97ab3e8eec
Currently, a Vec<T>'s ptr value, after calling Vec<T>::new(), is initialized to Unique::dangling(). Hence, in VecExt<T>::reserve(), we're passing a dangling pointer (instead of NULL) to krealloc() whenever a new Vec<T>'s backing storage is allocated through VecExt<T> extension functions. This only works as long as align_of::<T>(), used by Unique::dangling() to derive the dangling pointer, resolves to a value between 0x0 and ZERO_SIZE_PTR (0x10) and krealloc() hence treats it the same as a NULL pointer however. This isn't a case we should rely on, since there may be types whose alignment may exceed the range still covered by krealloc(), plus other kernel allocators are not as tolerant either. Instead, pass a real NULL pointer to krealloc_aligned() if Vec<T>'s capacity is zero. Fixes: 5ab560ce12ed ("rust: alloc: update `VecExt` to take allocation flags") Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Danilo Krummrich <dakr@redhat.com> Reviewed-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20240501134834.22323-1-dakr@redhat.com [ Solved `use` conflict and applied the `if`-instead-of-`match` change discussed in the list. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
183 lines
6.2 KiB
Rust
183 lines
6.2 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Extensions to [`Vec`] for fallible allocations.
|
|
|
|
use super::{AllocError, Flags};
|
|
use alloc::vec::Vec;
|
|
use core::ptr;
|
|
|
|
/// Extensions to [`Vec`].
|
|
pub trait VecExt<T>: Sized {
|
|
/// Creates a new [`Vec`] instance with at least the given capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = Vec::<u32>::with_capacity(20, GFP_KERNEL)?;
|
|
///
|
|
/// assert!(v.capacity() >= 20);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>;
|
|
|
|
/// Appends an element to the back of the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = Vec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// v.push(2, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 2]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>;
|
|
|
|
/// Pushes clones of the elements of slice into the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = Vec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40]);
|
|
///
|
|
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
|
|
where
|
|
T: Clone;
|
|
|
|
/// Ensures that the capacity exceeds the length by at least `additional` elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = Vec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let cap = v.capacity();
|
|
/// assert!(cap >= 10);
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let new_cap = v.capacity();
|
|
/// assert_eq!(new_cap, cap);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>;
|
|
}
|
|
|
|
impl<T> VecExt<T> for Vec<T> {
|
|
fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
|
|
let mut v = Vec::new();
|
|
<Self as VecExt<_>>::reserve(&mut v, capacity, flags)?;
|
|
Ok(v)
|
|
}
|
|
|
|
fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
|
|
<Self as VecExt<_>>::reserve(self, 1, flags)?;
|
|
let s = self.spare_capacity_mut();
|
|
s[0].write(v);
|
|
|
|
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
|
|
// by 1. We also know that the new length is <= capacity because of the previous call to
|
|
// `reserve` above.
|
|
unsafe { self.set_len(self.len() + 1) };
|
|
Ok(())
|
|
}
|
|
|
|
fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
|
|
where
|
|
T: Clone,
|
|
{
|
|
<Self as VecExt<_>>::reserve(self, other.len(), flags)?;
|
|
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
|
|
slot.write(item.clone());
|
|
}
|
|
|
|
// SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
|
|
// the length by the same amount. We also know that the new length is <= capacity because
|
|
// of the previous call to `reserve` above.
|
|
unsafe { self.set_len(self.len() + other.len()) };
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(any(test, testlib))]
|
|
fn reserve(&mut self, additional: usize, _flags: Flags) -> Result<(), AllocError> {
|
|
Vec::reserve(self, additional);
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(not(any(test, testlib)))]
|
|
fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
|
|
let len = self.len();
|
|
let cap = self.capacity();
|
|
|
|
if cap - len >= additional {
|
|
return Ok(());
|
|
}
|
|
|
|
if core::mem::size_of::<T>() == 0 {
|
|
// The capacity is already `usize::MAX` for SZTs, we can't go higher.
|
|
return Err(AllocError);
|
|
}
|
|
|
|
// We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
|
|
// is greater than `isize::MAX`. So the multiplication by two won't overflow.
|
|
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
|
|
let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
|
|
|
|
let (old_ptr, len, cap) = destructure(self);
|
|
|
|
// We need to make sure that `ptr` is either NULL or comes from a previous call to
|
|
// `krealloc_aligned`. A `Vec<T>`'s `ptr` value is not guaranteed to be NULL and might be
|
|
// dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T>`'s capacity
|
|
// to be zero if no memory has been allocated yet.
|
|
let ptr = if cap == 0 { ptr::null_mut() } else { old_ptr };
|
|
|
|
// SAFETY: `ptr` is valid because it's either NULL or comes from a previous call to
|
|
// `krealloc_aligned`. We also verified that the type is not a ZST.
|
|
let new_ptr = unsafe { super::allocator::krealloc_aligned(ptr.cast(), layout, flags) };
|
|
if new_ptr.is_null() {
|
|
// SAFETY: We are just rebuilding the existing `Vec` with no changes.
|
|
unsafe { rebuild(self, old_ptr, len, cap) };
|
|
Err(AllocError)
|
|
} else {
|
|
// SAFETY: `ptr` has been reallocated with the layout for `new_cap` elements. New cap
|
|
// is greater than `cap`, so it continues to be >= `len`.
|
|
unsafe { rebuild(self, new_ptr.cast::<T>(), len, new_cap) };
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(not(any(test, testlib)))]
|
|
fn destructure<T>(v: &mut Vec<T>) -> (*mut T, usize, usize) {
|
|
let mut tmp = Vec::new();
|
|
core::mem::swap(&mut tmp, v);
|
|
let mut tmp = core::mem::ManuallyDrop::new(tmp);
|
|
let len = tmp.len();
|
|
let cap = tmp.capacity();
|
|
(tmp.as_mut_ptr(), len, cap)
|
|
}
|
|
|
|
/// Rebuilds a `Vec` from a pointer, length, and capacity.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The same as [`Vec::from_raw_parts`].
|
|
#[cfg(not(any(test, testlib)))]
|
|
unsafe fn rebuild<T>(v: &mut Vec<T>, ptr: *mut T, len: usize, cap: usize) {
|
|
// SAFETY: The safety requirements from this function satisfy those of `from_raw_parts`.
|
|
let mut tmp = unsafe { Vec::from_raw_parts(ptr, len, cap) };
|
|
core::mem::swap(&mut tmp, v);
|
|
}
|