1919 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1919 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/hrtimer.c
 | |
|  *
 | |
|  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 | |
|  *
 | |
|  *  High-resolution kernel timers
 | |
|  *
 | |
|  *  In contrast to the low-resolution timeout API implemented in
 | |
|  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 | |
|  *  depending on system configuration and capabilities.
 | |
|  *
 | |
|  *  These timers are currently used for:
 | |
|  *   - itimers
 | |
|  *   - POSIX timers
 | |
|  *   - nanosleep
 | |
|  *   - precise in-kernel timing
 | |
|  *
 | |
|  *  Started by: Thomas Gleixner and Ingo Molnar
 | |
|  *
 | |
|  *  Credits:
 | |
|  *	based on kernel/timer.c
 | |
|  *
 | |
|  *	Help, testing, suggestions, bugfixes, improvements were
 | |
|  *	provided by:
 | |
|  *
 | |
|  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 | |
|  *	et. al.
 | |
|  *
 | |
|  *  For licencing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/debugobjects.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /**
 | |
|  * ktime_get - get the monotonic time in ktime_t format
 | |
|  *
 | |
|  * returns the time in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_get(void)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	ktime_get_ts(&now);
 | |
| 
 | |
| 	return timespec_to_ktime(now);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real - get the real (wall-) time in ktime_t format
 | |
|  *
 | |
|  * returns the time in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_get_real(void)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	getnstimeofday(&now);
 | |
| 
 | |
| 	return timespec_to_ktime(now);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ktime_get_real);
 | |
| 
 | |
| /*
 | |
|  * The timer bases:
 | |
|  *
 | |
|  * Note: If we want to add new timer bases, we have to skip the two
 | |
|  * clock ids captured by the cpu-timers. We do this by holding empty
 | |
|  * entries rather than doing math adjustment of the clock ids.
 | |
|  * This ensures that we capture erroneous accesses to these clock ids
 | |
|  * rather than moving them into the range of valid clock id's.
 | |
|  */
 | |
| DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
 | |
| {
 | |
| 
 | |
| 	.clock_base =
 | |
| 	{
 | |
| 		{
 | |
| 			.index = CLOCK_REALTIME,
 | |
| 			.get_time = &ktime_get_real,
 | |
| 			.resolution = KTIME_LOW_RES,
 | |
| 		},
 | |
| 		{
 | |
| 			.index = CLOCK_MONOTONIC,
 | |
| 			.get_time = &ktime_get,
 | |
| 			.resolution = KTIME_LOW_RES,
 | |
| 		},
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ktime_get_ts - get the monotonic clock in timespec format
 | |
|  * @ts:		pointer to timespec variable
 | |
|  *
 | |
|  * The function calculates the monotonic clock from the realtime
 | |
|  * clock and the wall_to_monotonic offset and stores the result
 | |
|  * in normalized timespec format in the variable pointed to by @ts.
 | |
|  */
 | |
| void ktime_get_ts(struct timespec *ts)
 | |
| {
 | |
| 	struct timespec tomono;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		getnstimeofday(ts);
 | |
| 		tomono = wall_to_monotonic;
 | |
| 
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 | |
| 				ts->tv_nsec + tomono.tv_nsec);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_ts);
 | |
| 
 | |
| /*
 | |
|  * Get the coarse grained time at the softirq based on xtime and
 | |
|  * wall_to_monotonic.
 | |
|  */
 | |
| static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 | |
| {
 | |
| 	ktime_t xtim, tomono;
 | |
| 	struct timespec xts, tom;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		xts = current_kernel_time();
 | |
| 		tom = wall_to_monotonic;
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	xtim = timespec_to_ktime(xts);
 | |
| 	tomono = timespec_to_ktime(tom);
 | |
| 	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
 | |
| 	base->clock_base[CLOCK_MONOTONIC].softirq_time =
 | |
| 		ktime_add(xtim, tomono);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions and macros which are different for UP/SMP systems are kept in a
 | |
|  * single place
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 | |
|  * means that all timers which are tied to this base via timer->base are
 | |
|  * locked, and the base itself is locked too.
 | |
|  *
 | |
|  * So __run_timers/migrate_timers can safely modify all timers which could
 | |
|  * be found on the lists/queues.
 | |
|  *
 | |
|  * When the timer's base is locked, and the timer removed from list, it is
 | |
|  * possible to set timer->base = NULL and drop the lock: the timer remains
 | |
|  * locked.
 | |
|  */
 | |
| static
 | |
| struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 | |
| 					     unsigned long *flags)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		base = timer->base;
 | |
| 		if (likely(base != NULL)) {
 | |
| 			spin_lock_irqsave(&base->cpu_base->lock, *flags);
 | |
| 			if (likely(base == timer->base))
 | |
| 				return base;
 | |
| 			/* The timer has migrated to another CPU: */
 | |
| 			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch the timer base to the current CPU when possible.
 | |
|  */
 | |
| static inline struct hrtimer_clock_base *
 | |
| switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	struct hrtimer_clock_base *new_base;
 | |
| 	struct hrtimer_cpu_base *new_cpu_base;
 | |
| 
 | |
| 	new_cpu_base = &__get_cpu_var(hrtimer_bases);
 | |
| 	new_base = &new_cpu_base->clock_base[base->index];
 | |
| 
 | |
| 	if (base != new_base) {
 | |
| 		/*
 | |
| 		 * We are trying to schedule the timer on the local CPU.
 | |
| 		 * However we can't change timer's base while it is running,
 | |
| 		 * so we keep it on the same CPU. No hassle vs. reprogramming
 | |
| 		 * the event source in the high resolution case. The softirq
 | |
| 		 * code will take care of this when the timer function has
 | |
| 		 * completed. There is no conflict as we hold the lock until
 | |
| 		 * the timer is enqueued.
 | |
| 		 */
 | |
| 		if (unlikely(hrtimer_callback_running(timer)))
 | |
| 			return base;
 | |
| 
 | |
| 		/* See the comment in lock_timer_base() */
 | |
| 		timer->base = NULL;
 | |
| 		spin_unlock(&base->cpu_base->lock);
 | |
| 		spin_lock(&new_base->cpu_base->lock);
 | |
| 		timer->base = new_base;
 | |
| 	}
 | |
| 	return new_base;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| static inline struct hrtimer_clock_base *
 | |
| lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base = timer->base;
 | |
| 
 | |
| 	spin_lock_irqsave(&base->cpu_base->lock, *flags);
 | |
| 
 | |
| 	return base;
 | |
| }
 | |
| 
 | |
| # define switch_hrtimer_base(t, b)	(b)
 | |
| 
 | |
| #endif	/* !CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Functions for the union type storage format of ktime_t which are
 | |
|  * too large for inlining:
 | |
|  */
 | |
| #if BITS_PER_LONG < 64
 | |
| # ifndef CONFIG_KTIME_SCALAR
 | |
| /**
 | |
|  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 | |
|  * @kt:		addend
 | |
|  * @nsec:	the scalar nsec value to add
 | |
|  *
 | |
|  * Returns the sum of kt and nsec in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 | |
| {
 | |
| 	ktime_t tmp;
 | |
| 
 | |
| 	if (likely(nsec < NSEC_PER_SEC)) {
 | |
| 		tmp.tv64 = nsec;
 | |
| 	} else {
 | |
| 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 | |
| 
 | |
| 		tmp = ktime_set((long)nsec, rem);
 | |
| 	}
 | |
| 
 | |
| 	return ktime_add(kt, tmp);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ktime_add_ns);
 | |
| 
 | |
| /**
 | |
|  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 | |
|  * @kt:		minuend
 | |
|  * @nsec:	the scalar nsec value to subtract
 | |
|  *
 | |
|  * Returns the subtraction of @nsec from @kt in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 | |
| {
 | |
| 	ktime_t tmp;
 | |
| 
 | |
| 	if (likely(nsec < NSEC_PER_SEC)) {
 | |
| 		tmp.tv64 = nsec;
 | |
| 	} else {
 | |
| 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 | |
| 
 | |
| 		tmp = ktime_set((long)nsec, rem);
 | |
| 	}
 | |
| 
 | |
| 	return ktime_sub(kt, tmp);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ktime_sub_ns);
 | |
| # endif /* !CONFIG_KTIME_SCALAR */
 | |
| 
 | |
| /*
 | |
|  * Divide a ktime value by a nanosecond value
 | |
|  */
 | |
| u64 ktime_divns(const ktime_t kt, s64 div)
 | |
| {
 | |
| 	u64 dclc;
 | |
| 	int sft = 0;
 | |
| 
 | |
| 	dclc = ktime_to_ns(kt);
 | |
| 	/* Make sure the divisor is less than 2^32: */
 | |
| 	while (div >> 32) {
 | |
| 		sft++;
 | |
| 		div >>= 1;
 | |
| 	}
 | |
| 	dclc >>= sft;
 | |
| 	do_div(dclc, (unsigned long) div);
 | |
| 
 | |
| 	return dclc;
 | |
| }
 | |
| #endif /* BITS_PER_LONG >= 64 */
 | |
| 
 | |
| /*
 | |
|  * Add two ktime values and do a safety check for overflow:
 | |
|  */
 | |
| ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 | |
| {
 | |
| 	ktime_t res = ktime_add(lhs, rhs);
 | |
| 
 | |
| 	/*
 | |
| 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 | |
| 	 * return to user space in a timespec:
 | |
| 	 */
 | |
| 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 | |
| 		res = ktime_set(KTIME_SEC_MAX, 0);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 | |
| 
 | |
| static struct debug_obj_descr hrtimer_debug_descr;
 | |
| 
 | |
| /*
 | |
|  * fixup_init is called when:
 | |
|  * - an active object is initialized
 | |
|  */
 | |
| static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 | |
| {
 | |
| 	struct hrtimer *timer = addr;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case ODEBUG_STATE_ACTIVE:
 | |
| 		hrtimer_cancel(timer);
 | |
| 		debug_object_init(timer, &hrtimer_debug_descr);
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fixup_activate is called when:
 | |
|  * - an active object is activated
 | |
|  * - an unknown object is activated (might be a statically initialized object)
 | |
|  */
 | |
| static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 | |
| {
 | |
| 	switch (state) {
 | |
| 
 | |
| 	case ODEBUG_STATE_NOTAVAILABLE:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return 0;
 | |
| 
 | |
| 	case ODEBUG_STATE_ACTIVE:
 | |
| 		WARN_ON(1);
 | |
| 
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fixup_free is called when:
 | |
|  * - an active object is freed
 | |
|  */
 | |
| static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 | |
| {
 | |
| 	struct hrtimer *timer = addr;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case ODEBUG_STATE_ACTIVE:
 | |
| 		hrtimer_cancel(timer);
 | |
| 		debug_object_free(timer, &hrtimer_debug_descr);
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct debug_obj_descr hrtimer_debug_descr = {
 | |
| 	.name		= "hrtimer",
 | |
| 	.fixup_init	= hrtimer_fixup_init,
 | |
| 	.fixup_activate	= hrtimer_fixup_activate,
 | |
| 	.fixup_free	= hrtimer_fixup_free,
 | |
| };
 | |
| 
 | |
| static inline void debug_hrtimer_init(struct hrtimer *timer)
 | |
| {
 | |
| 	debug_object_init(timer, &hrtimer_debug_descr);
 | |
| }
 | |
| 
 | |
| static inline void debug_hrtimer_activate(struct hrtimer *timer)
 | |
| {
 | |
| 	debug_object_activate(timer, &hrtimer_debug_descr);
 | |
| }
 | |
| 
 | |
| static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 | |
| {
 | |
| 	debug_object_deactivate(timer, &hrtimer_debug_descr);
 | |
| }
 | |
| 
 | |
| static inline void debug_hrtimer_free(struct hrtimer *timer)
 | |
| {
 | |
| 	debug_object_free(timer, &hrtimer_debug_descr);
 | |
| }
 | |
| 
 | |
| static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | |
| 			   enum hrtimer_mode mode);
 | |
| 
 | |
| void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 | |
| 			   enum hrtimer_mode mode)
 | |
| {
 | |
| 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 | |
| 	__hrtimer_init(timer, clock_id, mode);
 | |
| }
 | |
| 
 | |
| void destroy_hrtimer_on_stack(struct hrtimer *timer)
 | |
| {
 | |
| 	debug_object_free(timer, &hrtimer_debug_descr);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 | |
| static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 | |
| static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Check, whether the timer is on the callback pending list
 | |
|  */
 | |
| static inline int hrtimer_cb_pending(const struct hrtimer *timer)
 | |
| {
 | |
| 	return timer->state & HRTIMER_STATE_PENDING;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a timer from the callback pending list
 | |
|  */
 | |
| static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
 | |
| {
 | |
| 	list_del_init(&timer->cb_entry);
 | |
| }
 | |
| 
 | |
| /* High resolution timer related functions */
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 
 | |
| /*
 | |
|  * High resolution timer enabled ?
 | |
|  */
 | |
| static int hrtimer_hres_enabled __read_mostly  = 1;
 | |
| 
 | |
| /*
 | |
|  * Enable / Disable high resolution mode
 | |
|  */
 | |
| static int __init setup_hrtimer_hres(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "off"))
 | |
| 		hrtimer_hres_enabled = 0;
 | |
| 	else if (!strcmp(str, "on"))
 | |
| 		hrtimer_hres_enabled = 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("highres=", setup_hrtimer_hres);
 | |
| 
 | |
| /*
 | |
|  * hrtimer_high_res_enabled - query, if the highres mode is enabled
 | |
|  */
 | |
| static inline int hrtimer_is_hres_enabled(void)
 | |
| {
 | |
| 	return hrtimer_hres_enabled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the high resolution mode active ?
 | |
|  */
 | |
| static inline int hrtimer_hres_active(void)
 | |
| {
 | |
| 	return __get_cpu_var(hrtimer_bases).hres_active;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reprogram the event source with checking both queues for the
 | |
|  * next event
 | |
|  * Called with interrupts disabled and base->lock held
 | |
|  */
 | |
| static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
 | |
| {
 | |
| 	int i;
 | |
| 	struct hrtimer_clock_base *base = cpu_base->clock_base;
 | |
| 	ktime_t expires;
 | |
| 
 | |
| 	cpu_base->expires_next.tv64 = KTIME_MAX;
 | |
| 
 | |
| 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 | |
| 		struct hrtimer *timer;
 | |
| 
 | |
| 		if (!base->first)
 | |
| 			continue;
 | |
| 		timer = rb_entry(base->first, struct hrtimer, node);
 | |
| 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 | |
| 		if (expires.tv64 < cpu_base->expires_next.tv64)
 | |
| 			cpu_base->expires_next = expires;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 | |
| 		tick_program_event(cpu_base->expires_next, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shared reprogramming for clock_realtime and clock_monotonic
 | |
|  *
 | |
|  * When a timer is enqueued and expires earlier than the already enqueued
 | |
|  * timers, we have to check, whether it expires earlier than the timer for
 | |
|  * which the clock event device was armed.
 | |
|  *
 | |
|  * Called with interrupts disabled and base->cpu_base.lock held
 | |
|  */
 | |
| static int hrtimer_reprogram(struct hrtimer *timer,
 | |
| 			     struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
 | |
| 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 | |
| 	int res;
 | |
| 
 | |
| 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * When the callback is running, we do not reprogram the clock event
 | |
| 	 * device. The timer callback is either running on a different CPU or
 | |
| 	 * the callback is executed in the hrtimer_interrupt context. The
 | |
| 	 * reprogramming is handled either by the softirq, which called the
 | |
| 	 * callback or at the end of the hrtimer_interrupt.
 | |
| 	 */
 | |
| 	if (hrtimer_callback_running(timer))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * CLOCK_REALTIME timer might be requested with an absolute
 | |
| 	 * expiry time which is less than base->offset. Nothing wrong
 | |
| 	 * about that, just avoid to call into the tick code, which
 | |
| 	 * has now objections against negative expiry values.
 | |
| 	 */
 | |
| 	if (expires.tv64 < 0)
 | |
| 		return -ETIME;
 | |
| 
 | |
| 	if (expires.tv64 >= expires_next->tv64)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clockevents returns -ETIME, when the event was in the past.
 | |
| 	 */
 | |
| 	res = tick_program_event(expires, 0);
 | |
| 	if (!IS_ERR_VALUE(res))
 | |
| 		*expires_next = expires;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Retrigger next event is called after clock was set
 | |
|  *
 | |
|  * Called with interrupts disabled via on_each_cpu()
 | |
|  */
 | |
| static void retrigger_next_event(void *arg)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *base;
 | |
| 	struct timespec realtime_offset;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	if (!hrtimer_hres_active())
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		set_normalized_timespec(&realtime_offset,
 | |
| 					-wall_to_monotonic.tv_sec,
 | |
| 					-wall_to_monotonic.tv_nsec);
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	base = &__get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	/* Adjust CLOCK_REALTIME offset */
 | |
| 	spin_lock(&base->lock);
 | |
| 	base->clock_base[CLOCK_REALTIME].offset =
 | |
| 		timespec_to_ktime(realtime_offset);
 | |
| 
 | |
| 	hrtimer_force_reprogram(base);
 | |
| 	spin_unlock(&base->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clock realtime was set
 | |
|  *
 | |
|  * Change the offset of the realtime clock vs. the monotonic
 | |
|  * clock.
 | |
|  *
 | |
|  * We might have to reprogram the high resolution timer interrupt. On
 | |
|  * SMP we call the architecture specific code to retrigger _all_ high
 | |
|  * resolution timer interrupts. On UP we just disable interrupts and
 | |
|  * call the high resolution interrupt code.
 | |
|  */
 | |
| void clock_was_set(void)
 | |
| {
 | |
| 	/* Retrigger the CPU local events everywhere */
 | |
| 	on_each_cpu(retrigger_next_event, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * During resume we might have to reprogram the high resolution timer
 | |
|  * interrupt (on the local CPU):
 | |
|  */
 | |
| void hres_timers_resume(void)
 | |
| {
 | |
| 	/* Retrigger the CPU local events: */
 | |
| 	retrigger_next_event(NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the high resolution related parts of cpu_base
 | |
|  */
 | |
| static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 | |
| {
 | |
| 	base->expires_next.tv64 = KTIME_MAX;
 | |
| 	base->hres_active = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the high resolution related parts of a hrtimer
 | |
|  */
 | |
| static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When High resolution timers are active, try to reprogram. Note, that in case
 | |
|  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 | |
|  * check happens. The timer gets enqueued into the rbtree. The reprogramming
 | |
|  * and expiry check is done in the hrtimer_interrupt or in the softirq.
 | |
|  */
 | |
| static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 | |
| 					    struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 | |
| 
 | |
| 		/* Timer is expired, act upon the callback mode */
 | |
| 		switch(timer->cb_mode) {
 | |
| 		case HRTIMER_CB_IRQSAFE_NO_RESTART:
 | |
| 			debug_hrtimer_deactivate(timer);
 | |
| 			/*
 | |
| 			 * We can call the callback from here. No restart
 | |
| 			 * happens, so no danger of recursion
 | |
| 			 */
 | |
| 			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
 | |
| 			return 1;
 | |
| 		case HRTIMER_CB_IRQSAFE_PERCPU:
 | |
| 		case HRTIMER_CB_IRQSAFE_UNLOCKED:
 | |
| 			/*
 | |
| 			 * This is solely for the sched tick emulation with
 | |
| 			 * dynamic tick support to ensure that we do not
 | |
| 			 * restart the tick right on the edge and end up with
 | |
| 			 * the tick timer in the softirq ! The calling site
 | |
| 			 * takes care of this. Also used for hrtimer sleeper !
 | |
| 			 */
 | |
| 			debug_hrtimer_deactivate(timer);
 | |
| 			return 1;
 | |
| 		case HRTIMER_CB_IRQSAFE:
 | |
| 		case HRTIMER_CB_SOFTIRQ:
 | |
| 			/*
 | |
| 			 * Move everything else into the softirq pending list !
 | |
| 			 */
 | |
| 			list_add_tail(&timer->cb_entry,
 | |
| 				      &base->cpu_base->cb_pending);
 | |
| 			timer->state = HRTIMER_STATE_PENDING;
 | |
| 			return 1;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch to high resolution mode
 | |
|  */
 | |
| static int hrtimer_switch_to_hres(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (base->hres_active)
 | |
| 		return 1;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	if (tick_init_highres()) {
 | |
| 		local_irq_restore(flags);
 | |
| 		printk(KERN_WARNING "Could not switch to high resolution "
 | |
| 				    "mode on CPU %d\n", cpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	base->hres_active = 1;
 | |
| 	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
 | |
| 	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
 | |
| 
 | |
| 	tick_setup_sched_timer();
 | |
| 
 | |
| 	/* "Retrigger" the interrupt to get things going */
 | |
| 	retrigger_next_event(NULL);
 | |
| 	local_irq_restore(flags);
 | |
| 	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
 | |
| 	       smp_processor_id());
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void hrtimer_raise_softirq(void)
 | |
| {
 | |
| 	raise_softirq(HRTIMER_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int hrtimer_hres_active(void) { return 0; }
 | |
| static inline int hrtimer_is_hres_enabled(void) { return 0; }
 | |
| static inline int hrtimer_switch_to_hres(void) { return 0; }
 | |
| static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
 | |
| static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 | |
| 					    struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 | |
| static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
 | |
| static inline int hrtimer_reprogram(struct hrtimer *timer,
 | |
| 				    struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void hrtimer_raise_softirq(void) { }
 | |
| 
 | |
| #endif /* CONFIG_HIGH_RES_TIMERS */
 | |
| 
 | |
| #ifdef CONFIG_TIMER_STATS
 | |
| void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
 | |
| {
 | |
| 	if (timer->start_site)
 | |
| 		return;
 | |
| 
 | |
| 	timer->start_site = addr;
 | |
| 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 | |
| 	timer->start_pid = current->pid;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Counterpart to lock_hrtimer_base above:
 | |
|  */
 | |
| static inline
 | |
| void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_forward - forward the timer expiry
 | |
|  * @timer:	hrtimer to forward
 | |
|  * @now:	forward past this time
 | |
|  * @interval:	the interval to forward
 | |
|  *
 | |
|  * Forward the timer expiry so it will expire in the future.
 | |
|  * Returns the number of overruns.
 | |
|  */
 | |
| u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 | |
| {
 | |
| 	u64 orun = 1;
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	delta = ktime_sub(now, hrtimer_get_expires(timer));
 | |
| 
 | |
| 	if (delta.tv64 < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (interval.tv64 < timer->base->resolution.tv64)
 | |
| 		interval.tv64 = timer->base->resolution.tv64;
 | |
| 
 | |
| 	if (unlikely(delta.tv64 >= interval.tv64)) {
 | |
| 		s64 incr = ktime_to_ns(interval);
 | |
| 
 | |
| 		orun = ktime_divns(delta, incr);
 | |
| 		hrtimer_add_expires_ns(timer, incr * orun);
 | |
| 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 | |
| 			return orun;
 | |
| 		/*
 | |
| 		 * This (and the ktime_add() below) is the
 | |
| 		 * correction for exact:
 | |
| 		 */
 | |
| 		orun++;
 | |
| 	}
 | |
| 	hrtimer_add_expires(timer, interval);
 | |
| 
 | |
| 	return orun;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_forward);
 | |
| 
 | |
| /*
 | |
|  * enqueue_hrtimer - internal function to (re)start a timer
 | |
|  *
 | |
|  * The timer is inserted in expiry order. Insertion into the
 | |
|  * red black tree is O(log(n)). Must hold the base lock.
 | |
|  */
 | |
| static void enqueue_hrtimer(struct hrtimer *timer,
 | |
| 			    struct hrtimer_clock_base *base, int reprogram)
 | |
| {
 | |
| 	struct rb_node **link = &base->active.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct hrtimer *entry;
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	debug_hrtimer_activate(timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct hrtimer, node);
 | |
| 		/*
 | |
| 		 * We dont care about collisions. Nodes with
 | |
| 		 * the same expiry time stay together.
 | |
| 		 */
 | |
| 		if (hrtimer_get_expires_tv64(timer) <
 | |
| 				hrtimer_get_expires_tv64(entry)) {
 | |
| 			link = &(*link)->rb_left;
 | |
| 		} else {
 | |
| 			link = &(*link)->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert the timer to the rbtree and check whether it
 | |
| 	 * replaces the first pending timer
 | |
| 	 */
 | |
| 	if (leftmost) {
 | |
| 		/*
 | |
| 		 * Reprogram the clock event device. When the timer is already
 | |
| 		 * expired hrtimer_enqueue_reprogram has either called the
 | |
| 		 * callback or added it to the pending list and raised the
 | |
| 		 * softirq.
 | |
| 		 *
 | |
| 		 * This is a NOP for !HIGHRES
 | |
| 		 */
 | |
| 		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
 | |
| 			return;
 | |
| 
 | |
| 		base->first = &timer->node;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&timer->node, parent, link);
 | |
| 	rb_insert_color(&timer->node, &base->active);
 | |
| 	/*
 | |
| 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 | |
| 	 * state of a possibly running callback.
 | |
| 	 */
 | |
| 	timer->state |= HRTIMER_STATE_ENQUEUED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __remove_hrtimer - internal function to remove a timer
 | |
|  *
 | |
|  * Caller must hold the base lock.
 | |
|  *
 | |
|  * High resolution timer mode reprograms the clock event device when the
 | |
|  * timer is the one which expires next. The caller can disable this by setting
 | |
|  * reprogram to zero. This is useful, when the context does a reprogramming
 | |
|  * anyway (e.g. timer interrupt)
 | |
|  */
 | |
| static void __remove_hrtimer(struct hrtimer *timer,
 | |
| 			     struct hrtimer_clock_base *base,
 | |
| 			     unsigned long newstate, int reprogram)
 | |
| {
 | |
| 	/* High res. callback list. NOP for !HIGHRES */
 | |
| 	if (hrtimer_cb_pending(timer))
 | |
| 		hrtimer_remove_cb_pending(timer);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Remove the timer from the rbtree and replace the
 | |
| 		 * first entry pointer if necessary.
 | |
| 		 */
 | |
| 		if (base->first == &timer->node) {
 | |
| 			base->first = rb_next(&timer->node);
 | |
| 			/* Reprogram the clock event device. if enabled */
 | |
| 			if (reprogram && hrtimer_hres_active())
 | |
| 				hrtimer_force_reprogram(base->cpu_base);
 | |
| 		}
 | |
| 		rb_erase(&timer->node, &base->active);
 | |
| 	}
 | |
| 	timer->state = newstate;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove hrtimer, called with base lock held
 | |
|  */
 | |
| static inline int
 | |
| remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 | |
| {
 | |
| 	if (hrtimer_is_queued(timer)) {
 | |
| 		int reprogram;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove the timer and force reprogramming when high
 | |
| 		 * resolution mode is active and the timer is on the current
 | |
| 		 * CPU. If we remove a timer on another CPU, reprogramming is
 | |
| 		 * skipped. The interrupt event on this CPU is fired and
 | |
| 		 * reprogramming happens in the interrupt handler. This is a
 | |
| 		 * rare case and less expensive than a smp call.
 | |
| 		 */
 | |
| 		debug_hrtimer_deactivate(timer);
 | |
| 		timer_stats_hrtimer_clear_start_info(timer);
 | |
| 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 | |
| 		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
 | |
| 				 reprogram);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 | |
|  * @timer:	the timer to be added
 | |
|  * @tim:	expiry time
 | |
|  * @delta_ns:	"slack" range for the timer
 | |
|  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 on success
 | |
|  *  1 when the timer was active
 | |
|  */
 | |
| int
 | |
| hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
 | |
| 			const enum hrtimer_mode mode)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base, *new_base;
 | |
| 	unsigned long flags;
 | |
| 	int ret, raise;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	/* Remove an active timer from the queue: */
 | |
| 	ret = remove_hrtimer(timer, base);
 | |
| 
 | |
| 	/* Switch the timer base, if necessary: */
 | |
| 	new_base = switch_hrtimer_base(timer, base);
 | |
| 
 | |
| 	if (mode == HRTIMER_MODE_REL) {
 | |
| 		tim = ktime_add_safe(tim, new_base->get_time());
 | |
| 		/*
 | |
| 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 | |
| 		 * to signal that they simply return xtime in
 | |
| 		 * do_gettimeoffset(). In this case we want to round up by
 | |
| 		 * resolution when starting a relative timer, to avoid short
 | |
| 		 * timeouts. This will go away with the GTOD framework.
 | |
| 		 */
 | |
| #ifdef CONFIG_TIME_LOW_RES
 | |
| 		tim = ktime_add_safe(tim, base->resolution);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 | |
| 
 | |
| 	timer_stats_hrtimer_set_start_info(timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only allow reprogramming if the new base is on this CPU.
 | |
| 	 * (it might still be on another CPU if the timer was pending)
 | |
| 	 */
 | |
| 	enqueue_hrtimer(timer, new_base,
 | |
| 			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
 | |
| 
 | |
| 	/*
 | |
| 	 * The timer may be expired and moved to the cb_pending
 | |
| 	 * list. We can not raise the softirq with base lock held due
 | |
| 	 * to a possible deadlock with runqueue lock.
 | |
| 	 */
 | |
| 	raise = timer->state == HRTIMER_STATE_PENDING;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use preempt_disable to prevent this task from migrating after
 | |
| 	 * setting up the softirq and raising it. Otherwise, if me migrate
 | |
| 	 * we will raise the softirq on the wrong CPU.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	if (raise)
 | |
| 		hrtimer_raise_softirq();
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_start - (re)start an hrtimer on the current CPU
 | |
|  * @timer:	the timer to be added
 | |
|  * @tim:	expiry time
 | |
|  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 on success
 | |
|  *  1 when the timer was active
 | |
|  */
 | |
| int
 | |
| hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
 | |
| {
 | |
| 	return hrtimer_start_range_ns(timer, tim, 0, mode);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_start);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * hrtimer_try_to_cancel - try to deactivate a timer
 | |
|  * @timer:	hrtimer to stop
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 when the timer was not active
 | |
|  *  1 when the timer was active
 | |
|  * -1 when the timer is currently excuting the callback function and
 | |
|  *    cannot be stopped
 | |
|  */
 | |
| int hrtimer_try_to_cancel(struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base;
 | |
| 	unsigned long flags;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	if (!hrtimer_callback_running(timer))
 | |
| 		ret = remove_hrtimer(timer, base);
 | |
| 
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 | |
|  * @timer:	the timer to be cancelled
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 when the timer was not active
 | |
|  *  1 when the timer was active
 | |
|  */
 | |
| int hrtimer_cancel(struct hrtimer *timer)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		int ret = hrtimer_try_to_cancel(timer);
 | |
| 
 | |
| 		if (ret >= 0)
 | |
| 			return ret;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_cancel);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_get_remaining - get remaining time for the timer
 | |
|  * @timer:	the timer to read
 | |
|  */
 | |
| ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base;
 | |
| 	unsigned long flags;
 | |
| 	ktime_t rem;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 	rem = hrtimer_expires_remaining(timer);
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	return rem;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| /**
 | |
|  * hrtimer_get_next_event - get the time until next expiry event
 | |
|  *
 | |
|  * Returns the delta to the next expiry event or KTIME_MAX if no timer
 | |
|  * is pending.
 | |
|  */
 | |
| ktime_t hrtimer_get_next_event(void)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | |
| 	struct hrtimer_clock_base *base = cpu_base->clock_base;
 | |
| 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irqsave(&cpu_base->lock, flags);
 | |
| 
 | |
| 	if (!hrtimer_hres_active()) {
 | |
| 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 | |
| 			struct hrtimer *timer;
 | |
| 
 | |
| 			if (!base->first)
 | |
| 				continue;
 | |
| 
 | |
| 			timer = rb_entry(base->first, struct hrtimer, node);
 | |
| 			delta.tv64 = hrtimer_get_expires_tv64(timer);
 | |
| 			delta = ktime_sub(delta, base->get_time());
 | |
| 			if (delta.tv64 < mindelta.tv64)
 | |
| 				mindelta.tv64 = delta.tv64;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&cpu_base->lock, flags);
 | |
| 
 | |
| 	if (mindelta.tv64 < 0)
 | |
| 		mindelta.tv64 = 0;
 | |
| 	return mindelta;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | |
| 			   enum hrtimer_mode mode)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base;
 | |
| 
 | |
| 	memset(timer, 0, sizeof(struct hrtimer));
 | |
| 
 | |
| 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
 | |
| 		clock_id = CLOCK_MONOTONIC;
 | |
| 
 | |
| 	timer->base = &cpu_base->clock_base[clock_id];
 | |
| 	INIT_LIST_HEAD(&timer->cb_entry);
 | |
| 	hrtimer_init_timer_hres(timer);
 | |
| 
 | |
| #ifdef CONFIG_TIMER_STATS
 | |
| 	timer->start_site = NULL;
 | |
| 	timer->start_pid = -1;
 | |
| 	memset(timer->start_comm, 0, TASK_COMM_LEN);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_init - initialize a timer to the given clock
 | |
|  * @timer:	the timer to be initialized
 | |
|  * @clock_id:	the clock to be used
 | |
|  * @mode:	timer mode abs/rel
 | |
|  */
 | |
| void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | |
| 		  enum hrtimer_mode mode)
 | |
| {
 | |
| 	debug_hrtimer_init(timer);
 | |
| 	__hrtimer_init(timer, clock_id, mode);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_init);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_get_res - get the timer resolution for a clock
 | |
|  * @which_clock: which clock to query
 | |
|  * @tp:		 pointer to timespec variable to store the resolution
 | |
|  *
 | |
|  * Store the resolution of the clock selected by @which_clock in the
 | |
|  * variable pointed to by @tp.
 | |
|  */
 | |
| int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base;
 | |
| 
 | |
| 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
 | |
| 	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_get_res);
 | |
| 
 | |
| static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
 | |
| {
 | |
| 	spin_lock_irq(&cpu_base->lock);
 | |
| 
 | |
| 	while (!list_empty(&cpu_base->cb_pending)) {
 | |
| 		enum hrtimer_restart (*fn)(struct hrtimer *);
 | |
| 		struct hrtimer *timer;
 | |
| 		int restart;
 | |
| 
 | |
| 		timer = list_entry(cpu_base->cb_pending.next,
 | |
| 				   struct hrtimer, cb_entry);
 | |
| 
 | |
| 		debug_hrtimer_deactivate(timer);
 | |
| 		timer_stats_account_hrtimer(timer);
 | |
| 
 | |
| 		fn = timer->function;
 | |
| 		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
 | |
| 		spin_unlock_irq(&cpu_base->lock);
 | |
| 
 | |
| 		restart = fn(timer);
 | |
| 
 | |
| 		spin_lock_irq(&cpu_base->lock);
 | |
| 
 | |
| 		timer->state &= ~HRTIMER_STATE_CALLBACK;
 | |
| 		if (restart == HRTIMER_RESTART) {
 | |
| 			BUG_ON(hrtimer_active(timer));
 | |
| 			/*
 | |
| 			 * Enqueue the timer, allow reprogramming of the event
 | |
| 			 * device
 | |
| 			 */
 | |
| 			enqueue_hrtimer(timer, timer->base, 1);
 | |
| 		} else if (hrtimer_active(timer)) {
 | |
| 			/*
 | |
| 			 * If the timer was rearmed on another CPU, reprogram
 | |
| 			 * the event device.
 | |
| 			 */
 | |
| 			struct hrtimer_clock_base *base = timer->base;
 | |
| 
 | |
| 			if (base->first == &timer->node &&
 | |
| 			    hrtimer_reprogram(timer, base)) {
 | |
| 				/*
 | |
| 				 * Timer is expired. Thus move it from tree to
 | |
| 				 * pending list again.
 | |
| 				 */
 | |
| 				__remove_hrtimer(timer, base,
 | |
| 						 HRTIMER_STATE_PENDING, 0);
 | |
| 				list_add_tail(&timer->cb_entry,
 | |
| 					      &base->cpu_base->cb_pending);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&cpu_base->lock);
 | |
| }
 | |
| 
 | |
| static void __run_hrtimer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_clock_base *base = timer->base;
 | |
| 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 | |
| 	enum hrtimer_restart (*fn)(struct hrtimer *);
 | |
| 	int restart;
 | |
| 
 | |
| 	debug_hrtimer_deactivate(timer);
 | |
| 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
 | |
| 	timer_stats_account_hrtimer(timer);
 | |
| 
 | |
| 	fn = timer->function;
 | |
| 	if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
 | |
| 	    timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
 | |
| 		/*
 | |
| 		 * Used for scheduler timers, avoid lock inversion with
 | |
| 		 * rq->lock and tasklist_lock.
 | |
| 		 *
 | |
| 		 * These timers are required to deal with enqueue expiry
 | |
| 		 * themselves and are not allowed to migrate.
 | |
| 		 */
 | |
| 		spin_unlock(&cpu_base->lock);
 | |
| 		restart = fn(timer);
 | |
| 		spin_lock(&cpu_base->lock);
 | |
| 	} else
 | |
| 		restart = fn(timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
 | |
| 	 * reprogramming of the event hardware. This happens at the end of this
 | |
| 	 * function anyway.
 | |
| 	 */
 | |
| 	if (restart != HRTIMER_NORESTART) {
 | |
| 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 | |
| 		enqueue_hrtimer(timer, base, 0);
 | |
| 	}
 | |
| 	timer->state &= ~HRTIMER_STATE_CALLBACK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 
 | |
| /*
 | |
|  * High resolution timer interrupt
 | |
|  * Called with interrupts disabled
 | |
|  */
 | |
| void hrtimer_interrupt(struct clock_event_device *dev)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | |
| 	struct hrtimer_clock_base *base;
 | |
| 	ktime_t expires_next, now;
 | |
| 	int i, raise = 0;
 | |
| 
 | |
| 	BUG_ON(!cpu_base->hres_active);
 | |
| 	cpu_base->nr_events++;
 | |
| 	dev->next_event.tv64 = KTIME_MAX;
 | |
| 
 | |
|  retry:
 | |
| 	now = ktime_get();
 | |
| 
 | |
| 	expires_next.tv64 = KTIME_MAX;
 | |
| 
 | |
| 	base = cpu_base->clock_base;
 | |
| 
 | |
| 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
 | |
| 		ktime_t basenow;
 | |
| 		struct rb_node *node;
 | |
| 
 | |
| 		spin_lock(&cpu_base->lock);
 | |
| 
 | |
| 		basenow = ktime_add(now, base->offset);
 | |
| 
 | |
| 		while ((node = base->first)) {
 | |
| 			struct hrtimer *timer;
 | |
| 
 | |
| 			timer = rb_entry(node, struct hrtimer, node);
 | |
| 
 | |
| 			/*
 | |
| 			 * The immediate goal for using the softexpires is
 | |
| 			 * minimizing wakeups, not running timers at the
 | |
| 			 * earliest interrupt after their soft expiration.
 | |
| 			 * This allows us to avoid using a Priority Search
 | |
| 			 * Tree, which can answer a stabbing querry for
 | |
| 			 * overlapping intervals and instead use the simple
 | |
| 			 * BST we already have.
 | |
| 			 * We don't add extra wakeups by delaying timers that
 | |
| 			 * are right-of a not yet expired timer, because that
 | |
| 			 * timer will have to trigger a wakeup anyway.
 | |
| 			 */
 | |
| 
 | |
| 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
 | |
| 				ktime_t expires;
 | |
| 
 | |
| 				expires = ktime_sub(hrtimer_get_expires(timer),
 | |
| 						    base->offset);
 | |
| 				if (expires.tv64 < expires_next.tv64)
 | |
| 					expires_next = expires;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Move softirq callbacks to the pending list */
 | |
| 			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
 | |
| 				__remove_hrtimer(timer, base,
 | |
| 						 HRTIMER_STATE_PENDING, 0);
 | |
| 				list_add_tail(&timer->cb_entry,
 | |
| 					      &base->cpu_base->cb_pending);
 | |
| 				raise = 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			__run_hrtimer(timer);
 | |
| 		}
 | |
| 		spin_unlock(&cpu_base->lock);
 | |
| 		base++;
 | |
| 	}
 | |
| 
 | |
| 	cpu_base->expires_next = expires_next;
 | |
| 
 | |
| 	/* Reprogramming necessary ? */
 | |
| 	if (expires_next.tv64 != KTIME_MAX) {
 | |
| 		if (tick_program_event(expires_next, 0))
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* Raise softirq ? */
 | |
| 	if (raise)
 | |
| 		raise_softirq(HRTIMER_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_peek_ahead_timers -- run soft-expired timers now
 | |
|  *
 | |
|  * hrtimer_peek_ahead_timers will peek at the timer queue of
 | |
|  * the current cpu and check if there are any timers for which
 | |
|  * the soft expires time has passed. If any such timers exist,
 | |
|  * they are run immediately and then removed from the timer queue.
 | |
|  *
 | |
|  */
 | |
| void hrtimer_peek_ahead_timers(void)
 | |
| {
 | |
| 	struct tick_device *td;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!hrtimer_hres_active())
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	td = &__get_cpu_var(tick_cpu_device);
 | |
| 	if (td && td->evtdev)
 | |
| 		hrtimer_interrupt(td->evtdev);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void run_hrtimer_softirq(struct softirq_action *h)
 | |
| {
 | |
| 	run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_HIGH_RES_TIMERS */
 | |
| 
 | |
| /*
 | |
|  * Called from timer softirq every jiffy, expire hrtimers:
 | |
|  *
 | |
|  * For HRT its the fall back code to run the softirq in the timer
 | |
|  * softirq context in case the hrtimer initialization failed or has
 | |
|  * not been done yet.
 | |
|  */
 | |
| void hrtimer_run_pending(void)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	if (hrtimer_hres_active())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This _is_ ugly: We have to check in the softirq context,
 | |
| 	 * whether we can switch to highres and / or nohz mode. The
 | |
| 	 * clocksource switch happens in the timer interrupt with
 | |
| 	 * xtime_lock held. Notification from there only sets the
 | |
| 	 * check bit in the tick_oneshot code, otherwise we might
 | |
| 	 * deadlock vs. xtime_lock.
 | |
| 	 */
 | |
| 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
 | |
| 		hrtimer_switch_to_hres();
 | |
| 
 | |
| 	run_hrtimer_pending(cpu_base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from hardirq context every jiffy
 | |
|  */
 | |
| void hrtimer_run_queues(void)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | |
| 	struct hrtimer_clock_base *base;
 | |
| 	int index, gettime = 1;
 | |
| 
 | |
| 	if (hrtimer_hres_active())
 | |
| 		return;
 | |
| 
 | |
| 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
 | |
| 		base = &cpu_base->clock_base[index];
 | |
| 
 | |
| 		if (!base->first)
 | |
| 			continue;
 | |
| 
 | |
| 		if (gettime) {
 | |
| 			hrtimer_get_softirq_time(cpu_base);
 | |
| 			gettime = 0;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&cpu_base->lock);
 | |
| 
 | |
| 		while ((node = base->first)) {
 | |
| 			struct hrtimer *timer;
 | |
| 
 | |
| 			timer = rb_entry(node, struct hrtimer, node);
 | |
| 			if (base->softirq_time.tv64 <=
 | |
| 					hrtimer_get_expires_tv64(timer))
 | |
| 				break;
 | |
| 
 | |
| 			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
 | |
| 				__remove_hrtimer(timer, base,
 | |
| 					HRTIMER_STATE_PENDING, 0);
 | |
| 				list_add_tail(&timer->cb_entry,
 | |
| 					&base->cpu_base->cb_pending);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			__run_hrtimer(timer);
 | |
| 		}
 | |
| 		spin_unlock(&cpu_base->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sleep related functions:
 | |
|  */
 | |
| static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_sleeper *t =
 | |
| 		container_of(timer, struct hrtimer_sleeper, timer);
 | |
| 	struct task_struct *task = t->task;
 | |
| 
 | |
| 	t->task = NULL;
 | |
| 	if (task)
 | |
| 		wake_up_process(task);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 | |
| {
 | |
| 	sl->timer.function = hrtimer_wakeup;
 | |
| 	sl->task = task;
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
 | |
| {
 | |
| 	hrtimer_init_sleeper(t, current);
 | |
| 
 | |
| 	do {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		hrtimer_start_expires(&t->timer, mode);
 | |
| 		if (!hrtimer_active(&t->timer))
 | |
| 			t->task = NULL;
 | |
| 
 | |
| 		if (likely(t->task))
 | |
| 			schedule();
 | |
| 
 | |
| 		hrtimer_cancel(&t->timer);
 | |
| 		mode = HRTIMER_MODE_ABS;
 | |
| 
 | |
| 	} while (t->task && !signal_pending(current));
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	return t->task == NULL;
 | |
| }
 | |
| 
 | |
| static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct timespec rmt;
 | |
| 	ktime_t rem;
 | |
| 
 | |
| 	rem = hrtimer_expires_remaining(timer);
 | |
| 	if (rem.tv64 <= 0)
 | |
| 		return 0;
 | |
| 	rmt = ktime_to_timespec(rem);
 | |
| 
 | |
| 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
 | |
| {
 | |
| 	struct hrtimer_sleeper t;
 | |
| 	struct timespec __user  *rmtp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
 | |
| 				HRTIMER_MODE_ABS);
 | |
| 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
 | |
| 
 | |
| 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
 | |
| 		goto out;
 | |
| 
 | |
| 	rmtp = restart->nanosleep.rmtp;
 | |
| 	if (rmtp) {
 | |
| 		ret = update_rmtp(&t.timer, rmtp);
 | |
| 		if (ret <= 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* The other values in restart are already filled in */
 | |
| 	ret = -ERESTART_RESTARTBLOCK;
 | |
| out:
 | |
| 	destroy_hrtimer_on_stack(&t.timer);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
 | |
| 		       const enum hrtimer_mode mode, const clockid_t clockid)
 | |
| {
 | |
| 	struct restart_block *restart;
 | |
| 	struct hrtimer_sleeper t;
 | |
| 	int ret = 0;
 | |
| 	unsigned long slack;
 | |
| 
 | |
| 	slack = current->timer_slack_ns;
 | |
| 	if (rt_task(current))
 | |
| 		slack = 0;
 | |
| 
 | |
| 	hrtimer_init_on_stack(&t.timer, clockid, mode);
 | |
| 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
 | |
| 	if (do_nanosleep(&t, mode))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Absolute timers do not update the rmtp value and restart: */
 | |
| 	if (mode == HRTIMER_MODE_ABS) {
 | |
| 		ret = -ERESTARTNOHAND;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rmtp) {
 | |
| 		ret = update_rmtp(&t.timer, rmtp);
 | |
| 		if (ret <= 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	restart = ¤t_thread_info()->restart_block;
 | |
| 	restart->fn = hrtimer_nanosleep_restart;
 | |
| 	restart->nanosleep.index = t.timer.base->index;
 | |
| 	restart->nanosleep.rmtp = rmtp;
 | |
| 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
 | |
| 
 | |
| 	ret = -ERESTART_RESTARTBLOCK;
 | |
| out:
 | |
| 	destroy_hrtimer_on_stack(&t.timer);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct timespec tu;
 | |
| 
 | |
| 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec_valid(&tu))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions related to boot-time initialization:
 | |
|  */
 | |
| static void __cpuinit init_hrtimers_cpu(int cpu)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(&cpu_base->lock);
 | |
| 
 | |
| 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 | |
| 		cpu_base->clock_base[i].cpu_base = cpu_base;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cpu_base->cb_pending);
 | |
| 	hrtimer_init_hres(cpu_base);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
 | |
| 				struct hrtimer_clock_base *new_base, int dcpu)
 | |
| {
 | |
| 	struct hrtimer *timer;
 | |
| 	struct rb_node *node;
 | |
| 	int raise = 0;
 | |
| 
 | |
| 	while ((node = rb_first(&old_base->active))) {
 | |
| 		timer = rb_entry(node, struct hrtimer, node);
 | |
| 		BUG_ON(hrtimer_callback_running(timer));
 | |
| 		debug_hrtimer_deactivate(timer);
 | |
| 
 | |
| 		/*
 | |
| 		 * Should not happen. Per CPU timers should be
 | |
| 		 * canceled _before_ the migration code is called
 | |
| 		 */
 | |
| 		if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
 | |
| 			__remove_hrtimer(timer, old_base,
 | |
| 					 HRTIMER_STATE_INACTIVE, 0);
 | |
| 			WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
 | |
| 			     timer, timer->function, dcpu);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
 | |
| 		 * timer could be seen as !active and just vanish away
 | |
| 		 * under us on another CPU
 | |
| 		 */
 | |
| 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
 | |
| 		timer->base = new_base;
 | |
| 		/*
 | |
| 		 * Enqueue the timer. Allow reprogramming of the event device
 | |
| 		 */
 | |
| 		enqueue_hrtimer(timer, new_base, 1);
 | |
| 
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 		/*
 | |
| 		 * Happens with high res enabled when the timer was
 | |
| 		 * already expired and the callback mode is
 | |
| 		 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
 | |
| 		 * enqueue code does not move them to the soft irq
 | |
| 		 * pending list for performance/latency reasons, but
 | |
| 		 * in the migration state, we need to do that
 | |
| 		 * otherwise we end up with a stale timer.
 | |
| 		 */
 | |
| 		if (timer->state == HRTIMER_STATE_MIGRATE) {
 | |
| 			timer->state = HRTIMER_STATE_PENDING;
 | |
| 			list_add_tail(&timer->cb_entry,
 | |
| 				      &new_base->cpu_base->cb_pending);
 | |
| 			raise = 1;
 | |
| 		}
 | |
| #endif
 | |
| 		/* Clear the migration state bit */
 | |
| 		timer->state &= ~HRTIMER_STATE_MIGRATE;
 | |
| 	}
 | |
| 	return raise;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
 | |
| 				   struct hrtimer_cpu_base *new_base)
 | |
| {
 | |
| 	struct hrtimer *timer;
 | |
| 	int raise = 0;
 | |
| 
 | |
| 	while (!list_empty(&old_base->cb_pending)) {
 | |
| 		timer = list_entry(old_base->cb_pending.next,
 | |
| 				   struct hrtimer, cb_entry);
 | |
| 
 | |
| 		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
 | |
| 		timer->base = &new_base->clock_base[timer->base->index];
 | |
| 		list_add_tail(&timer->cb_entry, &new_base->cb_pending);
 | |
| 		raise = 1;
 | |
| 	}
 | |
| 	return raise;
 | |
| }
 | |
| #else
 | |
| static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
 | |
| 				   struct hrtimer_cpu_base *new_base)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void migrate_hrtimers(int cpu)
 | |
| {
 | |
| 	struct hrtimer_cpu_base *old_base, *new_base;
 | |
| 	int i, raise = 0;
 | |
| 
 | |
| 	BUG_ON(cpu_online(cpu));
 | |
| 	old_base = &per_cpu(hrtimer_bases, cpu);
 | |
| 	new_base = &get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	tick_cancel_sched_timer(cpu);
 | |
| 	/*
 | |
| 	 * The caller is globally serialized and nobody else
 | |
| 	 * takes two locks at once, deadlock is not possible.
 | |
| 	 */
 | |
| 	spin_lock_irq(&new_base->lock);
 | |
| 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
 | |
| 		if (migrate_hrtimer_list(&old_base->clock_base[i],
 | |
| 					 &new_base->clock_base[i], cpu))
 | |
| 			raise = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (migrate_hrtimer_pending(old_base, new_base))
 | |
| 		raise = 1;
 | |
| 
 | |
| 	spin_unlock(&old_base->lock);
 | |
| 	spin_unlock_irq(&new_base->lock);
 | |
| 	put_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	if (raise)
 | |
| 		hrtimer_raise_softirq();
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
 | |
| 					unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		init_hrtimers_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
 | |
| 		migrate_hrtimers(cpu);
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata hrtimers_nb = {
 | |
| 	.notifier_call = hrtimer_cpu_notify,
 | |
| };
 | |
| 
 | |
| void __init hrtimers_init(void)
 | |
| {
 | |
| 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
 | |
| 			  (void *)(long)smp_processor_id());
 | |
| 	register_cpu_notifier(&hrtimers_nb);
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * schedule_hrtimeout_range - sleep until timeout
 | |
|  * @expires:	timeout value (ktime_t)
 | |
|  * @delta:	slack in expires timeout (ktime_t)
 | |
|  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 | |
|  *
 | |
|  * Make the current task sleep until the given expiry time has
 | |
|  * elapsed. The routine will return immediately unless
 | |
|  * the current task state has been set (see set_current_state()).
 | |
|  *
 | |
|  * The @delta argument gives the kernel the freedom to schedule the
 | |
|  * actual wakeup to a time that is both power and performance friendly.
 | |
|  * The kernel give the normal best effort behavior for "@expires+@delta",
 | |
|  * but may decide to fire the timer earlier, but no earlier than @expires.
 | |
|  *
 | |
|  * You can set the task state as follows -
 | |
|  *
 | |
|  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 | |
|  * pass before the routine returns.
 | |
|  *
 | |
|  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 | |
|  * delivered to the current task.
 | |
|  *
 | |
|  * The current task state is guaranteed to be TASK_RUNNING when this
 | |
|  * routine returns.
 | |
|  *
 | |
|  * Returns 0 when the timer has expired otherwise -EINTR
 | |
|  */
 | |
| int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
 | |
| 			       const enum hrtimer_mode mode)
 | |
| {
 | |
| 	struct hrtimer_sleeper t;
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimize when a zero timeout value is given. It does not
 | |
| 	 * matter whether this is an absolute or a relative time.
 | |
| 	 */
 | |
| 	if (expires && !expires->tv64) {
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A NULL parameter means "inifinte"
 | |
| 	 */
 | |
| 	if (!expires) {
 | |
| 		schedule();
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
 | |
| 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
 | |
| 
 | |
| 	hrtimer_init_sleeper(&t, current);
 | |
| 
 | |
| 	hrtimer_start_expires(&t.timer, mode);
 | |
| 	if (!hrtimer_active(&t.timer))
 | |
| 		t.task = NULL;
 | |
| 
 | |
| 	if (likely(t.task))
 | |
| 		schedule();
 | |
| 
 | |
| 	hrtimer_cancel(&t.timer);
 | |
| 	destroy_hrtimer_on_stack(&t.timer);
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	return !t.task ? 0 : -EINTR;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
 | |
| 
 | |
| /**
 | |
|  * schedule_hrtimeout - sleep until timeout
 | |
|  * @expires:	timeout value (ktime_t)
 | |
|  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 | |
|  *
 | |
|  * Make the current task sleep until the given expiry time has
 | |
|  * elapsed. The routine will return immediately unless
 | |
|  * the current task state has been set (see set_current_state()).
 | |
|  *
 | |
|  * You can set the task state as follows -
 | |
|  *
 | |
|  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 | |
|  * pass before the routine returns.
 | |
|  *
 | |
|  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 | |
|  * delivered to the current task.
 | |
|  *
 | |
|  * The current task state is guaranteed to be TASK_RUNNING when this
 | |
|  * routine returns.
 | |
|  *
 | |
|  * Returns 0 when the timer has expired otherwise -EINTR
 | |
|  */
 | |
| int __sched schedule_hrtimeout(ktime_t *expires,
 | |
| 			       const enum hrtimer_mode mode)
 | |
| {
 | |
| 	return schedule_hrtimeout_range(expires, 0, mode);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(schedule_hrtimeout);
 |