86ec882f59
Once we added support in the dpaa2-eth for driver level software TSO we observed the following situation: if the EQCR CI (consumer index) is read from the cache-enabled area we sometimes end up with a computed value of available enqueue entries bigger than the size of the ring. This eventually will lead to the multiple enqueue of the same FD which will determine the same FD to end up on the Tx confirmation path and the same skb being freed twice. Just read the consumer index from the cache inhibited area so that we avoid this situation. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1854 lines
53 KiB
C
1854 lines
53 KiB
C
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
|
|
/*
|
|
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2019 NXP
|
|
*
|
|
*/
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <soc/fsl/dpaa2-global.h>
|
|
|
|
#include "qbman-portal.h"
|
|
|
|
/* All QBMan command and result structures use this "valid bit" encoding */
|
|
#define QB_VALID_BIT ((u32)0x80)
|
|
|
|
/* QBMan portal management command codes */
|
|
#define QBMAN_MC_ACQUIRE 0x30
|
|
#define QBMAN_WQCHAN_CONFIGURE 0x46
|
|
|
|
/* CINH register offsets */
|
|
#define QBMAN_CINH_SWP_EQCR_PI 0x800
|
|
#define QBMAN_CINH_SWP_EQCR_CI 0x840
|
|
#define QBMAN_CINH_SWP_EQAR 0x8c0
|
|
#define QBMAN_CINH_SWP_CR_RT 0x900
|
|
#define QBMAN_CINH_SWP_VDQCR_RT 0x940
|
|
#define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
|
|
#define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
|
|
#define QBMAN_CINH_SWP_DQPI 0xa00
|
|
#define QBMAN_CINH_SWP_DQRR_ITR 0xa80
|
|
#define QBMAN_CINH_SWP_DCAP 0xac0
|
|
#define QBMAN_CINH_SWP_SDQCR 0xb00
|
|
#define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
|
|
#define QBMAN_CINH_SWP_RCR_PI 0xc00
|
|
#define QBMAN_CINH_SWP_RAR 0xcc0
|
|
#define QBMAN_CINH_SWP_ISR 0xe00
|
|
#define QBMAN_CINH_SWP_IER 0xe40
|
|
#define QBMAN_CINH_SWP_ISDR 0xe80
|
|
#define QBMAN_CINH_SWP_IIR 0xec0
|
|
#define QBMAN_CINH_SWP_ITPR 0xf40
|
|
|
|
/* CENA register offsets */
|
|
#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
|
|
#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
|
|
#define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
|
|
#define QBMAN_CENA_SWP_CR 0x600
|
|
#define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
|
|
#define QBMAN_CENA_SWP_VDQCR 0x780
|
|
#define QBMAN_CENA_SWP_EQCR_CI 0x840
|
|
#define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
|
|
|
|
/* CENA register offsets in memory-backed mode */
|
|
#define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
|
|
#define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
|
|
#define QBMAN_CENA_SWP_CR_MEM 0x1600
|
|
#define QBMAN_CENA_SWP_RR_MEM 0x1680
|
|
#define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
|
|
|
|
/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
|
|
#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
|
|
|
|
/* Define token used to determine if response written to memory is valid */
|
|
#define QMAN_DQ_TOKEN_VALID 1
|
|
|
|
/* SDQCR attribute codes */
|
|
#define QB_SDQCR_FC_SHIFT 29
|
|
#define QB_SDQCR_FC_MASK 0x1
|
|
#define QB_SDQCR_DCT_SHIFT 24
|
|
#define QB_SDQCR_DCT_MASK 0x3
|
|
#define QB_SDQCR_TOK_SHIFT 16
|
|
#define QB_SDQCR_TOK_MASK 0xff
|
|
#define QB_SDQCR_SRC_SHIFT 0
|
|
#define QB_SDQCR_SRC_MASK 0xffff
|
|
|
|
/* opaque token for static dequeues */
|
|
#define QMAN_SDQCR_TOKEN 0xbb
|
|
|
|
#define QBMAN_EQCR_DCA_IDXMASK 0x0f
|
|
#define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
|
|
|
|
#define EQ_DESC_SIZE_WITHOUT_FD 29
|
|
#define EQ_DESC_SIZE_FD_START 32
|
|
|
|
enum qbman_sdqcr_dct {
|
|
qbman_sdqcr_dct_null = 0,
|
|
qbman_sdqcr_dct_prio_ics,
|
|
qbman_sdqcr_dct_active_ics,
|
|
qbman_sdqcr_dct_active
|
|
};
|
|
|
|
enum qbman_sdqcr_fc {
|
|
qbman_sdqcr_fc_one = 0,
|
|
qbman_sdqcr_fc_up_to_3 = 1
|
|
};
|
|
|
|
/* Internal Function declaration */
|
|
static int qbman_swp_enqueue_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd);
|
|
static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd);
|
|
static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
uint32_t *flags,
|
|
int num_frames);
|
|
static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
uint32_t *flags,
|
|
int num_frames);
|
|
static int
|
|
qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
int num_frames);
|
|
static
|
|
int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
int num_frames);
|
|
static int qbman_swp_pull_direct(struct qbman_swp *s,
|
|
struct qbman_pull_desc *d);
|
|
static int qbman_swp_pull_mem_back(struct qbman_swp *s,
|
|
struct qbman_pull_desc *d);
|
|
|
|
const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
|
|
const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
|
|
|
|
static int qbman_swp_release_direct(struct qbman_swp *s,
|
|
const struct qbman_release_desc *d,
|
|
const u64 *buffers,
|
|
unsigned int num_buffers);
|
|
static int qbman_swp_release_mem_back(struct qbman_swp *s,
|
|
const struct qbman_release_desc *d,
|
|
const u64 *buffers,
|
|
unsigned int num_buffers);
|
|
|
|
/* Function pointers */
|
|
int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd)
|
|
= qbman_swp_enqueue_direct;
|
|
|
|
int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
uint32_t *flags,
|
|
int num_frames)
|
|
= qbman_swp_enqueue_multiple_direct;
|
|
|
|
int
|
|
(*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
int num_frames)
|
|
= qbman_swp_enqueue_multiple_desc_direct;
|
|
|
|
int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
|
|
= qbman_swp_pull_direct;
|
|
|
|
const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
|
|
= qbman_swp_dqrr_next_direct;
|
|
|
|
int (*qbman_swp_release_ptr)(struct qbman_swp *s,
|
|
const struct qbman_release_desc *d,
|
|
const u64 *buffers,
|
|
unsigned int num_buffers)
|
|
= qbman_swp_release_direct;
|
|
|
|
/* Portal Access */
|
|
|
|
static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
|
|
{
|
|
return readl_relaxed(p->addr_cinh + offset);
|
|
}
|
|
|
|
static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
|
|
u32 value)
|
|
{
|
|
writel_relaxed(value, p->addr_cinh + offset);
|
|
}
|
|
|
|
static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
|
|
{
|
|
return p->addr_cena + offset;
|
|
}
|
|
|
|
#define QBMAN_CINH_SWP_CFG 0xd00
|
|
|
|
#define SWP_CFG_DQRR_MF_SHIFT 20
|
|
#define SWP_CFG_EST_SHIFT 16
|
|
#define SWP_CFG_CPBS_SHIFT 15
|
|
#define SWP_CFG_WN_SHIFT 14
|
|
#define SWP_CFG_RPM_SHIFT 12
|
|
#define SWP_CFG_DCM_SHIFT 10
|
|
#define SWP_CFG_EPM_SHIFT 8
|
|
#define SWP_CFG_VPM_SHIFT 7
|
|
#define SWP_CFG_CPM_SHIFT 6
|
|
#define SWP_CFG_SD_SHIFT 5
|
|
#define SWP_CFG_SP_SHIFT 4
|
|
#define SWP_CFG_SE_SHIFT 3
|
|
#define SWP_CFG_DP_SHIFT 2
|
|
#define SWP_CFG_DE_SHIFT 1
|
|
#define SWP_CFG_EP_SHIFT 0
|
|
|
|
static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
|
|
u8 epm, int sd, int sp, int se,
|
|
int dp, int de, int ep)
|
|
{
|
|
return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
|
|
est << SWP_CFG_EST_SHIFT |
|
|
wn << SWP_CFG_WN_SHIFT |
|
|
rpm << SWP_CFG_RPM_SHIFT |
|
|
dcm << SWP_CFG_DCM_SHIFT |
|
|
epm << SWP_CFG_EPM_SHIFT |
|
|
sd << SWP_CFG_SD_SHIFT |
|
|
sp << SWP_CFG_SP_SHIFT |
|
|
se << SWP_CFG_SE_SHIFT |
|
|
dp << SWP_CFG_DP_SHIFT |
|
|
de << SWP_CFG_DE_SHIFT |
|
|
ep << SWP_CFG_EP_SHIFT);
|
|
}
|
|
|
|
#define QMAN_RT_MODE 0x00000100
|
|
|
|
static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
|
|
{
|
|
/* 'first' is included, 'last' is excluded */
|
|
if (first <= last)
|
|
return last - first;
|
|
else
|
|
return (2 * ringsize) - (first - last);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_init() - Create a functional object representing the given
|
|
* QBMan portal descriptor.
|
|
* @d: the given qbman swp descriptor
|
|
*
|
|
* Return qbman_swp portal for success, NULL if the object cannot
|
|
* be created.
|
|
*/
|
|
struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
|
|
{
|
|
struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
u32 reg;
|
|
u32 mask_size;
|
|
u32 eqcr_pi;
|
|
|
|
if (!p)
|
|
return NULL;
|
|
|
|
spin_lock_init(&p->access_spinlock);
|
|
|
|
p->desc = d;
|
|
p->mc.valid_bit = QB_VALID_BIT;
|
|
p->sdq = 0;
|
|
p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
|
|
p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
|
|
p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
|
|
p->mr.valid_bit = QB_VALID_BIT;
|
|
|
|
atomic_set(&p->vdq.available, 1);
|
|
p->vdq.valid_bit = QB_VALID_BIT;
|
|
p->dqrr.next_idx = 0;
|
|
p->dqrr.valid_bit = QB_VALID_BIT;
|
|
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
|
|
p->dqrr.dqrr_size = 4;
|
|
p->dqrr.reset_bug = 1;
|
|
} else {
|
|
p->dqrr.dqrr_size = 8;
|
|
p->dqrr.reset_bug = 0;
|
|
}
|
|
|
|
p->addr_cena = d->cena_bar;
|
|
p->addr_cinh = d->cinh_bar;
|
|
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
|
|
|
|
reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
|
|
1, /* Writes Non-cacheable */
|
|
0, /* EQCR_CI stashing threshold */
|
|
3, /* RPM: RCR in array mode */
|
|
2, /* DCM: Discrete consumption ack */
|
|
2, /* EPM: EQCR in ring mode */
|
|
1, /* mem stashing drop enable enable */
|
|
1, /* mem stashing priority enable */
|
|
1, /* mem stashing enable */
|
|
1, /* dequeue stashing priority enable */
|
|
0, /* dequeue stashing enable enable */
|
|
0); /* EQCR_CI stashing priority enable */
|
|
} else {
|
|
memset(p->addr_cena, 0, 64 * 1024);
|
|
reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
|
|
1, /* Writes Non-cacheable */
|
|
1, /* EQCR_CI stashing threshold */
|
|
3, /* RPM: RCR in array mode */
|
|
2, /* DCM: Discrete consumption ack */
|
|
0, /* EPM: EQCR in ring mode */
|
|
1, /* mem stashing drop enable */
|
|
1, /* mem stashing priority enable */
|
|
1, /* mem stashing enable */
|
|
1, /* dequeue stashing priority enable */
|
|
0, /* dequeue stashing enable */
|
|
0); /* EQCR_CI stashing priority enable */
|
|
reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
|
|
1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
|
|
1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
|
|
}
|
|
|
|
qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
|
|
reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
|
|
if (!reg) {
|
|
pr_err("qbman: the portal is not enabled!\n");
|
|
kfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
|
|
qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
|
|
qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
|
|
}
|
|
/*
|
|
* SDQCR needs to be initialized to 0 when no channels are
|
|
* being dequeued from or else the QMan HW will indicate an
|
|
* error. The values that were calculated above will be
|
|
* applied when dequeues from a specific channel are enabled.
|
|
*/
|
|
qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
|
|
|
|
p->eqcr.pi_ring_size = 8;
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
|
|
p->eqcr.pi_ring_size = 32;
|
|
qbman_swp_enqueue_ptr =
|
|
qbman_swp_enqueue_mem_back;
|
|
qbman_swp_enqueue_multiple_ptr =
|
|
qbman_swp_enqueue_multiple_mem_back;
|
|
qbman_swp_enqueue_multiple_desc_ptr =
|
|
qbman_swp_enqueue_multiple_desc_mem_back;
|
|
qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
|
|
qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
|
|
qbman_swp_release_ptr = qbman_swp_release_mem_back;
|
|
}
|
|
|
|
for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
|
|
p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
|
|
eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
|
|
p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
|
|
p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
|
|
p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
|
|
& p->eqcr.pi_ci_mask;
|
|
p->eqcr.available = p->eqcr.pi_ring_size;
|
|
|
|
/* Initialize the software portal with a irq timeout period of 0us */
|
|
qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_finish() - Create and destroy a functional object representing
|
|
* the given QBMan portal descriptor.
|
|
* @p: the qbman_swp object to be destroyed
|
|
*/
|
|
void qbman_swp_finish(struct qbman_swp *p)
|
|
{
|
|
kfree(p);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_read_status()
|
|
* @p: the given software portal
|
|
*
|
|
* Return the value in the SWP_ISR register.
|
|
*/
|
|
u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
|
|
{
|
|
return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_clear_status()
|
|
* @p: the given software portal
|
|
* @mask: The mask to clear in SWP_ISR register
|
|
*/
|
|
void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
|
|
{
|
|
qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_get_trigger() - read interrupt enable register
|
|
* @p: the given software portal
|
|
*
|
|
* Return the value in the SWP_IER register.
|
|
*/
|
|
u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
|
|
{
|
|
return qbman_read_register(p, QBMAN_CINH_SWP_IER);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
|
|
* @p: the given software portal
|
|
* @mask: The mask of bits to enable in SWP_IER
|
|
*/
|
|
void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
|
|
{
|
|
qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_get_inhibit() - read interrupt mask register
|
|
* @p: the given software portal object
|
|
*
|
|
* Return the value in the SWP_IIR register.
|
|
*/
|
|
int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
|
|
{
|
|
return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_interrupt_set_inhibit() - write interrupt mask register
|
|
* @p: the given software portal object
|
|
* @inhibit: whether to inhibit the IRQs
|
|
*/
|
|
void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
|
|
{
|
|
qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
|
|
}
|
|
|
|
/*
|
|
* Different management commands all use this common base layer of code to issue
|
|
* commands and poll for results.
|
|
*/
|
|
|
|
/*
|
|
* Returns a pointer to where the caller should fill in their management command
|
|
* (caller should ignore the verb byte)
|
|
*/
|
|
void *qbman_swp_mc_start(struct qbman_swp *p)
|
|
{
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
|
|
return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
|
|
else
|
|
return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
|
|
}
|
|
|
|
/*
|
|
* Commits merges in the caller-supplied command verb (which should not include
|
|
* the valid-bit) and submits the command to hardware
|
|
*/
|
|
void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
|
|
{
|
|
u8 *v = cmd;
|
|
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
|
|
dma_wmb();
|
|
*v = cmd_verb | p->mc.valid_bit;
|
|
} else {
|
|
*v = cmd_verb | p->mc.valid_bit;
|
|
dma_wmb();
|
|
qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Checks for a completed response (returns non-NULL if only if the response
|
|
* is complete).
|
|
*/
|
|
void *qbman_swp_mc_result(struct qbman_swp *p)
|
|
{
|
|
u32 *ret, verb;
|
|
|
|
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
|
|
ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
|
|
/* Remove the valid-bit - command completed if the rest
|
|
* is non-zero.
|
|
*/
|
|
verb = ret[0] & ~QB_VALID_BIT;
|
|
if (!verb)
|
|
return NULL;
|
|
p->mc.valid_bit ^= QB_VALID_BIT;
|
|
} else {
|
|
ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
|
|
/* Command completed if the valid bit is toggled */
|
|
if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
|
|
return NULL;
|
|
/* Command completed if the rest is non-zero */
|
|
verb = ret[0] & ~QB_VALID_BIT;
|
|
if (!verb)
|
|
return NULL;
|
|
p->mr.valid_bit ^= QB_VALID_BIT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
|
|
enum qb_enqueue_commands {
|
|
enqueue_empty = 0,
|
|
enqueue_response_always = 1,
|
|
enqueue_rejects_to_fq = 2
|
|
};
|
|
|
|
#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
|
|
#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
|
|
#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
|
|
#define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
|
|
|
|
/*
|
|
* qbman_eq_desc_clear() - Clear the contents of a descriptor to
|
|
* default/starting state.
|
|
*/
|
|
void qbman_eq_desc_clear(struct qbman_eq_desc *d)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
}
|
|
|
|
/**
|
|
* qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
|
|
* @d: the enqueue descriptor.
|
|
* @respond_success: 1 = enqueue with response always; 0 = enqueue with
|
|
* rejections returned on a FQ.
|
|
*/
|
|
void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
|
|
{
|
|
d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
|
|
if (respond_success)
|
|
d->verb |= enqueue_response_always;
|
|
else
|
|
d->verb |= enqueue_rejects_to_fq;
|
|
}
|
|
|
|
/*
|
|
* Exactly one of the following descriptor "targets" should be set. (Calling any
|
|
* one of these will replace the effect of any prior call to one of these.)
|
|
* -enqueue to a frame queue
|
|
* -enqueue to a queuing destination
|
|
*/
|
|
|
|
/**
|
|
* qbman_eq_desc_set_fq() - set the FQ for the enqueue command
|
|
* @d: the enqueue descriptor
|
|
* @fqid: the id of the frame queue to be enqueued
|
|
*/
|
|
void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
|
|
{
|
|
d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
|
|
d->tgtid = cpu_to_le32(fqid);
|
|
}
|
|
|
|
/**
|
|
* qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
|
|
* @d: the enqueue descriptor
|
|
* @qdid: the id of the queuing destination to be enqueued
|
|
* @qd_bin: the queuing destination bin
|
|
* @qd_prio: the queuing destination priority
|
|
*/
|
|
void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
|
|
u32 qd_bin, u32 qd_prio)
|
|
{
|
|
d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
|
|
d->tgtid = cpu_to_le32(qdid);
|
|
d->qdbin = cpu_to_le16(qd_bin);
|
|
d->qpri = qd_prio;
|
|
}
|
|
|
|
#define EQAR_IDX(eqar) ((eqar) & 0x7)
|
|
#define EQAR_VB(eqar) ((eqar) & 0x80)
|
|
#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
|
|
|
|
#define QB_RT_BIT ((u32)0x100)
|
|
/**
|
|
* qbman_swp_enqueue_direct() - Issue an enqueue command
|
|
* @s: the software portal used for enqueue
|
|
* @d: the enqueue descriptor
|
|
* @fd: the frame descriptor to be enqueued
|
|
*
|
|
* Please note that 'fd' should only be NULL if the "action" of the
|
|
* descriptor is "orp_hole" or "orp_nesn".
|
|
*
|
|
* Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd)
|
|
{
|
|
int flags = 0;
|
|
int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
|
|
|
|
if (ret >= 0)
|
|
ret = 0;
|
|
else
|
|
ret = -EBUSY;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_enqueue_mem_back() - Issue an enqueue command
|
|
* @s: the software portal used for enqueue
|
|
* @d: the enqueue descriptor
|
|
* @fd: the frame descriptor to be enqueued
|
|
*
|
|
* Please note that 'fd' should only be NULL if the "action" of the
|
|
* descriptor is "orp_hole" or "orp_nesn".
|
|
*
|
|
* Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd)
|
|
{
|
|
int flags = 0;
|
|
int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
|
|
|
|
if (ret >= 0)
|
|
ret = 0;
|
|
else
|
|
ret = -EBUSY;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
|
|
* using one enqueue descriptor
|
|
* @s: the software portal used for enqueue
|
|
* @d: the enqueue descriptor
|
|
* @fd: table pointer of frame descriptor table to be enqueued
|
|
* @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
|
|
* @num_frames: number of fd to be enqueued
|
|
*
|
|
* Return the number of fd enqueued, or a negative error number.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
uint32_t *flags,
|
|
int num_frames)
|
|
{
|
|
uint32_t *p = NULL;
|
|
const uint32_t *cl = (uint32_t *)d;
|
|
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
|
|
int i, num_enqueued = 0;
|
|
|
|
spin_lock(&s->access_spinlock);
|
|
half_mask = (s->eqcr.pi_ci_mask>>1);
|
|
full_mask = s->eqcr.pi_ci_mask;
|
|
|
|
if (!s->eqcr.available) {
|
|
eqcr_ci = s->eqcr.ci;
|
|
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
|
|
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
|
|
s->eqcr.ci &= full_mask;
|
|
|
|
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
|
|
eqcr_ci, s->eqcr.ci);
|
|
if (!s->eqcr.available) {
|
|
spin_unlock(&s->access_spinlock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
eqcr_pi = s->eqcr.pi;
|
|
num_enqueued = (s->eqcr.available < num_frames) ?
|
|
s->eqcr.available : num_frames;
|
|
s->eqcr.available -= num_enqueued;
|
|
/* Fill in the EQCR ring */
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
/* Skip copying the verb */
|
|
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
|
|
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
|
|
&fd[i], sizeof(*fd));
|
|
eqcr_pi++;
|
|
}
|
|
|
|
dma_wmb();
|
|
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
p[0] = cl[0] | s->eqcr.pi_vb;
|
|
if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
|
|
struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
|
|
|
|
eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
|
|
((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
|
|
}
|
|
eqcr_pi++;
|
|
if (!(eqcr_pi & half_mask))
|
|
s->eqcr.pi_vb ^= QB_VALID_BIT;
|
|
}
|
|
|
|
/* Flush all the cacheline without load/store in between */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++)
|
|
eqcr_pi++;
|
|
s->eqcr.pi = eqcr_pi & full_mask;
|
|
spin_unlock(&s->access_spinlock);
|
|
|
|
return num_enqueued;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
|
|
* using one enqueue descriptor
|
|
* @s: the software portal used for enqueue
|
|
* @d: the enqueue descriptor
|
|
* @fd: table pointer of frame descriptor table to be enqueued
|
|
* @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
|
|
* @num_frames: number of fd to be enqueued
|
|
*
|
|
* Return the number of fd enqueued, or a negative error number.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
uint32_t *flags,
|
|
int num_frames)
|
|
{
|
|
uint32_t *p = NULL;
|
|
const uint32_t *cl = (uint32_t *)(d);
|
|
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
|
|
int i, num_enqueued = 0;
|
|
unsigned long irq_flags;
|
|
|
|
spin_lock_irqsave(&s->access_spinlock, irq_flags);
|
|
|
|
half_mask = (s->eqcr.pi_ci_mask>>1);
|
|
full_mask = s->eqcr.pi_ci_mask;
|
|
if (!s->eqcr.available) {
|
|
eqcr_ci = s->eqcr.ci;
|
|
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
|
|
s->eqcr.ci &= full_mask;
|
|
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
|
|
eqcr_ci, s->eqcr.ci);
|
|
if (!s->eqcr.available) {
|
|
spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
eqcr_pi = s->eqcr.pi;
|
|
num_enqueued = (s->eqcr.available < num_frames) ?
|
|
s->eqcr.available : num_frames;
|
|
s->eqcr.available -= num_enqueued;
|
|
/* Fill in the EQCR ring */
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
/* Skip copying the verb */
|
|
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
|
|
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
|
|
&fd[i], sizeof(*fd));
|
|
eqcr_pi++;
|
|
}
|
|
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
p[0] = cl[0] | s->eqcr.pi_vb;
|
|
if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
|
|
struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
|
|
|
|
eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
|
|
((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
|
|
}
|
|
eqcr_pi++;
|
|
if (!(eqcr_pi & half_mask))
|
|
s->eqcr.pi_vb ^= QB_VALID_BIT;
|
|
}
|
|
s->eqcr.pi = eqcr_pi & full_mask;
|
|
|
|
dma_wmb();
|
|
qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
|
|
(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
|
|
spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
|
|
|
|
return num_enqueued;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
|
|
* using multiple enqueue descriptor
|
|
* @s: the software portal used for enqueue
|
|
* @d: table of minimal enqueue descriptor
|
|
* @fd: table pointer of frame descriptor table to be enqueued
|
|
* @num_frames: number of fd to be enqueued
|
|
*
|
|
* Return the number of fd enqueued, or a negative error number.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
int num_frames)
|
|
{
|
|
uint32_t *p;
|
|
const uint32_t *cl;
|
|
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
|
|
int i, num_enqueued = 0;
|
|
|
|
half_mask = (s->eqcr.pi_ci_mask>>1);
|
|
full_mask = s->eqcr.pi_ci_mask;
|
|
if (!s->eqcr.available) {
|
|
eqcr_ci = s->eqcr.ci;
|
|
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
|
|
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
|
|
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
|
|
eqcr_ci, s->eqcr.ci);
|
|
if (!s->eqcr.available)
|
|
return 0;
|
|
}
|
|
|
|
eqcr_pi = s->eqcr.pi;
|
|
num_enqueued = (s->eqcr.available < num_frames) ?
|
|
s->eqcr.available : num_frames;
|
|
s->eqcr.available -= num_enqueued;
|
|
/* Fill in the EQCR ring */
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
cl = (uint32_t *)(&d[i]);
|
|
/* Skip copying the verb */
|
|
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
|
|
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
|
|
&fd[i], sizeof(*fd));
|
|
eqcr_pi++;
|
|
}
|
|
|
|
dma_wmb();
|
|
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
cl = (uint32_t *)(&d[i]);
|
|
p[0] = cl[0] | s->eqcr.pi_vb;
|
|
eqcr_pi++;
|
|
if (!(eqcr_pi & half_mask))
|
|
s->eqcr.pi_vb ^= QB_VALID_BIT;
|
|
}
|
|
|
|
/* Flush all the cacheline without load/store in between */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++)
|
|
eqcr_pi++;
|
|
s->eqcr.pi = eqcr_pi & full_mask;
|
|
|
|
return num_enqueued;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
|
|
* using multiple enqueue descriptor
|
|
* @s: the software portal used for enqueue
|
|
* @d: table of minimal enqueue descriptor
|
|
* @fd: table pointer of frame descriptor table to be enqueued
|
|
* @num_frames: number of fd to be enqueued
|
|
*
|
|
* Return the number of fd enqueued, or a negative error number.
|
|
*/
|
|
static
|
|
int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
|
|
const struct qbman_eq_desc *d,
|
|
const struct dpaa2_fd *fd,
|
|
int num_frames)
|
|
{
|
|
uint32_t *p;
|
|
const uint32_t *cl;
|
|
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
|
|
int i, num_enqueued = 0;
|
|
|
|
half_mask = (s->eqcr.pi_ci_mask>>1);
|
|
full_mask = s->eqcr.pi_ci_mask;
|
|
if (!s->eqcr.available) {
|
|
eqcr_ci = s->eqcr.ci;
|
|
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
|
|
s->eqcr.ci &= full_mask;
|
|
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
|
|
eqcr_ci, s->eqcr.ci);
|
|
if (!s->eqcr.available)
|
|
return 0;
|
|
}
|
|
|
|
eqcr_pi = s->eqcr.pi;
|
|
num_enqueued = (s->eqcr.available < num_frames) ?
|
|
s->eqcr.available : num_frames;
|
|
s->eqcr.available -= num_enqueued;
|
|
/* Fill in the EQCR ring */
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
cl = (uint32_t *)(&d[i]);
|
|
/* Skip copying the verb */
|
|
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
|
|
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
|
|
&fd[i], sizeof(*fd));
|
|
eqcr_pi++;
|
|
}
|
|
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
eqcr_pi = s->eqcr.pi;
|
|
for (i = 0; i < num_enqueued; i++) {
|
|
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
|
|
cl = (uint32_t *)(&d[i]);
|
|
p[0] = cl[0] | s->eqcr.pi_vb;
|
|
eqcr_pi++;
|
|
if (!(eqcr_pi & half_mask))
|
|
s->eqcr.pi_vb ^= QB_VALID_BIT;
|
|
}
|
|
|
|
s->eqcr.pi = eqcr_pi & full_mask;
|
|
|
|
dma_wmb();
|
|
qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
|
|
(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
|
|
|
|
return num_enqueued;
|
|
}
|
|
|
|
/* Static (push) dequeue */
|
|
|
|
/**
|
|
* qbman_swp_push_get() - Get the push dequeue setup
|
|
* @s: the software portal object
|
|
* @channel_idx: the channel index to query
|
|
* @enabled: returned boolean to show whether the push dequeue is enabled
|
|
* for the given channel
|
|
*/
|
|
void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
|
|
{
|
|
u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
|
|
|
|
WARN_ON(channel_idx > 15);
|
|
*enabled = src | (1 << channel_idx);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_push_set() - Enable or disable push dequeue
|
|
* @s: the software portal object
|
|
* @channel_idx: the channel index (0 to 15)
|
|
* @enable: enable or disable push dequeue
|
|
*/
|
|
void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
|
|
{
|
|
u16 dqsrc;
|
|
|
|
WARN_ON(channel_idx > 15);
|
|
if (enable)
|
|
s->sdq |= 1 << channel_idx;
|
|
else
|
|
s->sdq &= ~(1 << channel_idx);
|
|
|
|
/* Read make the complete src map. If no channels are enabled
|
|
* the SDQCR must be 0 or else QMan will assert errors
|
|
*/
|
|
dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
|
|
if (dqsrc != 0)
|
|
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
|
|
else
|
|
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
|
|
}
|
|
|
|
#define QB_VDQCR_VERB_DCT_SHIFT 0
|
|
#define QB_VDQCR_VERB_DT_SHIFT 2
|
|
#define QB_VDQCR_VERB_RLS_SHIFT 4
|
|
#define QB_VDQCR_VERB_WAE_SHIFT 5
|
|
|
|
enum qb_pull_dt_e {
|
|
qb_pull_dt_channel,
|
|
qb_pull_dt_workqueue,
|
|
qb_pull_dt_framequeue
|
|
};
|
|
|
|
/**
|
|
* qbman_pull_desc_clear() - Clear the contents of a descriptor to
|
|
* default/starting state
|
|
* @d: the pull dequeue descriptor to be cleared
|
|
*/
|
|
void qbman_pull_desc_clear(struct qbman_pull_desc *d)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
}
|
|
|
|
/**
|
|
* qbman_pull_desc_set_storage()- Set the pull dequeue storage
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @storage: the pointer of the memory to store the dequeue result
|
|
* @storage_phys: the physical address of the storage memory
|
|
* @stash: to indicate whether write allocate is enabled
|
|
*
|
|
* If not called, or if called with 'storage' as NULL, the result pull dequeues
|
|
* will produce results to DQRR. If 'storage' is non-NULL, then results are
|
|
* produced to the given memory location (using the DMA address which
|
|
* the caller provides in 'storage_phys'), and 'stash' controls whether or not
|
|
* those writes to main-memory express a cache-warming attribute.
|
|
*/
|
|
void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
|
|
struct dpaa2_dq *storage,
|
|
dma_addr_t storage_phys,
|
|
int stash)
|
|
{
|
|
/* save the virtual address */
|
|
d->rsp_addr_virt = (u64)(uintptr_t)storage;
|
|
|
|
if (!storage) {
|
|
d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
|
|
return;
|
|
}
|
|
d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
|
|
if (stash)
|
|
d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
|
|
else
|
|
d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
|
|
|
|
d->rsp_addr = cpu_to_le64(storage_phys);
|
|
}
|
|
|
|
/**
|
|
* qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @numframes: number of frames to be set, must be between 1 and 16, inclusive
|
|
*/
|
|
void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
|
|
{
|
|
d->numf = numframes - 1;
|
|
}
|
|
|
|
/*
|
|
* Exactly one of the following descriptor "actions" should be set. (Calling any
|
|
* one of these will replace the effect of any prior call to one of these.)
|
|
* - pull dequeue from the given frame queue (FQ)
|
|
* - pull dequeue from any FQ in the given work queue (WQ)
|
|
* - pull dequeue from any FQ in any WQ in the given channel
|
|
*/
|
|
|
|
/**
|
|
* qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @fqid: the frame queue index of the given FQ
|
|
*/
|
|
void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
|
|
{
|
|
d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
|
|
d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
|
|
d->dq_src = cpu_to_le32(fqid);
|
|
}
|
|
|
|
/**
|
|
* qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @wqid: composed of channel id and wqid within the channel
|
|
* @dct: the dequeue command type
|
|
*/
|
|
void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
|
|
enum qbman_pull_type_e dct)
|
|
{
|
|
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
|
|
d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
|
|
d->dq_src = cpu_to_le32(wqid);
|
|
}
|
|
|
|
/**
|
|
* qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
|
|
* dequeues
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @chid: the channel id to be dequeued
|
|
* @dct: the dequeue command type
|
|
*/
|
|
void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
|
|
enum qbman_pull_type_e dct)
|
|
{
|
|
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
|
|
d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
|
|
d->dq_src = cpu_to_le32(chid);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_pull_direct() - Issue the pull dequeue command
|
|
* @s: the software portal object
|
|
* @d: the software portal descriptor which has been configured with
|
|
* the set of qbman_pull_desc_set_*() calls
|
|
*
|
|
* Return 0 for success, and -EBUSY if the software portal is not ready
|
|
* to do pull dequeue.
|
|
*/
|
|
static
|
|
int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
|
|
{
|
|
struct qbman_pull_desc *p;
|
|
|
|
if (!atomic_dec_and_test(&s->vdq.available)) {
|
|
atomic_inc(&s->vdq.available);
|
|
return -EBUSY;
|
|
}
|
|
s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
|
|
if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
|
|
else
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
|
|
p->numf = d->numf;
|
|
p->tok = QMAN_DQ_TOKEN_VALID;
|
|
p->dq_src = d->dq_src;
|
|
p->rsp_addr = d->rsp_addr;
|
|
p->rsp_addr_virt = d->rsp_addr_virt;
|
|
dma_wmb();
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
p->verb = d->verb | s->vdq.valid_bit;
|
|
s->vdq.valid_bit ^= QB_VALID_BIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_pull_mem_back() - Issue the pull dequeue command
|
|
* @s: the software portal object
|
|
* @d: the software portal descriptor which has been configured with
|
|
* the set of qbman_pull_desc_set_*() calls
|
|
*
|
|
* Return 0 for success, and -EBUSY if the software portal is not ready
|
|
* to do pull dequeue.
|
|
*/
|
|
static
|
|
int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
|
|
{
|
|
struct qbman_pull_desc *p;
|
|
|
|
if (!atomic_dec_and_test(&s->vdq.available)) {
|
|
atomic_inc(&s->vdq.available);
|
|
return -EBUSY;
|
|
}
|
|
s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
|
|
if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
|
|
else
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
|
|
p->numf = d->numf;
|
|
p->tok = QMAN_DQ_TOKEN_VALID;
|
|
p->dq_src = d->dq_src;
|
|
p->rsp_addr = d->rsp_addr;
|
|
p->rsp_addr_virt = d->rsp_addr_virt;
|
|
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
p->verb = d->verb | s->vdq.valid_bit;
|
|
s->vdq.valid_bit ^= QB_VALID_BIT;
|
|
dma_wmb();
|
|
qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define QMAN_DQRR_PI_MASK 0xf
|
|
|
|
/**
|
|
* qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
|
|
* @s: the software portal object
|
|
*
|
|
* Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
|
|
* only once, so repeated calls can return a sequence of DQRR entries, without
|
|
* requiring they be consumed immediately or in any particular order.
|
|
*/
|
|
const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
|
|
{
|
|
u32 verb;
|
|
u32 response_verb;
|
|
u32 flags;
|
|
struct dpaa2_dq *p;
|
|
|
|
/* Before using valid-bit to detect if something is there, we have to
|
|
* handle the case of the DQRR reset bug...
|
|
*/
|
|
if (unlikely(s->dqrr.reset_bug)) {
|
|
/*
|
|
* We pick up new entries by cache-inhibited producer index,
|
|
* which means that a non-coherent mapping would require us to
|
|
* invalidate and read *only* once that PI has indicated that
|
|
* there's an entry here. The first trip around the DQRR ring
|
|
* will be much less efficient than all subsequent trips around
|
|
* it...
|
|
*/
|
|
u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
|
|
QMAN_DQRR_PI_MASK;
|
|
|
|
/* there are new entries if pi != next_idx */
|
|
if (pi == s->dqrr.next_idx)
|
|
return NULL;
|
|
|
|
/*
|
|
* if next_idx is/was the last ring index, and 'pi' is
|
|
* different, we can disable the workaround as all the ring
|
|
* entries have now been DMA'd to so valid-bit checking is
|
|
* repaired. Note: this logic needs to be based on next_idx
|
|
* (which increments one at a time), rather than on pi (which
|
|
* can burst and wrap-around between our snapshots of it).
|
|
*/
|
|
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
|
|
pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
|
|
s->dqrr.next_idx, pi);
|
|
s->dqrr.reset_bug = 0;
|
|
}
|
|
prefetch(qbman_get_cmd(s,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
}
|
|
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
|
|
verb = p->dq.verb;
|
|
|
|
/*
|
|
* If the valid-bit isn't of the expected polarity, nothing there. Note,
|
|
* in the DQRR reset bug workaround, we shouldn't need to skip these
|
|
* check, because we've already determined that a new entry is available
|
|
* and we've invalidated the cacheline before reading it, so the
|
|
* valid-bit behaviour is repaired and should tell us what we already
|
|
* knew from reading PI.
|
|
*/
|
|
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
|
|
prefetch(qbman_get_cmd(s,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
return NULL;
|
|
}
|
|
/*
|
|
* There's something there. Move "next_idx" attention to the next ring
|
|
* entry (and prefetch it) before returning what we found.
|
|
*/
|
|
s->dqrr.next_idx++;
|
|
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
|
|
if (!s->dqrr.next_idx)
|
|
s->dqrr.valid_bit ^= QB_VALID_BIT;
|
|
|
|
/*
|
|
* If this is the final response to a volatile dequeue command
|
|
* indicate that the vdq is available
|
|
*/
|
|
flags = p->dq.stat;
|
|
response_verb = verb & QBMAN_RESULT_MASK;
|
|
if ((response_verb == QBMAN_RESULT_DQ) &&
|
|
(flags & DPAA2_DQ_STAT_VOLATILE) &&
|
|
(flags & DPAA2_DQ_STAT_EXPIRED))
|
|
atomic_inc(&s->vdq.available);
|
|
|
|
prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
|
|
* @s: the software portal object
|
|
*
|
|
* Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
|
|
* only once, so repeated calls can return a sequence of DQRR entries, without
|
|
* requiring they be consumed immediately or in any particular order.
|
|
*/
|
|
const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
|
|
{
|
|
u32 verb;
|
|
u32 response_verb;
|
|
u32 flags;
|
|
struct dpaa2_dq *p;
|
|
|
|
/* Before using valid-bit to detect if something is there, we have to
|
|
* handle the case of the DQRR reset bug...
|
|
*/
|
|
if (unlikely(s->dqrr.reset_bug)) {
|
|
/*
|
|
* We pick up new entries by cache-inhibited producer index,
|
|
* which means that a non-coherent mapping would require us to
|
|
* invalidate and read *only* once that PI has indicated that
|
|
* there's an entry here. The first trip around the DQRR ring
|
|
* will be much less efficient than all subsequent trips around
|
|
* it...
|
|
*/
|
|
u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
|
|
QMAN_DQRR_PI_MASK;
|
|
|
|
/* there are new entries if pi != next_idx */
|
|
if (pi == s->dqrr.next_idx)
|
|
return NULL;
|
|
|
|
/*
|
|
* if next_idx is/was the last ring index, and 'pi' is
|
|
* different, we can disable the workaround as all the ring
|
|
* entries have now been DMA'd to so valid-bit checking is
|
|
* repaired. Note: this logic needs to be based on next_idx
|
|
* (which increments one at a time), rather than on pi (which
|
|
* can burst and wrap-around between our snapshots of it).
|
|
*/
|
|
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
|
|
pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
|
|
s->dqrr.next_idx, pi);
|
|
s->dqrr.reset_bug = 0;
|
|
}
|
|
prefetch(qbman_get_cmd(s,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
}
|
|
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
|
|
verb = p->dq.verb;
|
|
|
|
/*
|
|
* If the valid-bit isn't of the expected polarity, nothing there. Note,
|
|
* in the DQRR reset bug workaround, we shouldn't need to skip these
|
|
* check, because we've already determined that a new entry is available
|
|
* and we've invalidated the cacheline before reading it, so the
|
|
* valid-bit behaviour is repaired and should tell us what we already
|
|
* knew from reading PI.
|
|
*/
|
|
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
|
|
prefetch(qbman_get_cmd(s,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
return NULL;
|
|
}
|
|
/*
|
|
* There's something there. Move "next_idx" attention to the next ring
|
|
* entry (and prefetch it) before returning what we found.
|
|
*/
|
|
s->dqrr.next_idx++;
|
|
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
|
|
if (!s->dqrr.next_idx)
|
|
s->dqrr.valid_bit ^= QB_VALID_BIT;
|
|
|
|
/*
|
|
* If this is the final response to a volatile dequeue command
|
|
* indicate that the vdq is available
|
|
*/
|
|
flags = p->dq.stat;
|
|
response_verb = verb & QBMAN_RESULT_MASK;
|
|
if ((response_verb == QBMAN_RESULT_DQ) &&
|
|
(flags & DPAA2_DQ_STAT_VOLATILE) &&
|
|
(flags & DPAA2_DQ_STAT_EXPIRED))
|
|
atomic_inc(&s->vdq.available);
|
|
|
|
prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
|
|
* qbman_swp_dqrr_next().
|
|
* @s: the software portal object
|
|
* @dq: the DQRR entry to be consumed
|
|
*/
|
|
void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
|
|
{
|
|
qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
|
|
}
|
|
|
|
/**
|
|
* qbman_result_has_new_result() - Check and get the dequeue response from the
|
|
* dq storage memory set in pull dequeue command
|
|
* @s: the software portal object
|
|
* @dq: the dequeue result read from the memory
|
|
*
|
|
* Return 1 for getting a valid dequeue result, or 0 for not getting a valid
|
|
* dequeue result.
|
|
*
|
|
* Only used for user-provided storage of dequeue results, not DQRR. For
|
|
* efficiency purposes, the driver will perform any required endianness
|
|
* conversion to ensure that the user's dequeue result storage is in host-endian
|
|
* format. As such, once the user has called qbman_result_has_new_result() and
|
|
* been returned a valid dequeue result, they should not call it again on
|
|
* the same memory location (except of course if another dequeue command has
|
|
* been executed to produce a new result to that location).
|
|
*/
|
|
int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
|
|
{
|
|
if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
|
|
return 0;
|
|
|
|
/*
|
|
* Set token to be 0 so we will detect change back to 1
|
|
* next time the looping is traversed. Const is cast away here
|
|
* as we want users to treat the dequeue responses as read only.
|
|
*/
|
|
((struct dpaa2_dq *)dq)->dq.tok = 0;
|
|
|
|
/*
|
|
* Determine whether VDQCR is available based on whether the
|
|
* current result is sitting in the first storage location of
|
|
* the busy command.
|
|
*/
|
|
if (s->vdq.storage == dq) {
|
|
s->vdq.storage = NULL;
|
|
atomic_inc(&s->vdq.available);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* qbman_release_desc_clear() - Clear the contents of a descriptor to
|
|
* default/starting state.
|
|
* @d: the pull dequeue descriptor to be cleared
|
|
*/
|
|
void qbman_release_desc_clear(struct qbman_release_desc *d)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
d->verb = 1 << 5; /* Release Command Valid */
|
|
}
|
|
|
|
/**
|
|
* qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @bpid: the bpid value to be set
|
|
*/
|
|
void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
|
|
{
|
|
d->bpid = cpu_to_le16(bpid);
|
|
}
|
|
|
|
/**
|
|
* qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
|
|
* interrupt source should be asserted after the release command is completed.
|
|
* @d: the pull dequeue descriptor to be set
|
|
* @enable: enable (1) or disable (0) value
|
|
*/
|
|
void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
|
|
{
|
|
if (enable)
|
|
d->verb |= 1 << 6;
|
|
else
|
|
d->verb &= ~(1 << 6);
|
|
}
|
|
|
|
#define RAR_IDX(rar) ((rar) & 0x7)
|
|
#define RAR_VB(rar) ((rar) & 0x80)
|
|
#define RAR_SUCCESS(rar) ((rar) & 0x100)
|
|
|
|
/**
|
|
* qbman_swp_release_direct() - Issue a buffer release command
|
|
* @s: the software portal object
|
|
* @d: the release descriptor
|
|
* @buffers: a pointer pointing to the buffer address to be released
|
|
* @num_buffers: number of buffers to be released, must be less than 8
|
|
*
|
|
* Return 0 for success, -EBUSY if the release command ring is not ready.
|
|
*/
|
|
int qbman_swp_release_direct(struct qbman_swp *s,
|
|
const struct qbman_release_desc *d,
|
|
const u64 *buffers, unsigned int num_buffers)
|
|
{
|
|
int i;
|
|
struct qbman_release_desc *p;
|
|
u32 rar;
|
|
|
|
if (!num_buffers || (num_buffers > 7))
|
|
return -EINVAL;
|
|
|
|
rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
|
|
if (!RAR_SUCCESS(rar))
|
|
return -EBUSY;
|
|
|
|
/* Start the release command */
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
|
|
|
|
/* Copy the caller's buffer pointers to the command */
|
|
for (i = 0; i < num_buffers; i++)
|
|
p->buf[i] = cpu_to_le64(buffers[i]);
|
|
p->bpid = d->bpid;
|
|
|
|
/*
|
|
* Set the verb byte, have to substitute in the valid-bit
|
|
* and the number of buffers.
|
|
*/
|
|
dma_wmb();
|
|
p->verb = d->verb | RAR_VB(rar) | num_buffers;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_release_mem_back() - Issue a buffer release command
|
|
* @s: the software portal object
|
|
* @d: the release descriptor
|
|
* @buffers: a pointer pointing to the buffer address to be released
|
|
* @num_buffers: number of buffers to be released, must be less than 8
|
|
*
|
|
* Return 0 for success, -EBUSY if the release command ring is not ready.
|
|
*/
|
|
int qbman_swp_release_mem_back(struct qbman_swp *s,
|
|
const struct qbman_release_desc *d,
|
|
const u64 *buffers, unsigned int num_buffers)
|
|
{
|
|
int i;
|
|
struct qbman_release_desc *p;
|
|
u32 rar;
|
|
|
|
if (!num_buffers || (num_buffers > 7))
|
|
return -EINVAL;
|
|
|
|
rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
|
|
if (!RAR_SUCCESS(rar))
|
|
return -EBUSY;
|
|
|
|
/* Start the release command */
|
|
p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
|
|
|
|
/* Copy the caller's buffer pointers to the command */
|
|
for (i = 0; i < num_buffers; i++)
|
|
p->buf[i] = cpu_to_le64(buffers[i]);
|
|
p->bpid = d->bpid;
|
|
|
|
p->verb = d->verb | RAR_VB(rar) | num_buffers;
|
|
dma_wmb();
|
|
qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
|
|
RAR_IDX(rar) * 4, QMAN_RT_MODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct qbman_acquire_desc {
|
|
u8 verb;
|
|
u8 reserved;
|
|
__le16 bpid;
|
|
u8 num;
|
|
u8 reserved2[59];
|
|
};
|
|
|
|
struct qbman_acquire_rslt {
|
|
u8 verb;
|
|
u8 rslt;
|
|
__le16 reserved;
|
|
u8 num;
|
|
u8 reserved2[3];
|
|
__le64 buf[7];
|
|
};
|
|
|
|
/**
|
|
* qbman_swp_acquire() - Issue a buffer acquire command
|
|
* @s: the software portal object
|
|
* @bpid: the buffer pool index
|
|
* @buffers: a pointer pointing to the acquired buffer addresses
|
|
* @num_buffers: number of buffers to be acquired, must be less than 8
|
|
*
|
|
* Return 0 for success, or negative error code if the acquire command
|
|
* fails.
|
|
*/
|
|
int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
|
|
unsigned int num_buffers)
|
|
{
|
|
struct qbman_acquire_desc *p;
|
|
struct qbman_acquire_rslt *r;
|
|
int i;
|
|
|
|
if (!num_buffers || (num_buffers > 7))
|
|
return -EINVAL;
|
|
|
|
/* Start the management command */
|
|
p = qbman_swp_mc_start(s);
|
|
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
/* Encode the caller-provided attributes */
|
|
p->bpid = cpu_to_le16(bpid);
|
|
p->num = num_buffers;
|
|
|
|
/* Complete the management command */
|
|
r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
|
|
if (unlikely(!r)) {
|
|
pr_err("qbman: acquire from BPID %d failed, no response\n",
|
|
bpid);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Decode the outcome */
|
|
WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
|
|
|
|
/* Determine success or failure */
|
|
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
|
|
pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
|
|
bpid, r->rslt);
|
|
return -EIO;
|
|
}
|
|
|
|
WARN_ON(r->num > num_buffers);
|
|
|
|
/* Copy the acquired buffers to the caller's array */
|
|
for (i = 0; i < r->num; i++)
|
|
buffers[i] = le64_to_cpu(r->buf[i]);
|
|
|
|
return (int)r->num;
|
|
}
|
|
|
|
struct qbman_alt_fq_state_desc {
|
|
u8 verb;
|
|
u8 reserved[3];
|
|
__le32 fqid;
|
|
u8 reserved2[56];
|
|
};
|
|
|
|
struct qbman_alt_fq_state_rslt {
|
|
u8 verb;
|
|
u8 rslt;
|
|
u8 reserved[62];
|
|
};
|
|
|
|
#define ALT_FQ_FQID_MASK 0x00FFFFFF
|
|
|
|
int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
|
|
u8 alt_fq_verb)
|
|
{
|
|
struct qbman_alt_fq_state_desc *p;
|
|
struct qbman_alt_fq_state_rslt *r;
|
|
|
|
/* Start the management command */
|
|
p = qbman_swp_mc_start(s);
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
|
|
|
|
/* Complete the management command */
|
|
r = qbman_swp_mc_complete(s, p, alt_fq_verb);
|
|
if (unlikely(!r)) {
|
|
pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
|
|
alt_fq_verb);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Decode the outcome */
|
|
WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
|
|
|
|
/* Determine success or failure */
|
|
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
|
|
pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
|
|
fqid, r->verb, r->rslt);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct qbman_cdan_ctrl_desc {
|
|
u8 verb;
|
|
u8 reserved;
|
|
__le16 ch;
|
|
u8 we;
|
|
u8 ctrl;
|
|
__le16 reserved2;
|
|
__le64 cdan_ctx;
|
|
u8 reserved3[48];
|
|
|
|
};
|
|
|
|
struct qbman_cdan_ctrl_rslt {
|
|
u8 verb;
|
|
u8 rslt;
|
|
__le16 ch;
|
|
u8 reserved[60];
|
|
};
|
|
|
|
int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
|
|
u8 we_mask, u8 cdan_en,
|
|
u64 ctx)
|
|
{
|
|
struct qbman_cdan_ctrl_desc *p = NULL;
|
|
struct qbman_cdan_ctrl_rslt *r = NULL;
|
|
|
|
/* Start the management command */
|
|
p = qbman_swp_mc_start(s);
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
/* Encode the caller-provided attributes */
|
|
p->ch = cpu_to_le16(channelid);
|
|
p->we = we_mask;
|
|
if (cdan_en)
|
|
p->ctrl = 1;
|
|
else
|
|
p->ctrl = 0;
|
|
p->cdan_ctx = cpu_to_le64(ctx);
|
|
|
|
/* Complete the management command */
|
|
r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
|
|
if (unlikely(!r)) {
|
|
pr_err("qbman: wqchan config failed, no response\n");
|
|
return -EIO;
|
|
}
|
|
|
|
WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
|
|
|
|
/* Determine success or failure */
|
|
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
|
|
pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
|
|
channelid, r->rslt);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define QBMAN_RESPONSE_VERB_MASK 0x7f
|
|
#define QBMAN_FQ_QUERY_NP 0x45
|
|
#define QBMAN_BP_QUERY 0x32
|
|
|
|
struct qbman_fq_query_desc {
|
|
u8 verb;
|
|
u8 reserved[3];
|
|
__le32 fqid;
|
|
u8 reserved2[56];
|
|
};
|
|
|
|
int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
|
|
struct qbman_fq_query_np_rslt *r)
|
|
{
|
|
struct qbman_fq_query_desc *p;
|
|
void *resp;
|
|
|
|
p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
/* FQID is a 24 bit value */
|
|
p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
|
|
resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
|
|
if (!resp) {
|
|
pr_err("qbman: Query FQID %d NP fields failed, no response\n",
|
|
fqid);
|
|
return -EIO;
|
|
}
|
|
*r = *(struct qbman_fq_query_np_rslt *)resp;
|
|
/* Decode the outcome */
|
|
WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
|
|
|
|
/* Determine success or failure */
|
|
if (r->rslt != QBMAN_MC_RSLT_OK) {
|
|
pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
|
|
p->fqid, r->rslt);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
|
|
{
|
|
return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
|
|
}
|
|
|
|
u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
|
|
{
|
|
return le32_to_cpu(r->byte_cnt);
|
|
}
|
|
|
|
struct qbman_bp_query_desc {
|
|
u8 verb;
|
|
u8 reserved;
|
|
__le16 bpid;
|
|
u8 reserved2[60];
|
|
};
|
|
|
|
int qbman_bp_query(struct qbman_swp *s, u16 bpid,
|
|
struct qbman_bp_query_rslt *r)
|
|
{
|
|
struct qbman_bp_query_desc *p;
|
|
void *resp;
|
|
|
|
p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
p->bpid = cpu_to_le16(bpid);
|
|
resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
|
|
if (!resp) {
|
|
pr_err("qbman: Query BPID %d fields failed, no response\n",
|
|
bpid);
|
|
return -EIO;
|
|
}
|
|
*r = *(struct qbman_bp_query_rslt *)resp;
|
|
/* Decode the outcome */
|
|
WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
|
|
|
|
/* Determine success or failure */
|
|
if (r->rslt != QBMAN_MC_RSLT_OK) {
|
|
pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
|
|
bpid, r->rslt);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
|
|
{
|
|
return le32_to_cpu(a->fill);
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
|
|
* @p: the software portal object
|
|
* @irq_threshold: interrupt threshold
|
|
* @irq_holdoff: interrupt holdoff (timeout) period in us
|
|
*
|
|
* Return 0 for success, or negative error code on error.
|
|
*/
|
|
int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
|
|
u32 irq_holdoff)
|
|
{
|
|
u32 itp, max_holdoff;
|
|
|
|
/* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
|
|
* increments. This depends on the QBMAN internal frequency.
|
|
*/
|
|
itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
|
|
if (itp > 4096) {
|
|
max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
|
|
pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (irq_threshold >= p->dqrr.dqrr_size) {
|
|
pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
p->irq_threshold = irq_threshold;
|
|
p->irq_holdoff = irq_holdoff;
|
|
|
|
qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
|
|
qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
|
|
* @p: the software portal object
|
|
* @irq_threshold: interrupt threshold (an IRQ is generated when there are more
|
|
* DQRR entries in the portal than the threshold)
|
|
* @irq_holdoff: interrupt holdoff (timeout) period in us
|
|
*/
|
|
void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
|
|
u32 *irq_holdoff)
|
|
{
|
|
if (irq_threshold)
|
|
*irq_threshold = p->irq_threshold;
|
|
if (irq_holdoff)
|
|
*irq_holdoff = p->irq_holdoff;
|
|
}
|