleak in commit:

  0b3e336601b82c6a ("arm64: Add support for STACKLEAK gcc plugin")

This was intended to be equivalent to the x86 implementation, but the
implementation, semantics, and performance characteristics differ
wildly:

* On x86, current_top_of_stack() returns the top of the current task's
  task stack, regardless of which stack is in active use.

  The implementation accesses a percpu variable which the x86 entry code
  maintains, and returns the location immediately above the pt_regs on
  the task stack (above which x86 has some padding).

* On arm64 current_top_of_stack() returns the top of the stack in active
  use (i.e. the one which is currently being used).

  The implementation checks the SP against a number of
  potentially-accessible stacks, and will BUG() if no stack is found.

The core stackleak_erase() code determines the upper bound of stack to
erase with:

| if (on_thread_stack())
|         boundary = current_stack_pointer;
| else
|         boundary = current_top_of_stack();

On arm64 stackleak_erase() is always called on a task stack, and
on_thread_stack() should always be true. On x86, stackleak_erase() is
mostly called on a trampoline stack, and is sometimes called on a task
stack.

Currently, this results in a lot of unnecessary code being generated for
arm64 for the impossible !on_thread_stack() case. Some of this is
inlined, bloating stackleak_erase(), while portions of this are left
out-of-line and permitted to be instrumented (which would be a
functional problem if that code were reachable).

As a first step towards improving this, this patch aligns arm64's
implementation of current_top_of_stack() with x86's, always returning
the top of the current task's stack. With GCC 11.1.0 this results in the
bulk of the unnecessary code being removed, including all of the
out-of-line instrumentable code.

While I don't believe there's a functional problem in practice I've
marked this as a fix since the semantic was clearly wrong, the fix
itself is simple, and other code might rely upon this in future.

Fixes: 0b3e336601b82c6a ("arm64: Add support for STACKLEAK gcc plugin")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Popov <alex.popov@linux.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220427173128.2603085-2-mark.rutland@arm.com
2022-05-08 01:33:07 -07:00
2022-04-01 16:20:00 -07:00
2022-03-31 11:59:03 -07:00
2022-03-26 12:01:35 -07:00
2022-04-12 14:08:43 -10:00
2022-04-12 14:23:19 -10:00
2022-03-31 11:59:03 -07:00
2022-04-10 09:55:09 -10:00
2022-04-12 14:23:19 -10:00
2022-05-08 01:33:07 -07:00
2022-05-08 01:33:07 -07:00
2022-04-01 10:32:46 -07:00
2022-04-12 14:16:33 -10:00
2022-03-31 11:59:03 -07:00
2022-04-08 12:30:04 -04:00
2022-04-08 18:29:02 -10:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%