9073e1a804
Pull trivial tree updates from Jiri Kosina: "Usual earth-shaking, news-breaking, rocket science pile from trivial.git" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits) doc: usb: Fix typo in Documentation/usb/gadget_configs.txt doc: add missing files to timers/00-INDEX timekeeping: Fix some trivial typos in comments mm: Fix some trivial typos in comments irq: Fix some trivial typos in comments NUMA: fix typos in Kconfig help text mm: update 00-INDEX doc: Documentation/DMA-attributes.txt fix typo DRM: comment: `halve' -> `half' Docs: Kconfig: `devlopers' -> `developers' doc: typo on word accounting in kprobes.c in mutliple architectures treewide: fix "usefull" typo treewide: fix "distingush" typo mm/Kconfig: Grammar s/an/a/ kexec: Typo s/the/then/ Documentation/kvm: Update cpuid documentation for steal time and pv eoi treewide: Fix common typo in "identify" __page_to_pfn: Fix typo in comment Correct some typos for word frequency clk: fixed-factor: Fix a trivial typo ...
826 lines
22 KiB
C
826 lines
22 KiB
C
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright IBM Corp. 2002, 2006
|
|
*
|
|
* s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hardirq.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/dis.h>
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = { };
|
|
|
|
DEFINE_INSN_CACHE_OPS(dmainsn);
|
|
|
|
static void *alloc_dmainsn_page(void)
|
|
{
|
|
return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
|
|
}
|
|
|
|
static void free_dmainsn_page(void *page)
|
|
{
|
|
free_page((unsigned long)page);
|
|
}
|
|
|
|
struct kprobe_insn_cache kprobe_dmainsn_slots = {
|
|
.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
|
|
.alloc = alloc_dmainsn_page,
|
|
.free = free_dmainsn_page,
|
|
.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
|
|
.insn_size = MAX_INSN_SIZE,
|
|
};
|
|
|
|
static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
|
|
{
|
|
if (!is_known_insn((unsigned char *)insn))
|
|
return -EINVAL;
|
|
switch (insn[0] >> 8) {
|
|
case 0x0c: /* bassm */
|
|
case 0x0b: /* bsm */
|
|
case 0x83: /* diag */
|
|
case 0x44: /* ex */
|
|
case 0xac: /* stnsm */
|
|
case 0xad: /* stosm */
|
|
return -EINVAL;
|
|
case 0xc6:
|
|
switch (insn[0] & 0x0f) {
|
|
case 0x00: /* exrl */
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
switch (insn[0]) {
|
|
case 0x0101: /* pr */
|
|
case 0xb25a: /* bsa */
|
|
case 0xb240: /* bakr */
|
|
case 0xb258: /* bsg */
|
|
case 0xb218: /* pc */
|
|
case 0xb228: /* pt */
|
|
case 0xb98d: /* epsw */
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
|
|
{
|
|
/* default fixup method */
|
|
int fixup = FIXUP_PSW_NORMAL;
|
|
|
|
switch (insn[0] >> 8) {
|
|
case 0x05: /* balr */
|
|
case 0x0d: /* basr */
|
|
fixup = FIXUP_RETURN_REGISTER;
|
|
/* if r2 = 0, no branch will be taken */
|
|
if ((insn[0] & 0x0f) == 0)
|
|
fixup |= FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
case 0x06: /* bctr */
|
|
case 0x07: /* bcr */
|
|
fixup = FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
case 0x45: /* bal */
|
|
case 0x4d: /* bas */
|
|
fixup = FIXUP_RETURN_REGISTER;
|
|
break;
|
|
case 0x47: /* bc */
|
|
case 0x46: /* bct */
|
|
case 0x86: /* bxh */
|
|
case 0x87: /* bxle */
|
|
fixup = FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
case 0x82: /* lpsw */
|
|
fixup = FIXUP_NOT_REQUIRED;
|
|
break;
|
|
case 0xb2: /* lpswe */
|
|
if ((insn[0] & 0xff) == 0xb2)
|
|
fixup = FIXUP_NOT_REQUIRED;
|
|
break;
|
|
case 0xa7: /* bras */
|
|
if ((insn[0] & 0x0f) == 0x05)
|
|
fixup |= FIXUP_RETURN_REGISTER;
|
|
break;
|
|
case 0xc0:
|
|
if ((insn[0] & 0x0f) == 0x05) /* brasl */
|
|
fixup |= FIXUP_RETURN_REGISTER;
|
|
break;
|
|
case 0xeb:
|
|
switch (insn[2] & 0xff) {
|
|
case 0x44: /* bxhg */
|
|
case 0x45: /* bxleg */
|
|
fixup = FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
}
|
|
break;
|
|
case 0xe3: /* bctg */
|
|
if ((insn[2] & 0xff) == 0x46)
|
|
fixup = FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
case 0xec:
|
|
switch (insn[2] & 0xff) {
|
|
case 0xe5: /* clgrb */
|
|
case 0xe6: /* cgrb */
|
|
case 0xf6: /* crb */
|
|
case 0xf7: /* clrb */
|
|
case 0xfc: /* cgib */
|
|
case 0xfd: /* cglib */
|
|
case 0xfe: /* cib */
|
|
case 0xff: /* clib */
|
|
fixup = FIXUP_BRANCH_NOT_TAKEN;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return fixup;
|
|
}
|
|
|
|
static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
|
|
{
|
|
/* Check if we have a RIL-b or RIL-c format instruction which
|
|
* we need to modify in order to avoid instruction emulation. */
|
|
switch (insn[0] >> 8) {
|
|
case 0xc0:
|
|
if ((insn[0] & 0x0f) == 0x00) /* larl */
|
|
return true;
|
|
break;
|
|
case 0xc4:
|
|
switch (insn[0] & 0x0f) {
|
|
case 0x02: /* llhrl */
|
|
case 0x04: /* lghrl */
|
|
case 0x05: /* lhrl */
|
|
case 0x06: /* llghrl */
|
|
case 0x07: /* sthrl */
|
|
case 0x08: /* lgrl */
|
|
case 0x0b: /* stgrl */
|
|
case 0x0c: /* lgfrl */
|
|
case 0x0d: /* lrl */
|
|
case 0x0e: /* llgfrl */
|
|
case 0x0f: /* strl */
|
|
return true;
|
|
}
|
|
break;
|
|
case 0xc6:
|
|
switch (insn[0] & 0x0f) {
|
|
case 0x02: /* pfdrl */
|
|
case 0x04: /* cghrl */
|
|
case 0x05: /* chrl */
|
|
case 0x06: /* clghrl */
|
|
case 0x07: /* clhrl */
|
|
case 0x08: /* cgrl */
|
|
case 0x0a: /* clgrl */
|
|
case 0x0c: /* cgfrl */
|
|
case 0x0d: /* crl */
|
|
case 0x0e: /* clgfrl */
|
|
case 0x0f: /* clrl */
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void __kprobes copy_instruction(struct kprobe *p)
|
|
{
|
|
s64 disp, new_disp;
|
|
u64 addr, new_addr;
|
|
|
|
memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
|
|
if (!is_insn_relative_long(p->ainsn.insn))
|
|
return;
|
|
/*
|
|
* For pc-relative instructions in RIL-b or RIL-c format patch the
|
|
* RI2 displacement field. We have already made sure that the insn
|
|
* slot for the patched instruction is within the same 2GB area
|
|
* as the original instruction (either kernel image or module area).
|
|
* Therefore the new displacement will always fit.
|
|
*/
|
|
disp = *(s32 *)&p->ainsn.insn[1];
|
|
addr = (u64)(unsigned long)p->addr;
|
|
new_addr = (u64)(unsigned long)p->ainsn.insn;
|
|
new_disp = ((addr + (disp * 2)) - new_addr) / 2;
|
|
*(s32 *)&p->ainsn.insn[1] = new_disp;
|
|
}
|
|
|
|
static inline int is_kernel_addr(void *addr)
|
|
{
|
|
return addr < (void *)_end;
|
|
}
|
|
|
|
static inline int is_module_addr(void *addr)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
|
|
if (addr < (void *)MODULES_VADDR)
|
|
return 0;
|
|
if (addr > (void *)MODULES_END)
|
|
return 0;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static int __kprobes s390_get_insn_slot(struct kprobe *p)
|
|
{
|
|
/*
|
|
* Get an insn slot that is within the same 2GB area like the original
|
|
* instruction. That way instructions with a 32bit signed displacement
|
|
* field can be patched and executed within the insn slot.
|
|
*/
|
|
p->ainsn.insn = NULL;
|
|
if (is_kernel_addr(p->addr))
|
|
p->ainsn.insn = get_dmainsn_slot();
|
|
else if (is_module_addr(p->addr))
|
|
p->ainsn.insn = get_insn_slot();
|
|
return p->ainsn.insn ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void __kprobes s390_free_insn_slot(struct kprobe *p)
|
|
{
|
|
if (!p->ainsn.insn)
|
|
return;
|
|
if (is_kernel_addr(p->addr))
|
|
free_dmainsn_slot(p->ainsn.insn, 0);
|
|
else
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
if ((unsigned long) p->addr & 0x01)
|
|
return -EINVAL;
|
|
/* Make sure the probe isn't going on a difficult instruction */
|
|
if (is_prohibited_opcode(p->addr))
|
|
return -EINVAL;
|
|
if (s390_get_insn_slot(p))
|
|
return -ENOMEM;
|
|
p->opcode = *p->addr;
|
|
copy_instruction(p);
|
|
return 0;
|
|
}
|
|
|
|
struct ins_replace_args {
|
|
kprobe_opcode_t *ptr;
|
|
kprobe_opcode_t opcode;
|
|
};
|
|
|
|
static int __kprobes swap_instruction(void *aref)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long status = kcb->kprobe_status;
|
|
struct ins_replace_args *args = aref;
|
|
|
|
kcb->kprobe_status = KPROBE_SWAP_INST;
|
|
probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
|
|
kcb->kprobe_status = status;
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
struct ins_replace_args args;
|
|
|
|
args.ptr = p->addr;
|
|
args.opcode = BREAKPOINT_INSTRUCTION;
|
|
stop_machine(swap_instruction, &args, NULL);
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
struct ins_replace_args args;
|
|
|
|
args.ptr = p->addr;
|
|
args.opcode = p->opcode;
|
|
stop_machine(swap_instruction, &args, NULL);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
s390_free_insn_slot(p);
|
|
}
|
|
|
|
static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs,
|
|
unsigned long ip)
|
|
{
|
|
struct per_regs per_kprobe;
|
|
|
|
/* Set up the PER control registers %cr9-%cr11 */
|
|
per_kprobe.control = PER_EVENT_IFETCH;
|
|
per_kprobe.start = ip;
|
|
per_kprobe.end = ip;
|
|
|
|
/* Save control regs and psw mask */
|
|
__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
|
|
kcb->kprobe_saved_imask = regs->psw.mask &
|
|
(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
|
|
|
|
/* Set PER control regs, turns on single step for the given address */
|
|
__ctl_load(per_kprobe, 9, 11);
|
|
regs->psw.mask |= PSW_MASK_PER;
|
|
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
|
|
regs->psw.addr = ip | PSW_ADDR_AMODE;
|
|
}
|
|
|
|
static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs,
|
|
unsigned long ip)
|
|
{
|
|
/* Restore control regs and psw mask, set new psw address */
|
|
__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
|
|
regs->psw.mask &= ~PSW_MASK_PER;
|
|
regs->psw.mask |= kcb->kprobe_saved_imask;
|
|
regs->psw.addr = ip | PSW_ADDR_AMODE;
|
|
}
|
|
|
|
/*
|
|
* Activate a kprobe by storing its pointer to current_kprobe. The
|
|
* previous kprobe is stored in kcb->prev_kprobe. A stack of up to
|
|
* two kprobes can be active, see KPROBE_REENTER.
|
|
*/
|
|
static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
|
|
{
|
|
kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
__get_cpu_var(current_kprobe) = p;
|
|
}
|
|
|
|
/*
|
|
* Deactivate a kprobe by backing up to the previous state. If the
|
|
* current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
|
|
* for any other state prev_kprobe.kp will be NULL.
|
|
*/
|
|
static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
|
|
}
|
|
|
|
static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
|
|
struct kprobe *p)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
default:
|
|
/*
|
|
* A kprobe on the code path to single step an instruction
|
|
* is a BUG. The code path resides in the .kprobes.text
|
|
* section and is executed with interrupts disabled.
|
|
*/
|
|
printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
|
|
dump_kprobe(p);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb;
|
|
struct kprobe *p;
|
|
|
|
/*
|
|
* We want to disable preemption for the entire duration of kprobe
|
|
* processing. That includes the calls to the pre/post handlers
|
|
* and single stepping the kprobe instruction.
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
|
|
|
|
if (p) {
|
|
if (kprobe_running()) {
|
|
/*
|
|
* We have hit a kprobe while another is still
|
|
* active. This can happen in the pre and post
|
|
* handler. Single step the instruction of the
|
|
* new probe but do not call any handler function
|
|
* of this secondary kprobe.
|
|
* push_kprobe and pop_kprobe saves and restores
|
|
* the currently active kprobe.
|
|
*/
|
|
kprobe_reenter_check(kcb, p);
|
|
push_kprobe(kcb, p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with single stepping. If we have a
|
|
* pre-handler and it returned non-zero, it prepped
|
|
* for calling the break_handler below on re-entry
|
|
* for jprobe processing, so get out doing nothing
|
|
* more here.
|
|
*/
|
|
push_kprobe(kcb, p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
if (p->pre_handler && p->pre_handler(p, regs))
|
|
return 1;
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
|
|
return 1;
|
|
} else if (kprobe_running()) {
|
|
p = __get_cpu_var(current_kprobe);
|
|
if (p->break_handler && p->break_handler(p, regs)) {
|
|
/*
|
|
* Continuation after the jprobe completed and
|
|
* caused the jprobe_return trap. The jprobe
|
|
* break_handler "returns" to the original
|
|
* function that still has the kprobe breakpoint
|
|
* installed. We continue with single stepping.
|
|
*/
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
enable_singlestep(kcb, regs,
|
|
(unsigned long) p->ainsn.insn);
|
|
return 1;
|
|
} /* else:
|
|
* No kprobe at this address and the current kprobe
|
|
* has no break handler (no jprobe!). The kernel just
|
|
* exploded, let the standard trap handler pick up the
|
|
* pieces.
|
|
*/
|
|
} /* else:
|
|
* No kprobe at this address and no active kprobe. The trap has
|
|
* not been caused by a kprobe breakpoint. The race of breakpoint
|
|
* vs. kprobe remove does not exist because on s390 as we use
|
|
* stop_machine to arm/disarm the breakpoints.
|
|
*/
|
|
preempt_enable_no_resched();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function return probe trampoline:
|
|
* - init_kprobes() establishes a probepoint here
|
|
* - When the probed function returns, this probe
|
|
* causes the handlers to fire
|
|
*/
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
asm volatile(".global kretprobe_trampoline\n"
|
|
"kretprobe_trampoline: bcr 0,0\n");
|
|
}
|
|
|
|
/*
|
|
* Called when the probe at kretprobe trampoline is hit
|
|
*/
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address;
|
|
unsigned long trampoline_address;
|
|
kprobe_opcode_t *correct_ret_addr;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because an multiple functions in the call path
|
|
* have a return probe installed on them, and/or more than one return
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
ri = NULL;
|
|
orig_ret_address = 0;
|
|
correct_ret_addr = NULL;
|
|
trampoline_address = (unsigned long) &kretprobe_trampoline;
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
orig_ret_address = (unsigned long) ri->ret_addr;
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
|
correct_ret_addr = ri->ret_addr;
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
orig_ret_address = (unsigned long) ri->ret_addr;
|
|
|
|
if (ri->rp && ri->rp->handler) {
|
|
ri->ret_addr = correct_ret_addr;
|
|
ri->rp->handler(ri, regs);
|
|
}
|
|
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
|
|
|
|
pop_kprobe(get_kprobe_ctlblk());
|
|
kretprobe_hash_unlock(current, &flags);
|
|
preempt_enable_no_resched();
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
/*
|
|
* By returning a non-zero value, we are telling
|
|
* kprobe_handler() that we don't want the post_handler
|
|
* to run (and have re-enabled preemption)
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "breakpoint"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*/
|
|
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
|
|
int fixup = get_fixup_type(p->ainsn.insn);
|
|
|
|
if (fixup & FIXUP_PSW_NORMAL)
|
|
ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
|
|
|
|
if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
|
|
int ilen = insn_length(p->ainsn.insn[0] >> 8);
|
|
if (ip - (unsigned long) p->ainsn.insn == ilen)
|
|
ip = (unsigned long) p->addr + ilen;
|
|
}
|
|
|
|
if (fixup & FIXUP_RETURN_REGISTER) {
|
|
int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
|
|
regs->gprs[reg] += (unsigned long) p->addr -
|
|
(unsigned long) p->ainsn.insn;
|
|
}
|
|
|
|
disable_singlestep(kcb, regs, ip);
|
|
}
|
|
|
|
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
struct kprobe *p = kprobe_running();
|
|
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
p->post_handler(p, regs, 0);
|
|
}
|
|
|
|
resume_execution(p, regs);
|
|
pop_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, psw mask
|
|
* will have PER set, in which case, continue the remaining processing
|
|
* of do_single_step, as if this is not a probe hit.
|
|
*/
|
|
if (regs->psw.mask & PSW_MASK_PER)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
struct kprobe *p = kprobe_running();
|
|
const struct exception_table_entry *entry;
|
|
|
|
switch(kcb->kprobe_status) {
|
|
case KPROBE_SWAP_INST:
|
|
/* We are here because the instruction replacement failed */
|
|
return 0;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the nip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
disable_singlestep(kcb, regs, (unsigned long) p->addr);
|
|
pop_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(p);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (p->fault_handler && p->fault_handler(p, regs, trapnr))
|
|
return 1;
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
|
|
if (entry) {
|
|
regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
int ret;
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_disable();
|
|
ret = kprobe_trap_handler(regs, trapnr);
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Wrapper routine to for handling exceptions.
|
|
*/
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct die_args *args = (struct die_args *) data;
|
|
struct pt_regs *regs = args->regs;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_disable();
|
|
|
|
switch (val) {
|
|
case DIE_BPT:
|
|
if (kprobe_handler(regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_SSTEP:
|
|
if (post_kprobe_handler(regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_TRAP:
|
|
if (!preemptible() && kprobe_running() &&
|
|
kprobe_trap_handler(regs, args->trapnr))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long stack;
|
|
|
|
memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
|
|
|
|
/* setup return addr to the jprobe handler routine */
|
|
regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
|
|
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
|
|
|
|
/* r15 is the stack pointer */
|
|
stack = (unsigned long) regs->gprs[15];
|
|
|
|
memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
|
|
return 1;
|
|
}
|
|
|
|
void __kprobes jprobe_return(void)
|
|
{
|
|
asm volatile(".word 0x0002");
|
|
}
|
|
|
|
static void __used __kprobes jprobe_return_end(void)
|
|
{
|
|
asm volatile("bcr 0,0");
|
|
}
|
|
|
|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long stack;
|
|
|
|
stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
|
|
|
|
/* Put the regs back */
|
|
memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
|
|
/* put the stack back */
|
|
memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
static struct kprobe trampoline = {
|
|
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline);
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
|
|
}
|