ec2e7e1aff
The function pm80xx_get_fatal_dump() has two issues that result in the fatal dump not being able to complete successfully. 1. Trying to collect fatal_logs from the application fails because we are not shifting the MEMBASE-II register properly. Once we read 64K region of data we have to shift the MEMBASE-II register and read the next chunk. Only then would we be able to get complete data. 2. If a timeout occurs, our application will get stuck. Link: https://lore.kernel.org/r/20210109123849.17098-6-Viswas.G@microchip.com Acked-by: Jack Wang <jinpu.wang@cloud.ionos.com> Signed-off-by: Viswas G <Viswas.G@microchip.com> Signed-off-by: Ruksar Devadi <Ruksar.devadi@microchip.com> Signed-off-by: Ashokkumar N <Ashokkumar.N@microchip.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
5050 lines
163 KiB
C
5050 lines
163 KiB
C
/*
|
|
* PMC-Sierra SPCv/ve 8088/8089 SAS/SATA based host adapters driver
|
|
*
|
|
* Copyright (c) 2008-2009 PMC-Sierra, Inc.,
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
*/
|
|
#include <linux/slab.h>
|
|
#include "pm8001_sas.h"
|
|
#include "pm80xx_hwi.h"
|
|
#include "pm8001_chips.h"
|
|
#include "pm8001_ctl.h"
|
|
|
|
#define SMP_DIRECT 1
|
|
#define SMP_INDIRECT 2
|
|
|
|
|
|
int pm80xx_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shift_value)
|
|
{
|
|
u32 reg_val;
|
|
unsigned long start;
|
|
pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER, shift_value);
|
|
/* confirm the setting is written */
|
|
start = jiffies + HZ; /* 1 sec */
|
|
do {
|
|
reg_val = pm8001_cr32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER);
|
|
} while ((reg_val != shift_value) && time_before(jiffies, start));
|
|
if (reg_val != shift_value) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MEMBASE_II_SHIFT_REGISTER = 0x%x\n",
|
|
reg_val);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pm80xx_pci_mem_copy(struct pm8001_hba_info *pm8001_ha, u32 soffset,
|
|
const void *destination,
|
|
u32 dw_count, u32 bus_base_number)
|
|
{
|
|
u32 index, value, offset;
|
|
u32 *destination1;
|
|
destination1 = (u32 *)destination;
|
|
|
|
for (index = 0; index < dw_count; index += 4, destination1++) {
|
|
offset = (soffset + index);
|
|
if (offset < (64 * 1024)) {
|
|
value = pm8001_cr32(pm8001_ha, bus_base_number, offset);
|
|
*destination1 = cpu_to_le32(value);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
ssize_t pm80xx_get_fatal_dump(struct device *cdev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct Scsi_Host *shost = class_to_shost(cdev);
|
|
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
|
|
struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
|
|
void __iomem *fatal_table_address = pm8001_ha->fatal_tbl_addr;
|
|
u32 accum_len , reg_val, index, *temp;
|
|
u32 status = 1;
|
|
unsigned long start;
|
|
u8 *direct_data;
|
|
char *fatal_error_data = buf;
|
|
u32 length_to_read;
|
|
u32 offset;
|
|
|
|
pm8001_ha->forensic_info.data_buf.direct_data = buf;
|
|
if (pm8001_ha->chip_id == chip_8001) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"Not supported for SPC controller");
|
|
return (char *)pm8001_ha->forensic_info.data_buf.direct_data -
|
|
(char *)buf;
|
|
}
|
|
/* initialize variables for very first call from host application */
|
|
if (pm8001_ha->forensic_info.data_buf.direct_offset == 0) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"forensic_info TYPE_NON_FATAL..............\n");
|
|
direct_data = (u8 *)fatal_error_data;
|
|
pm8001_ha->forensic_info.data_type = TYPE_NON_FATAL;
|
|
pm8001_ha->forensic_info.data_buf.direct_len = SYSFS_OFFSET;
|
|
pm8001_ha->forensic_info.data_buf.direct_offset = 0;
|
|
pm8001_ha->forensic_info.data_buf.read_len = 0;
|
|
pm8001_ha->forensic_preserved_accumulated_transfer = 0;
|
|
|
|
/* Write signature to fatal dump table */
|
|
pm8001_mw32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_SIGNATURE, 0x1234abcd);
|
|
|
|
pm8001_ha->forensic_info.data_buf.direct_data = direct_data;
|
|
pm8001_dbg(pm8001_ha, IO, "ossaHwCB: status1 %d\n", status);
|
|
pm8001_dbg(pm8001_ha, IO, "ossaHwCB: read_len 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.read_len);
|
|
pm8001_dbg(pm8001_ha, IO, "ossaHwCB: direct_len 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.direct_len);
|
|
pm8001_dbg(pm8001_ha, IO, "ossaHwCB: direct_offset 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.direct_offset);
|
|
}
|
|
if (pm8001_ha->forensic_info.data_buf.direct_offset == 0) {
|
|
/* start to get data */
|
|
/* Program the MEMBASE II Shifting Register with 0x00.*/
|
|
pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER,
|
|
pm8001_ha->fatal_forensic_shift_offset);
|
|
pm8001_ha->forensic_last_offset = 0;
|
|
pm8001_ha->forensic_fatal_step = 0;
|
|
pm8001_ha->fatal_bar_loc = 0;
|
|
}
|
|
|
|
/* Read until accum_len is retrived */
|
|
accum_len = pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_ACCUM_LEN);
|
|
/* Determine length of data between previously stored transfer length
|
|
* and current accumulated transfer length
|
|
*/
|
|
length_to_read =
|
|
accum_len - pm8001_ha->forensic_preserved_accumulated_transfer;
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: accum_len 0x%x\n",
|
|
accum_len);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: length_to_read 0x%x\n",
|
|
length_to_read);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: last_offset 0x%x\n",
|
|
pm8001_ha->forensic_last_offset);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: read_len 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.read_len);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:: direct_len 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.direct_len);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:: direct_offset 0x%x\n",
|
|
pm8001_ha->forensic_info.data_buf.direct_offset);
|
|
|
|
/* If accumulated length failed to read correctly fail the attempt.*/
|
|
if (accum_len == 0xFFFFFFFF) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Possible PCI issue 0x%x not expected\n",
|
|
accum_len);
|
|
return status;
|
|
}
|
|
/* If accumulated length is zero fail the attempt */
|
|
if (accum_len == 0) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 0xFFFFFFFF);
|
|
return (char *)pm8001_ha->forensic_info.data_buf.direct_data -
|
|
(char *)buf;
|
|
}
|
|
/* Accumulated length is good so start capturing the first data */
|
|
temp = (u32 *)pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr;
|
|
if (pm8001_ha->forensic_fatal_step == 0) {
|
|
moreData:
|
|
/* If data to read is less than SYSFS_OFFSET then reduce the
|
|
* length of dataLen
|
|
*/
|
|
if (pm8001_ha->forensic_last_offset + SYSFS_OFFSET
|
|
> length_to_read) {
|
|
pm8001_ha->forensic_info.data_buf.direct_len =
|
|
length_to_read -
|
|
pm8001_ha->forensic_last_offset;
|
|
} else {
|
|
pm8001_ha->forensic_info.data_buf.direct_len =
|
|
SYSFS_OFFSET;
|
|
}
|
|
if (pm8001_ha->forensic_info.data_buf.direct_data) {
|
|
/* Data is in bar, copy to host memory */
|
|
pm80xx_pci_mem_copy(pm8001_ha,
|
|
pm8001_ha->fatal_bar_loc,
|
|
pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr,
|
|
pm8001_ha->forensic_info.data_buf.direct_len, 1);
|
|
}
|
|
pm8001_ha->fatal_bar_loc +=
|
|
pm8001_ha->forensic_info.data_buf.direct_len;
|
|
pm8001_ha->forensic_info.data_buf.direct_offset +=
|
|
pm8001_ha->forensic_info.data_buf.direct_len;
|
|
pm8001_ha->forensic_last_offset +=
|
|
pm8001_ha->forensic_info.data_buf.direct_len;
|
|
pm8001_ha->forensic_info.data_buf.read_len =
|
|
pm8001_ha->forensic_info.data_buf.direct_len;
|
|
|
|
if (pm8001_ha->forensic_last_offset >= length_to_read) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 3);
|
|
for (index = 0; index <
|
|
(pm8001_ha->forensic_info.data_buf.direct_len
|
|
/ 4); index++) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(
|
|
pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", *(temp + index));
|
|
}
|
|
|
|
pm8001_ha->fatal_bar_loc = 0;
|
|
pm8001_ha->forensic_fatal_step = 1;
|
|
pm8001_ha->fatal_forensic_shift_offset = 0;
|
|
pm8001_ha->forensic_last_offset = 0;
|
|
status = 0;
|
|
offset = (int)
|
|
((char *)pm8001_ha->forensic_info.data_buf.direct_data
|
|
- (char *)buf);
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"get_fatal_spcv:return1 0x%x\n", offset);
|
|
return (char *)pm8001_ha->
|
|
forensic_info.data_buf.direct_data -
|
|
(char *)buf;
|
|
}
|
|
if (pm8001_ha->fatal_bar_loc < (64 * 1024)) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->
|
|
forensic_info.data_buf.direct_data,
|
|
"%08x ", 2);
|
|
for (index = 0; index <
|
|
(pm8001_ha->forensic_info.data_buf.direct_len
|
|
/ 4); index++) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data
|
|
+= sprintf(pm8001_ha->
|
|
forensic_info.data_buf.direct_data,
|
|
"%08x ", *(temp + index));
|
|
}
|
|
status = 0;
|
|
offset = (int)
|
|
((char *)pm8001_ha->forensic_info.data_buf.direct_data
|
|
- (char *)buf);
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"get_fatal_spcv:return2 0x%x\n", offset);
|
|
return (char *)pm8001_ha->
|
|
forensic_info.data_buf.direct_data -
|
|
(char *)buf;
|
|
}
|
|
|
|
/* Increment the MEMBASE II Shifting Register value by 0x100.*/
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 2);
|
|
for (index = 0; index <
|
|
(pm8001_ha->forensic_info.data_buf.direct_len
|
|
/ 4) ; index++) {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(pm8001_ha->
|
|
forensic_info.data_buf.direct_data,
|
|
"%08x ", *(temp + index));
|
|
}
|
|
pm8001_ha->fatal_forensic_shift_offset += 0x100;
|
|
pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER,
|
|
pm8001_ha->fatal_forensic_shift_offset);
|
|
pm8001_ha->fatal_bar_loc = 0;
|
|
status = 0;
|
|
offset = (int)
|
|
((char *)pm8001_ha->forensic_info.data_buf.direct_data
|
|
- (char *)buf);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: return3 0x%x\n",
|
|
offset);
|
|
return (char *)pm8001_ha->forensic_info.data_buf.direct_data -
|
|
(char *)buf;
|
|
}
|
|
if (pm8001_ha->forensic_fatal_step == 1) {
|
|
/* store previous accumulated length before triggering next
|
|
* accumulated length update
|
|
*/
|
|
pm8001_ha->forensic_preserved_accumulated_transfer =
|
|
pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_ACCUM_LEN);
|
|
|
|
/* continue capturing the fatal log until Dump status is 0x3 */
|
|
if (pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_STATUS) <
|
|
MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE) {
|
|
|
|
/* reset fddstat bit by writing to zero*/
|
|
pm8001_mw32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_STATUS, 0x0);
|
|
|
|
/* set dump control value to '1' so that new data will
|
|
* be transferred to shared memory
|
|
*/
|
|
pm8001_mw32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_HANDSHAKE,
|
|
MPI_FATAL_EDUMP_HANDSHAKE_RDY);
|
|
|
|
/*Poll FDDHSHK until clear */
|
|
start = jiffies + (2 * HZ); /* 2 sec */
|
|
|
|
do {
|
|
reg_val = pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_HANDSHAKE);
|
|
} while ((reg_val) && time_before(jiffies, start));
|
|
|
|
if (reg_val != 0) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"TIMEOUT:MPI_FATAL_EDUMP_TABLE_HDSHAKE 0x%x\n",
|
|
reg_val);
|
|
/* Fail the dump if a timeout occurs */
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(
|
|
pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 0xFFFFFFFF);
|
|
return((char *)
|
|
pm8001_ha->forensic_info.data_buf.direct_data
|
|
- (char *)buf);
|
|
}
|
|
/* Poll status register until set to 2 or
|
|
* 3 for up to 2 seconds
|
|
*/
|
|
start = jiffies + (2 * HZ); /* 2 sec */
|
|
|
|
do {
|
|
reg_val = pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_STATUS);
|
|
} while (((reg_val != 2) && (reg_val != 3)) &&
|
|
time_before(jiffies, start));
|
|
|
|
if (reg_val < 2) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"TIMEOUT:MPI_FATAL_EDUMP_TABLE_STATUS = 0x%x\n",
|
|
reg_val);
|
|
/* Fail the dump if a timeout occurs */
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(
|
|
pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 0xFFFFFFFF);
|
|
return((char *)pm8001_ha->forensic_info.data_buf.direct_data -
|
|
(char *)buf);
|
|
}
|
|
/* reset fatal_forensic_shift_offset back to zero and reset MEMBASE 2 register to zero */
|
|
pm8001_ha->fatal_forensic_shift_offset = 0; /* location in 64k region */
|
|
pm8001_cw32(pm8001_ha, 0,
|
|
MEMBASE_II_SHIFT_REGISTER,
|
|
pm8001_ha->fatal_forensic_shift_offset);
|
|
}
|
|
/* Read the next block of the debug data.*/
|
|
length_to_read = pm8001_mr32(fatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_ACCUM_LEN) -
|
|
pm8001_ha->forensic_preserved_accumulated_transfer;
|
|
if (length_to_read != 0x0) {
|
|
pm8001_ha->forensic_fatal_step = 0;
|
|
goto moreData;
|
|
} else {
|
|
pm8001_ha->forensic_info.data_buf.direct_data +=
|
|
sprintf(
|
|
pm8001_ha->forensic_info.data_buf.direct_data,
|
|
"%08x ", 4);
|
|
pm8001_ha->forensic_info.data_buf.read_len
|
|
= 0xFFFFFFFF;
|
|
pm8001_ha->forensic_info.data_buf.direct_len
|
|
= 0;
|
|
pm8001_ha->forensic_info.data_buf.direct_offset
|
|
= 0;
|
|
pm8001_ha->forensic_info.data_buf.read_len = 0;
|
|
}
|
|
}
|
|
offset = (int)((char *)pm8001_ha->forensic_info.data_buf.direct_data
|
|
- (char *)buf);
|
|
pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: return4 0x%x\n", offset);
|
|
return ((char *)pm8001_ha->forensic_info.data_buf.direct_data -
|
|
(char *)buf);
|
|
}
|
|
|
|
/* pm80xx_get_non_fatal_dump - dump the nonfatal data from the dma
|
|
* location by the firmware.
|
|
*/
|
|
ssize_t pm80xx_get_non_fatal_dump(struct device *cdev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct Scsi_Host *shost = class_to_shost(cdev);
|
|
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
|
|
struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
|
|
void __iomem *nonfatal_table_address = pm8001_ha->fatal_tbl_addr;
|
|
u32 accum_len = 0;
|
|
u32 total_len = 0;
|
|
u32 reg_val = 0;
|
|
u32 *temp = NULL;
|
|
u32 index = 0;
|
|
u32 output_length;
|
|
unsigned long start = 0;
|
|
char *buf_copy = buf;
|
|
|
|
temp = (u32 *)pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr;
|
|
if (++pm8001_ha->non_fatal_count == 1) {
|
|
if (pm8001_ha->chip_id == chip_8001) {
|
|
snprintf(pm8001_ha->forensic_info.data_buf.direct_data,
|
|
PAGE_SIZE, "Not supported for SPC controller");
|
|
return 0;
|
|
}
|
|
pm8001_dbg(pm8001_ha, IO, "forensic_info TYPE_NON_FATAL...\n");
|
|
/*
|
|
* Step 1: Write the host buffer parameters in the MPI Fatal and
|
|
* Non-Fatal Error Dump Capture Table.This is the buffer
|
|
* where debug data will be DMAed to.
|
|
*/
|
|
pm8001_mw32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_LO_OFFSET,
|
|
pm8001_ha->memoryMap.region[FORENSIC_MEM].phys_addr_lo);
|
|
|
|
pm8001_mw32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_HI_OFFSET,
|
|
pm8001_ha->memoryMap.region[FORENSIC_MEM].phys_addr_hi);
|
|
|
|
pm8001_mw32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_LENGTH, SYSFS_OFFSET);
|
|
|
|
/* Optionally, set the DUMPCTRL bit to 1 if the host
|
|
* keeps sending active I/Os while capturing the non-fatal
|
|
* debug data. Otherwise, leave this bit set to zero
|
|
*/
|
|
pm8001_mw32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_HANDSHAKE, MPI_FATAL_EDUMP_HANDSHAKE_RDY);
|
|
|
|
/*
|
|
* Step 2: Clear Accumulative Length of Debug Data Transferred
|
|
* [ACCDDLEN] field in the MPI Fatal and Non-Fatal Error Dump
|
|
* Capture Table to zero.
|
|
*/
|
|
pm8001_mw32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_ACCUM_LEN, 0);
|
|
|
|
/* initiallize previous accumulated length to 0 */
|
|
pm8001_ha->forensic_preserved_accumulated_transfer = 0;
|
|
pm8001_ha->non_fatal_read_length = 0;
|
|
}
|
|
|
|
total_len = pm8001_mr32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_TOTAL_LEN);
|
|
/*
|
|
* Step 3:Clear Fatal/Non-Fatal Debug Data Transfer Status [FDDTSTAT]
|
|
* field and then request that the SPCv controller transfer the debug
|
|
* data by setting bit 7 of the Inbound Doorbell Set Register.
|
|
*/
|
|
pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS, 0);
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET,
|
|
SPCv_MSGU_CFG_TABLE_NONFATAL_DUMP);
|
|
|
|
/*
|
|
* Step 4.1: Read back the Inbound Doorbell Set Register (by polling for
|
|
* 2 seconds) until register bit 7 is cleared.
|
|
* This step only indicates the request is accepted by the controller.
|
|
*/
|
|
start = jiffies + (2 * HZ); /* 2 sec */
|
|
do {
|
|
reg_val = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET) &
|
|
SPCv_MSGU_CFG_TABLE_NONFATAL_DUMP;
|
|
} while ((reg_val != 0) && time_before(jiffies, start));
|
|
|
|
/* Step 4.2: To check the completion of the transfer, poll the Fatal/Non
|
|
* Fatal Debug Data Transfer Status [FDDTSTAT] field for 2 seconds in
|
|
* the MPI Fatal and Non-Fatal Error Dump Capture Table.
|
|
*/
|
|
start = jiffies + (2 * HZ); /* 2 sec */
|
|
do {
|
|
reg_val = pm8001_mr32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_STATUS);
|
|
} while ((!reg_val) && time_before(jiffies, start));
|
|
|
|
if ((reg_val == 0x00) ||
|
|
(reg_val == MPI_FATAL_EDUMP_TABLE_STAT_DMA_FAILED) ||
|
|
(reg_val > MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE)) {
|
|
pm8001_ha->non_fatal_read_length = 0;
|
|
buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 0xFFFFFFFF);
|
|
pm8001_ha->non_fatal_count = 0;
|
|
return (buf_copy - buf);
|
|
} else if (reg_val ==
|
|
MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_MORE_DATA) {
|
|
buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 2);
|
|
} else if ((reg_val == MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE) ||
|
|
(pm8001_ha->non_fatal_read_length >= total_len)) {
|
|
pm8001_ha->non_fatal_read_length = 0;
|
|
buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 4);
|
|
pm8001_ha->non_fatal_count = 0;
|
|
}
|
|
accum_len = pm8001_mr32(nonfatal_table_address,
|
|
MPI_FATAL_EDUMP_TABLE_ACCUM_LEN);
|
|
output_length = accum_len -
|
|
pm8001_ha->forensic_preserved_accumulated_transfer;
|
|
|
|
for (index = 0; index < output_length/4; index++)
|
|
buf_copy += snprintf(buf_copy, PAGE_SIZE,
|
|
"%08x ", *(temp+index));
|
|
|
|
pm8001_ha->non_fatal_read_length += output_length;
|
|
|
|
/* store current accumulated length to use in next iteration as
|
|
* the previous accumulated length
|
|
*/
|
|
pm8001_ha->forensic_preserved_accumulated_transfer = accum_len;
|
|
return (buf_copy - buf);
|
|
}
|
|
|
|
/**
|
|
* read_main_config_table - read the configure table and save it.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void read_main_config_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
|
|
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.signature =
|
|
pm8001_mr32(address, MAIN_SIGNATURE_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.interface_rev =
|
|
pm8001_mr32(address, MAIN_INTERFACE_REVISION);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.firmware_rev =
|
|
pm8001_mr32(address, MAIN_FW_REVISION);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_out_io =
|
|
pm8001_mr32(address, MAIN_MAX_OUTSTANDING_IO_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_sgl =
|
|
pm8001_mr32(address, MAIN_MAX_SGL_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.ctrl_cap_flag =
|
|
pm8001_mr32(address, MAIN_CNTRL_CAP_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gst_offset =
|
|
pm8001_mr32(address, MAIN_GST_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_queue_offset =
|
|
pm8001_mr32(address, MAIN_IBQ_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.outbound_queue_offset =
|
|
pm8001_mr32(address, MAIN_OBQ_OFFSET);
|
|
|
|
/* read Error Dump Offset and Length */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset0 =
|
|
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length0 =
|
|
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset1 =
|
|
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length1 =
|
|
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
|
|
|
|
/* read GPIO LED settings from the configuration table */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping =
|
|
pm8001_mr32(address, MAIN_GPIO_LED_FLAGS_OFFSET);
|
|
|
|
/* read analog Setting offset from the configuration table */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.analog_setup_table_offset =
|
|
pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
|
|
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.int_vec_table_offset =
|
|
pm8001_mr32(address, MAIN_INT_VECTOR_TABLE_OFFSET);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.phy_attr_table_offset =
|
|
pm8001_mr32(address, MAIN_SAS_PHY_ATTR_TABLE_OFFSET);
|
|
/* read port recover and reset timeout */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer =
|
|
pm8001_mr32(address, MAIN_PORT_RECOVERY_TIMER);
|
|
/* read ILA and inactive firmware version */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.ila_version =
|
|
pm8001_mr32(address, MAIN_MPI_ILA_RELEASE_TYPE);
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.inc_fw_version =
|
|
pm8001_mr32(address, MAIN_MPI_INACTIVE_FW_VERSION);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Main cfg table: sign:%x interface rev:%x fw_rev:%x\n",
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.signature,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.interface_rev,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.firmware_rev);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"table offset: gst:%x iq:%x oq:%x int vec:%x phy attr:%x\n",
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gst_offset,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_queue_offset,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.outbound_queue_offset,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.int_vec_table_offset,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.phy_attr_table_offset);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Main cfg table; ila rev:%x Inactive fw rev:%x\n",
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.ila_version,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.inc_fw_version);
|
|
}
|
|
|
|
/**
|
|
* read_general_status_table - read the general status table and save it.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void read_general_status_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
void __iomem *address = pm8001_ha->general_stat_tbl_addr;
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.gst_len_mpistate =
|
|
pm8001_mr32(address, GST_GSTLEN_MPIS_OFFSET);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state0 =
|
|
pm8001_mr32(address, GST_IQ_FREEZE_STATE0_OFFSET);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state1 =
|
|
pm8001_mr32(address, GST_IQ_FREEZE_STATE1_OFFSET);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.msgu_tcnt =
|
|
pm8001_mr32(address, GST_MSGUTCNT_OFFSET);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.iop_tcnt =
|
|
pm8001_mr32(address, GST_IOPTCNT_OFFSET);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.gpio_input_val =
|
|
pm8001_mr32(address, GST_GPIO_INPUT_VAL);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[0] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET0);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[1] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET1);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[2] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET2);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[3] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET3);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[4] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET4);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[5] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET5);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[6] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET6);
|
|
pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[7] =
|
|
pm8001_mr32(address, GST_RERRINFO_OFFSET7);
|
|
}
|
|
/**
|
|
* read_phy_attr_table - read the phy attribute table and save it.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void read_phy_attr_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
void __iomem *address = pm8001_ha->pspa_q_tbl_addr;
|
|
pm8001_ha->phy_attr_table.phystart1_16[0] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE0_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[1] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE1_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[2] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE2_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[3] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE3_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[4] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE4_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[5] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE5_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[6] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE6_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[7] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE7_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[8] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE8_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[9] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE9_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[10] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE10_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[11] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE11_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[12] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE12_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[13] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE13_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[14] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE14_OFFSET);
|
|
pm8001_ha->phy_attr_table.phystart1_16[15] =
|
|
pm8001_mr32(address, PSPA_PHYSTATE15_OFFSET);
|
|
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[0] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID0_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[1] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID1_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[2] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID2_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[3] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID3_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[4] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID4_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[5] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID5_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[6] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID6_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[7] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID7_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[8] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID8_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[9] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID9_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[10] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID10_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[11] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID11_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[12] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID12_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[13] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID13_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[14] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID14_OFFSET);
|
|
pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[15] =
|
|
pm8001_mr32(address, PSPA_OB_HW_EVENT_PID15_OFFSET);
|
|
|
|
}
|
|
|
|
/**
|
|
* read_inbnd_queue_table - read the inbound queue table and save it.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
int i;
|
|
void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
|
|
for (i = 0; i < PM8001_MAX_INB_NUM; i++) {
|
|
u32 offset = i * 0x20;
|
|
pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
|
|
get_pci_bar_index(pm8001_mr32(address,
|
|
(offset + IB_PIPCI_BAR)));
|
|
pm8001_ha->inbnd_q_tbl[i].pi_offset =
|
|
pm8001_mr32(address, (offset + IB_PIPCI_BAR_OFFSET));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* read_outbnd_queue_table - read the outbound queue table and save it.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
int i;
|
|
void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
|
|
for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) {
|
|
u32 offset = i * 0x24;
|
|
pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
|
|
get_pci_bar_index(pm8001_mr32(address,
|
|
(offset + OB_CIPCI_BAR)));
|
|
pm8001_ha->outbnd_q_tbl[i].ci_offset =
|
|
pm8001_mr32(address, (offset + OB_CIPCI_BAR_OFFSET));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* init_default_table_values - init the default table.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void init_default_table_values(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
int i;
|
|
u32 offsetib, offsetob;
|
|
void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
|
|
void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
|
|
u32 ib_offset = pm8001_ha->ib_offset;
|
|
u32 ob_offset = pm8001_ha->ob_offset;
|
|
u32 ci_offset = pm8001_ha->ci_offset;
|
|
u32 pi_offset = pm8001_ha->pi_offset;
|
|
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr =
|
|
pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr =
|
|
pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size =
|
|
PM8001_EVENT_LOG_SIZE;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity = 0x01;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr =
|
|
pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr =
|
|
pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size =
|
|
PM8001_EVENT_LOG_SIZE;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity = 0x01;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt = 0x01;
|
|
|
|
/* Disable end to end CRC checking */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump = (0x1 << 16);
|
|
|
|
for (i = 0; i < pm8001_ha->max_q_num; i++) {
|
|
pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt =
|
|
PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30);
|
|
pm8001_ha->inbnd_q_tbl[i].upper_base_addr =
|
|
pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi;
|
|
pm8001_ha->inbnd_q_tbl[i].lower_base_addr =
|
|
pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo;
|
|
pm8001_ha->inbnd_q_tbl[i].base_virt =
|
|
(u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr;
|
|
pm8001_ha->inbnd_q_tbl[i].total_length =
|
|
pm8001_ha->memoryMap.region[ib_offset + i].total_len;
|
|
pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr =
|
|
pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi;
|
|
pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr =
|
|
pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo;
|
|
pm8001_ha->inbnd_q_tbl[i].ci_virt =
|
|
pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr;
|
|
offsetib = i * 0x20;
|
|
pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
|
|
get_pci_bar_index(pm8001_mr32(addressib,
|
|
(offsetib + 0x14)));
|
|
pm8001_ha->inbnd_q_tbl[i].pi_offset =
|
|
pm8001_mr32(addressib, (offsetib + 0x18));
|
|
pm8001_ha->inbnd_q_tbl[i].producer_idx = 0;
|
|
pm8001_ha->inbnd_q_tbl[i].consumer_index = 0;
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"IQ %d pi_bar 0x%x pi_offset 0x%x\n", i,
|
|
pm8001_ha->inbnd_q_tbl[i].pi_pci_bar,
|
|
pm8001_ha->inbnd_q_tbl[i].pi_offset);
|
|
}
|
|
for (i = 0; i < pm8001_ha->max_q_num; i++) {
|
|
pm8001_ha->outbnd_q_tbl[i].element_size_cnt =
|
|
PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30);
|
|
pm8001_ha->outbnd_q_tbl[i].upper_base_addr =
|
|
pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi;
|
|
pm8001_ha->outbnd_q_tbl[i].lower_base_addr =
|
|
pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo;
|
|
pm8001_ha->outbnd_q_tbl[i].base_virt =
|
|
(u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr;
|
|
pm8001_ha->outbnd_q_tbl[i].total_length =
|
|
pm8001_ha->memoryMap.region[ob_offset + i].total_len;
|
|
pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr =
|
|
pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi;
|
|
pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr =
|
|
pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo;
|
|
/* interrupt vector based on oq */
|
|
pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = (i << 24);
|
|
pm8001_ha->outbnd_q_tbl[i].pi_virt =
|
|
pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr;
|
|
offsetob = i * 0x24;
|
|
pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
|
|
get_pci_bar_index(pm8001_mr32(addressob,
|
|
offsetob + 0x14));
|
|
pm8001_ha->outbnd_q_tbl[i].ci_offset =
|
|
pm8001_mr32(addressob, (offsetob + 0x18));
|
|
pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0;
|
|
pm8001_ha->outbnd_q_tbl[i].producer_index = 0;
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"OQ %d ci_bar 0x%x ci_offset 0x%x\n", i,
|
|
pm8001_ha->outbnd_q_tbl[i].ci_pci_bar,
|
|
pm8001_ha->outbnd_q_tbl[i].ci_offset);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* update_main_config_table - update the main default table to the HBA.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void update_main_config_table(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
|
|
pm8001_mw32(address, MAIN_IQNPPD_HPPD_OFFSET,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_q_nppd_hppd);
|
|
pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_HI,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr);
|
|
pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_LO,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr);
|
|
pm8001_mw32(address, MAIN_EVENT_LOG_BUFF_SIZE,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size);
|
|
pm8001_mw32(address, MAIN_EVENT_LOG_OPTION,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity);
|
|
pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_HI,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr);
|
|
pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_LO,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr);
|
|
pm8001_mw32(address, MAIN_PCS_EVENT_LOG_BUFF_SIZE,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size);
|
|
pm8001_mw32(address, MAIN_PCS_EVENT_LOG_OPTION,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity);
|
|
/* Update Fatal error interrupt vector */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt |=
|
|
((pm8001_ha->max_q_num - 1) << 8);
|
|
pm8001_mw32(address, MAIN_FATAL_ERROR_INTERRUPT,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt);
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Updated Fatal error interrupt vector 0x%x\n",
|
|
pm8001_mr32(address, MAIN_FATAL_ERROR_INTERRUPT));
|
|
|
|
pm8001_mw32(address, MAIN_EVENT_CRC_CHECK,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump);
|
|
|
|
/* SPCv specific */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping &= 0xCFFFFFFF;
|
|
/* Set GPIOLED to 0x2 for LED indicator */
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping |= 0x20000000;
|
|
pm8001_mw32(address, MAIN_GPIO_LED_FLAGS_OFFSET,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping);
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Programming DW 0x21 in main cfg table with 0x%x\n",
|
|
pm8001_mr32(address, MAIN_GPIO_LED_FLAGS_OFFSET));
|
|
|
|
pm8001_mw32(address, MAIN_PORT_RECOVERY_TIMER,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer);
|
|
pm8001_mw32(address, MAIN_INT_REASSERTION_DELAY,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.interrupt_reassertion_delay);
|
|
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer &= 0xffff0000;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer |=
|
|
PORT_RECOVERY_TIMEOUT;
|
|
if (pm8001_ha->chip_id == chip_8006) {
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer &=
|
|
0x0000ffff;
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer |=
|
|
CHIP_8006_PORT_RECOVERY_TIMEOUT;
|
|
}
|
|
pm8001_mw32(address, MAIN_PORT_RECOVERY_TIMER,
|
|
pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer);
|
|
}
|
|
|
|
/**
|
|
* update_inbnd_queue_table - update the inbound queue table to the HBA.
|
|
* @pm8001_ha: our hba card information
|
|
* @number: entry in the queue
|
|
*/
|
|
static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
|
|
int number)
|
|
{
|
|
void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
|
|
u16 offset = number * 0x20;
|
|
pm8001_mw32(address, offset + IB_PROPERITY_OFFSET,
|
|
pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
|
|
pm8001_mw32(address, offset + IB_BASE_ADDR_HI_OFFSET,
|
|
pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
|
|
pm8001_mw32(address, offset + IB_BASE_ADDR_LO_OFFSET,
|
|
pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
|
|
pm8001_mw32(address, offset + IB_CI_BASE_ADDR_HI_OFFSET,
|
|
pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
|
|
pm8001_mw32(address, offset + IB_CI_BASE_ADDR_LO_OFFSET,
|
|
pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"IQ %d: Element pri size 0x%x\n",
|
|
number,
|
|
pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"IQ upr base addr 0x%x IQ lwr base addr 0x%x\n",
|
|
pm8001_ha->inbnd_q_tbl[number].upper_base_addr,
|
|
pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"CI upper base addr 0x%x CI lower base addr 0x%x\n",
|
|
pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr,
|
|
pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
|
|
}
|
|
|
|
/**
|
|
* update_outbnd_queue_table - update the outbound queue table to the HBA.
|
|
* @pm8001_ha: our hba card information
|
|
* @number: entry in the queue
|
|
*/
|
|
static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
|
|
int number)
|
|
{
|
|
void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
|
|
u16 offset = number * 0x24;
|
|
pm8001_mw32(address, offset + OB_PROPERITY_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
|
|
pm8001_mw32(address, offset + OB_BASE_ADDR_HI_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
|
|
pm8001_mw32(address, offset + OB_BASE_ADDR_LO_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
|
|
pm8001_mw32(address, offset + OB_PI_BASE_ADDR_HI_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
|
|
pm8001_mw32(address, offset + OB_PI_BASE_ADDR_LO_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
|
|
pm8001_mw32(address, offset + OB_INTERRUPT_COALES_OFFSET,
|
|
pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"OQ %d: Element pri size 0x%x\n",
|
|
number,
|
|
pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"OQ upr base addr 0x%x OQ lwr base addr 0x%x\n",
|
|
pm8001_ha->outbnd_q_tbl[number].upper_base_addr,
|
|
pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"PI upper base addr 0x%x PI lower base addr 0x%x\n",
|
|
pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr,
|
|
pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
|
|
}
|
|
|
|
/**
|
|
* mpi_init_check - check firmware initialization status.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 max_wait_count;
|
|
u32 value;
|
|
u32 gst_len_mpistate;
|
|
|
|
/* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
|
|
table is updated */
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_UPDATE);
|
|
/* wait until Inbound DoorBell Clear Register toggled */
|
|
if (IS_SPCV_12G(pm8001_ha->pdev)) {
|
|
max_wait_count = SPCV_DOORBELL_CLEAR_TIMEOUT;
|
|
} else {
|
|
max_wait_count = SPC_DOORBELL_CLEAR_TIMEOUT;
|
|
}
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
|
|
value &= SPCv_MSGU_CFG_TABLE_UPDATE;
|
|
} while ((value != 0) && (--max_wait_count));
|
|
|
|
if (!max_wait_count) {
|
|
/* additional check */
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Inb doorbell clear not toggled[value:%x]\n",
|
|
value);
|
|
return -EBUSY;
|
|
}
|
|
/* check the MPI-State for initialization upto 100ms*/
|
|
max_wait_count = 5;/* 100 msec */
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
gst_len_mpistate =
|
|
pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
|
|
GST_GSTLEN_MPIS_OFFSET);
|
|
} while ((GST_MPI_STATE_INIT !=
|
|
(gst_len_mpistate & GST_MPI_STATE_MASK)) && (--max_wait_count));
|
|
if (!max_wait_count)
|
|
return -EBUSY;
|
|
|
|
/* check MPI Initialization error */
|
|
gst_len_mpistate = gst_len_mpistate >> 16;
|
|
if (0x0000 != gst_len_mpistate)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* check_fw_ready - The LLDD check if the FW is ready, if not, return error.
|
|
* This function sleeps hence it must not be used in atomic context.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 value;
|
|
u32 max_wait_count;
|
|
u32 max_wait_time;
|
|
int ret = 0;
|
|
|
|
/* reset / PCIe ready */
|
|
max_wait_time = max_wait_count = 5; /* 100 milli sec */
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
} while ((value == 0xFFFFFFFF) && (--max_wait_count));
|
|
|
|
/* check ila status */
|
|
max_wait_time = max_wait_count = 50; /* 1000 milli sec */
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
} while (((value & SCRATCH_PAD_ILA_READY) !=
|
|
SCRATCH_PAD_ILA_READY) && (--max_wait_count));
|
|
if (!max_wait_count)
|
|
ret = -1;
|
|
else {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" ila ready status in %d millisec\n",
|
|
(max_wait_time - max_wait_count));
|
|
}
|
|
|
|
/* check RAAE status */
|
|
max_wait_time = max_wait_count = 90; /* 1800 milli sec */
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
} while (((value & SCRATCH_PAD_RAAE_READY) !=
|
|
SCRATCH_PAD_RAAE_READY) && (--max_wait_count));
|
|
if (!max_wait_count)
|
|
ret = -1;
|
|
else {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" raae ready status in %d millisec\n",
|
|
(max_wait_time - max_wait_count));
|
|
}
|
|
|
|
/* check iop0 status */
|
|
max_wait_time = max_wait_count = 30; /* 600 milli sec */
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
} while (((value & SCRATCH_PAD_IOP0_READY) != SCRATCH_PAD_IOP0_READY) &&
|
|
(--max_wait_count));
|
|
if (!max_wait_count)
|
|
ret = -1;
|
|
else {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" iop0 ready status in %d millisec\n",
|
|
(max_wait_time - max_wait_count));
|
|
}
|
|
|
|
/* check iop1 status only for 16 port controllers */
|
|
if ((pm8001_ha->chip_id != chip_8008) &&
|
|
(pm8001_ha->chip_id != chip_8009)) {
|
|
/* 200 milli sec */
|
|
max_wait_time = max_wait_count = 10;
|
|
do {
|
|
msleep(FW_READY_INTERVAL);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
} while (((value & SCRATCH_PAD_IOP1_READY) !=
|
|
SCRATCH_PAD_IOP1_READY) && (--max_wait_count));
|
|
if (!max_wait_count)
|
|
ret = -1;
|
|
else {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"iop1 ready status in %d millisec\n",
|
|
(max_wait_time - max_wait_count));
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
void __iomem *base_addr;
|
|
u32 value;
|
|
u32 offset;
|
|
u32 pcibar;
|
|
u32 pcilogic;
|
|
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
|
|
|
|
/**
|
|
* lower 26 bits of SCRATCHPAD0 register describes offset within the
|
|
* PCIe BAR where the MPI configuration table is present
|
|
*/
|
|
offset = value & 0x03FFFFFF; /* scratch pad 0 TBL address */
|
|
|
|
pm8001_dbg(pm8001_ha, DEV, "Scratchpad 0 Offset: 0x%x value 0x%x\n",
|
|
offset, value);
|
|
/**
|
|
* Upper 6 bits describe the offset within PCI config space where BAR
|
|
* is located.
|
|
*/
|
|
pcilogic = (value & 0xFC000000) >> 26;
|
|
pcibar = get_pci_bar_index(pcilogic);
|
|
pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar);
|
|
|
|
/**
|
|
* Make sure the offset falls inside the ioremapped PCI BAR
|
|
*/
|
|
if (offset > pm8001_ha->io_mem[pcibar].memsize) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Main cfg tbl offset outside %u > %u\n",
|
|
offset, pm8001_ha->io_mem[pcibar].memsize);
|
|
return -EBUSY;
|
|
}
|
|
pm8001_ha->main_cfg_tbl_addr = base_addr =
|
|
pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
|
|
|
|
/**
|
|
* Validate main configuration table address: first DWord should read
|
|
* "PMCS"
|
|
*/
|
|
value = pm8001_mr32(pm8001_ha->main_cfg_tbl_addr, 0);
|
|
if (memcmp(&value, "PMCS", 4) != 0) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"BAD main config signature 0x%x\n",
|
|
value);
|
|
return -EBUSY;
|
|
}
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"VALID main config signature 0x%x\n", value);
|
|
pm8001_ha->general_stat_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x18) &
|
|
0xFFFFFF);
|
|
pm8001_ha->inbnd_q_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C) &
|
|
0xFFFFFF);
|
|
pm8001_ha->outbnd_q_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x20) &
|
|
0xFFFFFF);
|
|
pm8001_ha->ivt_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C) &
|
|
0xFFFFFF);
|
|
pm8001_ha->pspa_q_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x90) &
|
|
0xFFFFFF);
|
|
pm8001_ha->fatal_tbl_addr =
|
|
base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0xA0) &
|
|
0xFFFFFF);
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "GST OFFSET 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, pcibar, offset + 0x18));
|
|
pm8001_dbg(pm8001_ha, INIT, "INBND OFFSET 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C));
|
|
pm8001_dbg(pm8001_ha, INIT, "OBND OFFSET 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, pcibar, offset + 0x20));
|
|
pm8001_dbg(pm8001_ha, INIT, "IVT OFFSET 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C));
|
|
pm8001_dbg(pm8001_ha, INIT, "PSPA OFFSET 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, pcibar, offset + 0x90));
|
|
pm8001_dbg(pm8001_ha, INIT, "addr - main cfg %p general status %p\n",
|
|
pm8001_ha->main_cfg_tbl_addr,
|
|
pm8001_ha->general_stat_tbl_addr);
|
|
pm8001_dbg(pm8001_ha, INIT, "addr - inbnd %p obnd %p\n",
|
|
pm8001_ha->inbnd_q_tbl_addr,
|
|
pm8001_ha->outbnd_q_tbl_addr);
|
|
pm8001_dbg(pm8001_ha, INIT, "addr - pspa %p ivt %p\n",
|
|
pm8001_ha->pspa_q_tbl_addr,
|
|
pm8001_ha->ivt_tbl_addr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_set_thermal_config - support the thermal configuration
|
|
* @pm8001_ha: our hba card information.
|
|
*/
|
|
int
|
|
pm80xx_set_thermal_config(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
struct set_ctrl_cfg_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
int rc;
|
|
u32 tag;
|
|
u32 opc = OPC_INB_SET_CONTROLLER_CONFIG;
|
|
u32 page_code;
|
|
|
|
memset(&payload, 0, sizeof(struct set_ctrl_cfg_req));
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
return -1;
|
|
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
payload.tag = cpu_to_le32(tag);
|
|
|
|
if (IS_SPCV_12G(pm8001_ha->pdev))
|
|
page_code = THERMAL_PAGE_CODE_7H;
|
|
else
|
|
page_code = THERMAL_PAGE_CODE_8H;
|
|
|
|
payload.cfg_pg[0] = (THERMAL_LOG_ENABLE << 9) |
|
|
(THERMAL_ENABLE << 8) | page_code;
|
|
payload.cfg_pg[1] = (LTEMPHIL << 24) | (RTEMPHIL << 8);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Setting up thermal config. cfg_pg 0 0x%x cfg_pg 1 0x%x\n",
|
|
payload.cfg_pg[0], payload.cfg_pg[1]);
|
|
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
return rc;
|
|
|
|
}
|
|
|
|
/**
|
|
* pm80xx_set_sas_protocol_timer_config - support the SAS Protocol
|
|
* Timer configuration page
|
|
* @pm8001_ha: our hba card information.
|
|
*/
|
|
static int
|
|
pm80xx_set_sas_protocol_timer_config(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
struct set_ctrl_cfg_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
SASProtocolTimerConfig_t SASConfigPage;
|
|
int rc;
|
|
u32 tag;
|
|
u32 opc = OPC_INB_SET_CONTROLLER_CONFIG;
|
|
|
|
memset(&payload, 0, sizeof(struct set_ctrl_cfg_req));
|
|
memset(&SASConfigPage, 0, sizeof(SASProtocolTimerConfig_t));
|
|
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
|
|
if (rc)
|
|
return -1;
|
|
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
payload.tag = cpu_to_le32(tag);
|
|
|
|
SASConfigPage.pageCode = SAS_PROTOCOL_TIMER_CONFIG_PAGE;
|
|
SASConfigPage.MST_MSI = 3 << 15;
|
|
SASConfigPage.STP_SSP_MCT_TMO = (STP_MCT_TMO << 16) | SSP_MCT_TMO;
|
|
SASConfigPage.STP_FRM_TMO = (SAS_MAX_OPEN_TIME << 24) |
|
|
(SMP_MAX_CONN_TIMER << 16) | STP_FRM_TIMER;
|
|
SASConfigPage.STP_IDLE_TMO = STP_IDLE_TIME;
|
|
|
|
if (SASConfigPage.STP_IDLE_TMO > 0x3FFFFFF)
|
|
SASConfigPage.STP_IDLE_TMO = 0x3FFFFFF;
|
|
|
|
|
|
SASConfigPage.OPNRJT_RTRY_INTVL = (SAS_MFD << 16) |
|
|
SAS_OPNRJT_RTRY_INTVL;
|
|
SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO = (SAS_DOPNRJT_RTRY_TMO << 16)
|
|
| SAS_COPNRJT_RTRY_TMO;
|
|
SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR = (SAS_DOPNRJT_RTRY_THR << 16)
|
|
| SAS_COPNRJT_RTRY_THR;
|
|
SASConfigPage.MAX_AIP = SAS_MAX_AIP;
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.pageCode 0x%08x\n",
|
|
SASConfigPage.pageCode);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.MST_MSI 0x%08x\n",
|
|
SASConfigPage.MST_MSI);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_SSP_MCT_TMO 0x%08x\n",
|
|
SASConfigPage.STP_SSP_MCT_TMO);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_FRM_TMO 0x%08x\n",
|
|
SASConfigPage.STP_FRM_TMO);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_IDLE_TMO 0x%08x\n",
|
|
SASConfigPage.STP_IDLE_TMO);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.OPNRJT_RTRY_INTVL 0x%08x\n",
|
|
SASConfigPage.OPNRJT_RTRY_INTVL);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO 0x%08x\n",
|
|
SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR 0x%08x\n",
|
|
SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR);
|
|
pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.MAX_AIP 0x%08x\n",
|
|
SASConfigPage.MAX_AIP);
|
|
|
|
memcpy(&payload.cfg_pg, &SASConfigPage,
|
|
sizeof(SASProtocolTimerConfig_t));
|
|
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_get_encrypt_info - Check for encryption
|
|
* @pm8001_ha: our hba card information.
|
|
*/
|
|
static int
|
|
pm80xx_get_encrypt_info(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 scratch3_value;
|
|
int ret = -1;
|
|
|
|
/* Read encryption status from SCRATCH PAD 3 */
|
|
scratch3_value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
|
|
|
|
if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) ==
|
|
SCRATCH_PAD3_ENC_READY) {
|
|
if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED)
|
|
pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMF_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMA_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMB_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB;
|
|
pm8001_ha->encrypt_info.status = 0;
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"Encryption: SCRATCH_PAD3_ENC_READY 0x%08X.Cipher mode 0x%x Sec mode 0x%x status 0x%x\n",
|
|
scratch3_value,
|
|
pm8001_ha->encrypt_info.cipher_mode,
|
|
pm8001_ha->encrypt_info.sec_mode,
|
|
pm8001_ha->encrypt_info.status);
|
|
ret = 0;
|
|
} else if ((scratch3_value & SCRATCH_PAD3_ENC_READY) ==
|
|
SCRATCH_PAD3_ENC_DISABLED) {
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"Encryption: SCRATCH_PAD3_ENC_DISABLED 0x%08X\n",
|
|
scratch3_value);
|
|
pm8001_ha->encrypt_info.status = 0xFFFFFFFF;
|
|
pm8001_ha->encrypt_info.cipher_mode = 0;
|
|
pm8001_ha->encrypt_info.sec_mode = 0;
|
|
ret = 0;
|
|
} else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) ==
|
|
SCRATCH_PAD3_ENC_DIS_ERR) {
|
|
pm8001_ha->encrypt_info.status =
|
|
(scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16;
|
|
if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED)
|
|
pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMF_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMA_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMB_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB;
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"Encryption: SCRATCH_PAD3_DIS_ERR 0x%08X.Cipher mode 0x%x sec mode 0x%x status 0x%x\n",
|
|
scratch3_value,
|
|
pm8001_ha->encrypt_info.cipher_mode,
|
|
pm8001_ha->encrypt_info.sec_mode,
|
|
pm8001_ha->encrypt_info.status);
|
|
} else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) ==
|
|
SCRATCH_PAD3_ENC_ENA_ERR) {
|
|
|
|
pm8001_ha->encrypt_info.status =
|
|
(scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16;
|
|
if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED)
|
|
pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMF_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMA_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA;
|
|
if ((scratch3_value & SCRATCH_PAD3_SM_MASK) ==
|
|
SCRATCH_PAD3_SMB_ENABLED)
|
|
pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB;
|
|
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"Encryption: SCRATCH_PAD3_ENA_ERR 0x%08X.Cipher mode 0x%x sec mode 0x%x status 0x%x\n",
|
|
scratch3_value,
|
|
pm8001_ha->encrypt_info.cipher_mode,
|
|
pm8001_ha->encrypt_info.sec_mode,
|
|
pm8001_ha->encrypt_info.status);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_encrypt_update - update flash with encryption informtion
|
|
* @pm8001_ha: our hba card information.
|
|
*/
|
|
static int pm80xx_encrypt_update(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
struct kek_mgmt_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
int rc;
|
|
u32 tag;
|
|
u32 opc = OPC_INB_KEK_MANAGEMENT;
|
|
|
|
memset(&payload, 0, sizeof(struct kek_mgmt_req));
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
return -1;
|
|
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
payload.tag = cpu_to_le32(tag);
|
|
/* Currently only one key is used. New KEK index is 1.
|
|
* Current KEK index is 1. Store KEK to NVRAM is 1.
|
|
*/
|
|
payload.new_curidx_ksop = ((1 << 24) | (1 << 16) | (1 << 8) |
|
|
KEK_MGMT_SUBOP_KEYCARDUPDATE);
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"Saving Encryption info to flash. payload 0x%x\n",
|
|
payload.new_curidx_ksop);
|
|
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_init - the main init function that initialize whole PM8001 chip.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static int pm80xx_chip_init(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
int ret;
|
|
u8 i = 0;
|
|
|
|
/* check the firmware status */
|
|
if (-1 == check_fw_ready(pm8001_ha)) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Initialize the controller fatal error flag */
|
|
pm8001_ha->controller_fatal_error = false;
|
|
|
|
/* Initialize pci space address eg: mpi offset */
|
|
ret = init_pci_device_addresses(pm8001_ha);
|
|
if (ret) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Failed to init pci addresses");
|
|
return ret;
|
|
}
|
|
init_default_table_values(pm8001_ha);
|
|
read_main_config_table(pm8001_ha);
|
|
read_general_status_table(pm8001_ha);
|
|
read_inbnd_queue_table(pm8001_ha);
|
|
read_outbnd_queue_table(pm8001_ha);
|
|
read_phy_attr_table(pm8001_ha);
|
|
|
|
/* update main config table ,inbound table and outbound table */
|
|
update_main_config_table(pm8001_ha);
|
|
for (i = 0; i < pm8001_ha->max_q_num; i++) {
|
|
update_inbnd_queue_table(pm8001_ha, i);
|
|
update_outbnd_queue_table(pm8001_ha, i);
|
|
}
|
|
/* notify firmware update finished and check initialization status */
|
|
if (0 == mpi_init_check(pm8001_ha)) {
|
|
pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n");
|
|
} else
|
|
return -EBUSY;
|
|
|
|
/* send SAS protocol timer configuration page to FW */
|
|
ret = pm80xx_set_sas_protocol_timer_config(pm8001_ha);
|
|
|
|
/* Check for encryption */
|
|
if (pm8001_ha->chip->encrypt) {
|
|
pm8001_dbg(pm8001_ha, INIT, "Checking for encryption\n");
|
|
ret = pm80xx_get_encrypt_info(pm8001_ha);
|
|
if (ret == -1) {
|
|
pm8001_dbg(pm8001_ha, INIT, "Encryption error !!\n");
|
|
if (pm8001_ha->encrypt_info.status == 0x81) {
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"Encryption enabled with error.Saving encryption key to flash\n");
|
|
pm80xx_encrypt_update(pm8001_ha);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 max_wait_count;
|
|
u32 value;
|
|
u32 gst_len_mpistate;
|
|
int ret;
|
|
|
|
ret = init_pci_device_addresses(pm8001_ha);
|
|
if (ret) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Failed to init pci addresses");
|
|
return ret;
|
|
}
|
|
|
|
/* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
|
|
table is stop */
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_RESET);
|
|
|
|
/* wait until Inbound DoorBell Clear Register toggled */
|
|
if (IS_SPCV_12G(pm8001_ha->pdev)) {
|
|
max_wait_count = 4 * 1000 * 1000;/* 4 sec */
|
|
} else {
|
|
max_wait_count = 2 * 1000 * 1000;/* 2 sec */
|
|
}
|
|
do {
|
|
udelay(1);
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
|
|
value &= SPCv_MSGU_CFG_TABLE_RESET;
|
|
} while ((value != 0) && (--max_wait_count));
|
|
|
|
if (!max_wait_count) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=%x\n", value);
|
|
return -1;
|
|
}
|
|
|
|
/* check the MPI-State for termination in progress */
|
|
/* wait until Inbound DoorBell Clear Register toggled */
|
|
max_wait_count = 2 * 1000 * 1000; /* 2 sec for spcv/ve */
|
|
do {
|
|
udelay(1);
|
|
gst_len_mpistate =
|
|
pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
|
|
GST_GSTLEN_MPIS_OFFSET);
|
|
if (GST_MPI_STATE_UNINIT ==
|
|
(gst_len_mpistate & GST_MPI_STATE_MASK))
|
|
break;
|
|
} while (--max_wait_count);
|
|
if (!max_wait_count) {
|
|
pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n",
|
|
gst_len_mpistate & GST_MPI_STATE_MASK);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_fatal_errors - returns non zero *ONLY* when fatal errors
|
|
* @pm8001_ha: our hba card information
|
|
*
|
|
* Fatal errors are recoverable only after a host reboot.
|
|
*/
|
|
int
|
|
pm80xx_fatal_errors(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
int ret = 0;
|
|
u32 scratch_pad_rsvd0 = pm8001_cr32(pm8001_ha, 0,
|
|
MSGU_HOST_SCRATCH_PAD_6);
|
|
u32 scratch_pad_rsvd1 = pm8001_cr32(pm8001_ha, 0,
|
|
MSGU_HOST_SCRATCH_PAD_7);
|
|
u32 scratch_pad1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
u32 scratch_pad2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
|
|
u32 scratch_pad3 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
|
|
|
|
if (pm8001_ha->chip_id != chip_8006 &&
|
|
pm8001_ha->chip_id != chip_8074 &&
|
|
pm8001_ha->chip_id != chip_8076) {
|
|
return 0;
|
|
}
|
|
|
|
if (MSGU_SCRATCHPAD1_STATE_FATAL_ERROR(scratch_pad1)) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Fatal error SCRATCHPAD1 = 0x%x SCRATCHPAD2 = 0x%x SCRATCHPAD3 = 0x%x SCRATCHPAD_RSVD0 = 0x%x SCRATCHPAD_RSVD1 = 0x%x\n",
|
|
scratch_pad1, scratch_pad2, scratch_pad3,
|
|
scratch_pad_rsvd0, scratch_pad_rsvd1);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
|
|
* the FW register status to the originated status.
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
|
|
static int
|
|
pm80xx_chip_soft_rst(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 regval;
|
|
u32 bootloader_state;
|
|
u32 ibutton0, ibutton1;
|
|
|
|
/* Process MPI table uninitialization only if FW is ready */
|
|
if (!pm8001_ha->controller_fatal_error) {
|
|
/* Check if MPI is in ready state to reset */
|
|
if (mpi_uninit_check(pm8001_ha) != 0) {
|
|
u32 r0 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
|
|
u32 r1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
u32 r2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
|
|
u32 r3 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"MPI state is not ready scratch: %x:%x:%x:%x\n",
|
|
r0, r1, r2, r3);
|
|
/* if things aren't ready but the bootloader is ok then
|
|
* try the reset anyway.
|
|
*/
|
|
if (r1 & SCRATCH_PAD1_BOOTSTATE_MASK)
|
|
return -1;
|
|
}
|
|
}
|
|
/* checked for reset register normal state; 0x0 */
|
|
regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET);
|
|
pm8001_dbg(pm8001_ha, INIT, "reset register before write : 0x%x\n",
|
|
regval);
|
|
|
|
pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, SPCv_NORMAL_RESET_VALUE);
|
|
msleep(500);
|
|
|
|
regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET);
|
|
pm8001_dbg(pm8001_ha, INIT, "reset register after write 0x%x\n",
|
|
regval);
|
|
|
|
if ((regval & SPCv_SOFT_RESET_READ_MASK) ==
|
|
SPCv_SOFT_RESET_NORMAL_RESET_OCCURED) {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" soft reset successful [regval: 0x%x]\n",
|
|
regval);
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" soft reset failed [regval: 0x%x]\n",
|
|
regval);
|
|
|
|
/* check bootloader is successfully executed or in HDA mode */
|
|
bootloader_state =
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
|
|
SCRATCH_PAD1_BOOTSTATE_MASK;
|
|
|
|
if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_HDA_SEEPROM) {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"Bootloader state - HDA mode SEEPROM\n");
|
|
} else if (bootloader_state ==
|
|
SCRATCH_PAD1_BOOTSTATE_HDA_BOOTSTRAP) {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"Bootloader state - HDA mode Bootstrap Pin\n");
|
|
} else if (bootloader_state ==
|
|
SCRATCH_PAD1_BOOTSTATE_HDA_SOFTRESET) {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"Bootloader state - HDA mode soft reset\n");
|
|
} else if (bootloader_state ==
|
|
SCRATCH_PAD1_BOOTSTATE_CRIT_ERROR) {
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"Bootloader state-HDA mode critical error\n");
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* check the firmware status after reset */
|
|
if (-1 == check_fw_ready(pm8001_ha)) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n");
|
|
/* check iButton feature support for motherboard controller */
|
|
if (pm8001_ha->pdev->subsystem_vendor !=
|
|
PCI_VENDOR_ID_ADAPTEC2 &&
|
|
pm8001_ha->pdev->subsystem_vendor !=
|
|
PCI_VENDOR_ID_ATTO &&
|
|
pm8001_ha->pdev->subsystem_vendor != 0) {
|
|
ibutton0 = pm8001_cr32(pm8001_ha, 0,
|
|
MSGU_HOST_SCRATCH_PAD_6);
|
|
ibutton1 = pm8001_cr32(pm8001_ha, 0,
|
|
MSGU_HOST_SCRATCH_PAD_7);
|
|
if (!ibutton0 && !ibutton1) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"iButton Feature is not Available!!!\n");
|
|
return -EBUSY;
|
|
}
|
|
if (ibutton0 == 0xdeadbeef && ibutton1 == 0xdeadbeef) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"CRC Check for iButton Feature Failed!!!\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
}
|
|
pm8001_dbg(pm8001_ha, INIT, "SPCv soft reset Complete\n");
|
|
return 0;
|
|
}
|
|
|
|
static void pm80xx_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
u32 i;
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "chip reset start\n");
|
|
|
|
/* do SPCv chip reset. */
|
|
pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, 0x11);
|
|
pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n");
|
|
|
|
/* Check this ..whether delay is required or no */
|
|
/* delay 10 usec */
|
|
udelay(10);
|
|
|
|
/* wait for 20 msec until the firmware gets reloaded */
|
|
i = 20;
|
|
do {
|
|
mdelay(1);
|
|
} while ((--i) != 0);
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n");
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void
|
|
pm80xx_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
|
|
* @pm8001_ha: our hba card information
|
|
*/
|
|
static void
|
|
pm80xx_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, ODMR_MASK_ALL);
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
|
|
* @pm8001_ha: our hba card information
|
|
* @vec: interrupt number to enable
|
|
*/
|
|
static void
|
|
pm80xx_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec)
|
|
{
|
|
#ifdef PM8001_USE_MSIX
|
|
u32 mask;
|
|
mask = (u32)(1 << vec);
|
|
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, (u32)(mask & 0xFFFFFFFF));
|
|
return;
|
|
#endif
|
|
pm80xx_chip_intx_interrupt_enable(pm8001_ha);
|
|
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_interrupt_disable- disable PM8001 chip interrupt
|
|
* @pm8001_ha: our hba card information
|
|
* @vec: interrupt number to disable
|
|
*/
|
|
static void
|
|
pm80xx_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec)
|
|
{
|
|
#ifdef PM8001_USE_MSIX
|
|
u32 mask;
|
|
if (vec == 0xFF)
|
|
mask = 0xFFFFFFFF;
|
|
else
|
|
mask = (u32)(1 << vec);
|
|
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, (u32)(mask & 0xFFFFFFFF));
|
|
return;
|
|
#endif
|
|
pm80xx_chip_intx_interrupt_disable(pm8001_ha);
|
|
}
|
|
|
|
static void pm80xx_send_abort_all(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_device *pm8001_ha_dev)
|
|
{
|
|
int res;
|
|
u32 ccb_tag;
|
|
struct pm8001_ccb_info *ccb;
|
|
struct sas_task *task = NULL;
|
|
struct task_abort_req task_abort;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 opc = OPC_INB_SATA_ABORT;
|
|
int ret;
|
|
|
|
if (!pm8001_ha_dev) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "dev is null\n");
|
|
return;
|
|
}
|
|
|
|
task = sas_alloc_slow_task(GFP_ATOMIC);
|
|
|
|
if (!task) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n");
|
|
return;
|
|
}
|
|
|
|
task->task_done = pm8001_task_done;
|
|
|
|
res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
|
|
if (res) {
|
|
sas_free_task(task);
|
|
return;
|
|
}
|
|
|
|
ccb = &pm8001_ha->ccb_info[ccb_tag];
|
|
ccb->device = pm8001_ha_dev;
|
|
ccb->ccb_tag = ccb_tag;
|
|
ccb->task = task;
|
|
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
|
|
memset(&task_abort, 0, sizeof(task_abort));
|
|
task_abort.abort_all = cpu_to_le32(1);
|
|
task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
|
|
task_abort.tag = cpu_to_le32(ccb_tag);
|
|
|
|
ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort,
|
|
sizeof(task_abort), 0);
|
|
pm8001_dbg(pm8001_ha, FAIL, "Executing abort task end\n");
|
|
if (ret) {
|
|
sas_free_task(task);
|
|
pm8001_tag_free(pm8001_ha, ccb_tag);
|
|
}
|
|
}
|
|
|
|
static void pm80xx_send_read_log(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_device *pm8001_ha_dev)
|
|
{
|
|
struct sata_start_req sata_cmd;
|
|
int res;
|
|
u32 ccb_tag;
|
|
struct pm8001_ccb_info *ccb;
|
|
struct sas_task *task = NULL;
|
|
struct host_to_dev_fis fis;
|
|
struct domain_device *dev;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 opc = OPC_INB_SATA_HOST_OPSTART;
|
|
|
|
task = sas_alloc_slow_task(GFP_ATOMIC);
|
|
|
|
if (!task) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n");
|
|
return;
|
|
}
|
|
task->task_done = pm8001_task_done;
|
|
|
|
res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
|
|
if (res) {
|
|
sas_free_task(task);
|
|
pm8001_dbg(pm8001_ha, FAIL, "cannot allocate tag !!!\n");
|
|
return;
|
|
}
|
|
|
|
/* allocate domain device by ourselves as libsas
|
|
* is not going to provide any
|
|
*/
|
|
dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC);
|
|
if (!dev) {
|
|
sas_free_task(task);
|
|
pm8001_tag_free(pm8001_ha, ccb_tag);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Domain device cannot be allocated\n");
|
|
return;
|
|
}
|
|
|
|
task->dev = dev;
|
|
task->dev->lldd_dev = pm8001_ha_dev;
|
|
|
|
ccb = &pm8001_ha->ccb_info[ccb_tag];
|
|
ccb->device = pm8001_ha_dev;
|
|
ccb->ccb_tag = ccb_tag;
|
|
ccb->task = task;
|
|
ccb->n_elem = 0;
|
|
pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG;
|
|
pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG;
|
|
|
|
memset(&sata_cmd, 0, sizeof(sata_cmd));
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
|
|
/* construct read log FIS */
|
|
memset(&fis, 0, sizeof(struct host_to_dev_fis));
|
|
fis.fis_type = 0x27;
|
|
fis.flags = 0x80;
|
|
fis.command = ATA_CMD_READ_LOG_EXT;
|
|
fis.lbal = 0x10;
|
|
fis.sector_count = 0x1;
|
|
|
|
sata_cmd.tag = cpu_to_le32(ccb_tag);
|
|
sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
|
|
sata_cmd.ncqtag_atap_dir_m_dad |= ((0x1 << 7) | (0x5 << 9));
|
|
memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis));
|
|
|
|
res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd,
|
|
sizeof(sata_cmd), 0);
|
|
pm8001_dbg(pm8001_ha, FAIL, "Executing read log end\n");
|
|
if (res) {
|
|
sas_free_task(task);
|
|
pm8001_tag_free(pm8001_ha, ccb_tag);
|
|
kfree(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mpi_ssp_completion- process the event that FW response to the SSP request.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: the message contents of this outbound message.
|
|
*
|
|
* When FW has completed a ssp request for example a IO request, after it has
|
|
* filled the SG data with the data, it will trigger this event represent
|
|
* that he has finished the job,please check the coresponding buffer.
|
|
* So we will tell the caller who maybe waiting the result to tell upper layer
|
|
* that the task has been finished.
|
|
*/
|
|
static void
|
|
mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb)
|
|
{
|
|
struct sas_task *t;
|
|
struct pm8001_ccb_info *ccb;
|
|
unsigned long flags;
|
|
u32 status;
|
|
u32 param;
|
|
u32 tag;
|
|
struct ssp_completion_resp *psspPayload;
|
|
struct task_status_struct *ts;
|
|
struct ssp_response_iu *iu;
|
|
struct pm8001_device *pm8001_dev;
|
|
psspPayload = (struct ssp_completion_resp *)(piomb + 4);
|
|
status = le32_to_cpu(psspPayload->status);
|
|
tag = le32_to_cpu(psspPayload->tag);
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
if ((status == IO_ABORTED) && ccb->open_retry) {
|
|
/* Being completed by another */
|
|
ccb->open_retry = 0;
|
|
return;
|
|
}
|
|
pm8001_dev = ccb->device;
|
|
param = le32_to_cpu(psspPayload->param);
|
|
t = ccb->task;
|
|
|
|
if (status && status != IO_UNDERFLOW)
|
|
pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status);
|
|
if (unlikely(!t || !t->lldd_task || !t->dev))
|
|
return;
|
|
ts = &t->task_status;
|
|
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"tag::0x%x, status::0x%x task::0x%p\n", tag, status, t);
|
|
|
|
/* Print sas address of IO failed device */
|
|
if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
|
|
(status != IO_UNDERFLOW))
|
|
pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n",
|
|
SAS_ADDR(t->dev->sas_addr));
|
|
|
|
switch (status) {
|
|
case IO_SUCCESS:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS ,param = 0x%x\n",
|
|
param);
|
|
if (param == 0) {
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_GOOD;
|
|
} else {
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_PROTO_RESPONSE;
|
|
ts->residual = param;
|
|
iu = &psspPayload->ssp_resp_iu;
|
|
sas_ssp_task_response(pm8001_ha->dev, t, iu);
|
|
}
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_ABORTED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_ABORTED_TASK;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_UNDERFLOW:
|
|
/* SSP Completion with error */
|
|
pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW ,param = 0x%x\n",
|
|
param);
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_UNDERRUN;
|
|
ts->residual = param;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_NO_DEVICE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_PHY_DOWN;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
/* Force the midlayer to retry */
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_PHY_NOT_READY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_INVALID_SSP_RSP_FRAME:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_INVALID_SSP_RSP_FRAME\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_EPROTO;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
|
|
case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
if (!t->uldd_task)
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_NAK_RECEIVED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_DMA:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_OPEN_RETRY_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_OFFSET_MISMATCH:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_PORT_IN_RESET:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_DS_NON_OPERATIONAL:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (!t->uldd_task)
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_DS_NON_OPERATIONAL);
|
|
break;
|
|
case IO_DS_IN_RECOVERY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_TM_TAG_NOT_FOUND:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
|
|
/* not allowed case. Therefore, return failed status */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
}
|
|
pm8001_dbg(pm8001_ha, IO, "scsi_status = 0x%x\n ",
|
|
psspPayload->ssp_resp_iu.status);
|
|
spin_lock_irqsave(&t->task_state_lock, flags);
|
|
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
t->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
|
|
t, status, ts->resp, ts->stat);
|
|
if (t->slow_task)
|
|
complete(&t->slow_task->completion);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
} else {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
mb();/* in order to force CPU ordering */
|
|
t->task_done(t);
|
|
}
|
|
}
|
|
|
|
/*See the comments for mpi_ssp_completion */
|
|
static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
|
|
{
|
|
struct sas_task *t;
|
|
unsigned long flags;
|
|
struct task_status_struct *ts;
|
|
struct pm8001_ccb_info *ccb;
|
|
struct pm8001_device *pm8001_dev;
|
|
struct ssp_event_resp *psspPayload =
|
|
(struct ssp_event_resp *)(piomb + 4);
|
|
u32 event = le32_to_cpu(psspPayload->event);
|
|
u32 tag = le32_to_cpu(psspPayload->tag);
|
|
u32 port_id = le32_to_cpu(psspPayload->port_id);
|
|
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
t = ccb->task;
|
|
pm8001_dev = ccb->device;
|
|
if (event)
|
|
pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event);
|
|
if (unlikely(!t || !t->lldd_task || !t->dev))
|
|
return;
|
|
ts = &t->task_status;
|
|
pm8001_dbg(pm8001_ha, IOERR, "port_id:0x%x, tag:0x%x, event:0x%x\n",
|
|
port_id, tag, event);
|
|
switch (event) {
|
|
case IO_OVERFLOW:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
ts->residual = 0;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
|
|
pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK);
|
|
return;
|
|
case IO_XFER_ERROR_PHY_NOT_READY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_EPROTO;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
|
|
case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
if (!t->uldd_task)
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
|
|
break;
|
|
case IO_XFER_ERROR_NAK_RECEIVED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
break;
|
|
case IO_XFER_OPEN_RETRY_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
|
|
pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT);
|
|
return;
|
|
case IO_XFER_ERROR_UNEXPECTED_PHASE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_RDY_OVERRUN:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_OFFSET_MISMATCH:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_ERROR_INTERNAL_CRC_ERROR:
|
|
pm8001_dbg(pm8001_ha, IOERR,
|
|
"IO_XFR_ERROR_INTERNAL_CRC_ERROR\n");
|
|
/* TBC: used default set values */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
case IO_XFER_CMD_FRAME_ISSUED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
|
|
return;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event);
|
|
/* not allowed case. Therefore, return failed status */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
break;
|
|
}
|
|
spin_lock_irqsave(&t->task_state_lock, flags);
|
|
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
t->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
|
|
t, event, ts->resp, ts->stat);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
} else {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
mb();/* in order to force CPU ordering */
|
|
t->task_done(t);
|
|
}
|
|
}
|
|
|
|
/*See the comments for mpi_ssp_completion */
|
|
static void
|
|
mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct sas_task *t;
|
|
struct pm8001_ccb_info *ccb;
|
|
u32 param;
|
|
u32 status;
|
|
u32 tag;
|
|
int i, j;
|
|
u8 sata_addr_low[4];
|
|
u32 temp_sata_addr_low, temp_sata_addr_hi;
|
|
u8 sata_addr_hi[4];
|
|
struct sata_completion_resp *psataPayload;
|
|
struct task_status_struct *ts;
|
|
struct ata_task_resp *resp ;
|
|
u32 *sata_resp;
|
|
struct pm8001_device *pm8001_dev;
|
|
unsigned long flags;
|
|
|
|
psataPayload = (struct sata_completion_resp *)(piomb + 4);
|
|
status = le32_to_cpu(psataPayload->status);
|
|
tag = le32_to_cpu(psataPayload->tag);
|
|
|
|
if (!tag) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "tag null\n");
|
|
return;
|
|
}
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
param = le32_to_cpu(psataPayload->param);
|
|
if (ccb) {
|
|
t = ccb->task;
|
|
pm8001_dev = ccb->device;
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, FAIL, "ccb null\n");
|
|
return;
|
|
}
|
|
|
|
if (t) {
|
|
if (t->dev && (t->dev->lldd_dev))
|
|
pm8001_dev = t->dev->lldd_dev;
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, FAIL, "task null\n");
|
|
return;
|
|
}
|
|
|
|
if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG))
|
|
&& unlikely(!t || !t->lldd_task || !t->dev)) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n");
|
|
return;
|
|
}
|
|
|
|
ts = &t->task_status;
|
|
if (!ts) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "ts null\n");
|
|
return;
|
|
}
|
|
|
|
if (unlikely(status))
|
|
pm8001_dbg(pm8001_ha, IOERR,
|
|
"status:0x%x, tag:0x%x, task::0x%p\n",
|
|
status, tag, t);
|
|
|
|
/* Print sas address of IO failed device */
|
|
if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
|
|
(status != IO_UNDERFLOW)) {
|
|
if (!((t->dev->parent) &&
|
|
(dev_is_expander(t->dev->parent->dev_type)))) {
|
|
for (i = 0 , j = 4; i <= 3 && j <= 7; i++ , j++)
|
|
sata_addr_low[i] = pm8001_ha->sas_addr[j];
|
|
for (i = 0 , j = 0; i <= 3 && j <= 3; i++ , j++)
|
|
sata_addr_hi[i] = pm8001_ha->sas_addr[j];
|
|
memcpy(&temp_sata_addr_low, sata_addr_low,
|
|
sizeof(sata_addr_low));
|
|
memcpy(&temp_sata_addr_hi, sata_addr_hi,
|
|
sizeof(sata_addr_hi));
|
|
temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff)
|
|
|((temp_sata_addr_hi << 8) &
|
|
0xff0000) |
|
|
((temp_sata_addr_hi >> 8)
|
|
& 0xff00) |
|
|
((temp_sata_addr_hi << 24) &
|
|
0xff000000));
|
|
temp_sata_addr_low = ((((temp_sata_addr_low >> 24)
|
|
& 0xff) |
|
|
((temp_sata_addr_low << 8)
|
|
& 0xff0000) |
|
|
((temp_sata_addr_low >> 8)
|
|
& 0xff00) |
|
|
((temp_sata_addr_low << 24)
|
|
& 0xff000000)) +
|
|
pm8001_dev->attached_phy +
|
|
0x10);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"SAS Address of IO Failure Drive:%08x%08x\n",
|
|
temp_sata_addr_hi,
|
|
temp_sata_addr_low);
|
|
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"SAS Address of IO Failure Drive:%016llx\n",
|
|
SAS_ADDR(t->dev->sas_addr));
|
|
}
|
|
}
|
|
switch (status) {
|
|
case IO_SUCCESS:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
|
|
if (param == 0) {
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_GOOD;
|
|
/* check if response is for SEND READ LOG */
|
|
if (pm8001_dev &&
|
|
(pm8001_dev->id & NCQ_READ_LOG_FLAG)) {
|
|
/* set new bit for abort_all */
|
|
pm8001_dev->id |= NCQ_ABORT_ALL_FLAG;
|
|
/* clear bit for read log */
|
|
pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF;
|
|
pm80xx_send_abort_all(pm8001_ha, pm8001_dev);
|
|
/* Free the tag */
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
sas_free_task(t);
|
|
return;
|
|
}
|
|
} else {
|
|
u8 len;
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_PROTO_RESPONSE;
|
|
ts->residual = param;
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"SAS_PROTO_RESPONSE len = %d\n",
|
|
param);
|
|
sata_resp = &psataPayload->sata_resp[0];
|
|
resp = (struct ata_task_resp *)ts->buf;
|
|
if (t->ata_task.dma_xfer == 0 &&
|
|
t->data_dir == DMA_FROM_DEVICE) {
|
|
len = sizeof(struct pio_setup_fis);
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"PIO read len = %d\n", len);
|
|
} else if (t->ata_task.use_ncq) {
|
|
len = sizeof(struct set_dev_bits_fis);
|
|
pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n",
|
|
len);
|
|
} else {
|
|
len = sizeof(struct dev_to_host_fis);
|
|
pm8001_dbg(pm8001_ha, IO, "other len = %d\n",
|
|
len);
|
|
}
|
|
if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
|
|
resp->frame_len = len;
|
|
memcpy(&resp->ending_fis[0], sata_resp, len);
|
|
ts->buf_valid_size = sizeof(*resp);
|
|
} else
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"response too large\n");
|
|
}
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_ABORTED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_ABORTED_TASK;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
/* following cases are to do cases */
|
|
case IO_UNDERFLOW:
|
|
/* SATA Completion with error */
|
|
pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param);
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_UNDERRUN;
|
|
ts->residual = param;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_NO_DEVICE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_PHY_DOWN;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_INTERRUPTED;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_PHY_NOT_READY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_EPROTO;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
|
|
case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_NAK_RECEIVED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_DMA:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_ABORTED_TASK;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_REJECTED_NCQ_MODE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_UNDERRUN;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_OPEN_RETRY_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_PORT_IN_RESET:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_DS_NON_OPERATIONAL:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha, pm8001_dev,
|
|
IO_DS_NON_OPERATIONAL);
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_DS_IN_RECOVERY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_DS_IN_ERROR:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha, pm8001_dev,
|
|
IO_DS_IN_ERROR);
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
|
|
/* not allowed case. Therefore, return failed status */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
}
|
|
spin_lock_irqsave(&t->task_state_lock, flags);
|
|
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
t->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
|
|
t, status, ts->resp, ts->stat);
|
|
if (t->slow_task)
|
|
complete(&t->slow_task->completion);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
} else {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
}
|
|
}
|
|
|
|
/*See the comments for mpi_ssp_completion */
|
|
static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
|
|
{
|
|
struct sas_task *t;
|
|
struct task_status_struct *ts;
|
|
struct pm8001_ccb_info *ccb;
|
|
struct pm8001_device *pm8001_dev;
|
|
struct sata_event_resp *psataPayload =
|
|
(struct sata_event_resp *)(piomb + 4);
|
|
u32 event = le32_to_cpu(psataPayload->event);
|
|
u32 tag = le32_to_cpu(psataPayload->tag);
|
|
u32 port_id = le32_to_cpu(psataPayload->port_id);
|
|
u32 dev_id = le32_to_cpu(psataPayload->device_id);
|
|
unsigned long flags;
|
|
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
|
|
if (ccb) {
|
|
t = ccb->task;
|
|
pm8001_dev = ccb->device;
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, FAIL, "No CCB !!!. returning\n");
|
|
return;
|
|
}
|
|
if (event)
|
|
pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event);
|
|
|
|
/* Check if this is NCQ error */
|
|
if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) {
|
|
/* find device using device id */
|
|
pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id);
|
|
/* send read log extension */
|
|
if (pm8001_dev)
|
|
pm80xx_send_read_log(pm8001_ha, pm8001_dev);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(!t || !t->lldd_task || !t->dev)) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n");
|
|
return;
|
|
}
|
|
|
|
ts = &t->task_status;
|
|
pm8001_dbg(pm8001_ha, IOERR, "port_id:0x%x, tag:0x%x, event:0x%x\n",
|
|
port_id, tag, event);
|
|
switch (event) {
|
|
case IO_OVERFLOW:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
ts->residual = 0;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_XFER_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_INTERRUPTED;
|
|
break;
|
|
case IO_XFER_ERROR_PHY_NOT_READY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_EPROTO;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
|
|
case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED:
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
if (!t->uldd_task) {
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
return;
|
|
}
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
|
|
ts->resp = SAS_TASK_UNDELIVERED;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
|
|
break;
|
|
case IO_XFER_ERROR_NAK_RECEIVED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
break;
|
|
case IO_XFER_ERROR_PEER_ABORTED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_NAK_R_ERR;
|
|
break;
|
|
case IO_XFER_ERROR_REJECTED_NCQ_MODE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_UNDERRUN;
|
|
break;
|
|
case IO_XFER_OPEN_RETRY_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_UNEXPECTED_PHASE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_RDY_OVERRUN:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_OFFSET_MISMATCH:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_CMD_FRAME_ISSUED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
|
|
break;
|
|
case IO_XFER_PIO_SETUP_ERROR:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_ERROR_INTERNAL_CRC_ERROR:
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"IO_XFR_ERROR_INTERNAL_CRC_ERROR\n");
|
|
/* TBC: used default set values */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
case IO_XFER_DMA_ACTIVATE_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, FAIL, "IO_XFR_DMA_ACTIVATE_TIMEOUT\n");
|
|
/* TBC: used default set values */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, IO, "Unknown status 0x%x\n", event);
|
|
/* not allowed case. Therefore, return failed status */
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_TO;
|
|
break;
|
|
}
|
|
spin_lock_irqsave(&t->task_state_lock, flags);
|
|
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
t->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
|
|
t, event, ts->resp, ts->stat);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
} else {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
|
|
}
|
|
}
|
|
|
|
/*See the comments for mpi_ssp_completion */
|
|
static void
|
|
mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
u32 param, i;
|
|
struct sas_task *t;
|
|
struct pm8001_ccb_info *ccb;
|
|
unsigned long flags;
|
|
u32 status;
|
|
u32 tag;
|
|
struct smp_completion_resp *psmpPayload;
|
|
struct task_status_struct *ts;
|
|
struct pm8001_device *pm8001_dev;
|
|
char *pdma_respaddr = NULL;
|
|
|
|
psmpPayload = (struct smp_completion_resp *)(piomb + 4);
|
|
status = le32_to_cpu(psmpPayload->status);
|
|
tag = le32_to_cpu(psmpPayload->tag);
|
|
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
param = le32_to_cpu(psmpPayload->param);
|
|
t = ccb->task;
|
|
ts = &t->task_status;
|
|
pm8001_dev = ccb->device;
|
|
if (status)
|
|
pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status);
|
|
if (unlikely(!t || !t->lldd_task || !t->dev))
|
|
return;
|
|
|
|
pm8001_dbg(pm8001_ha, DEV, "tag::0x%x status::0x%x\n", tag, status);
|
|
|
|
switch (status) {
|
|
|
|
case IO_SUCCESS:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_GOOD;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
if (pm8001_ha->smp_exp_mode == SMP_DIRECT) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"DIRECT RESPONSE Length:%d\n",
|
|
param);
|
|
pdma_respaddr = (char *)(phys_to_virt(cpu_to_le64
|
|
((u64)sg_dma_address
|
|
(&t->smp_task.smp_resp))));
|
|
for (i = 0; i < param; i++) {
|
|
*(pdma_respaddr+i) = psmpPayload->_r_a[i];
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"SMP Byte%d DMA data 0x%x psmp 0x%x\n",
|
|
i, *(pdma_respaddr + i),
|
|
psmpPayload->_r_a[i]);
|
|
}
|
|
}
|
|
break;
|
|
case IO_ABORTED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_ABORTED_TASK;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_OVERFLOW:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DATA_OVERRUN;
|
|
ts->residual = 0;
|
|
if (pm8001_dev)
|
|
atomic_dec(&pm8001_dev->running_req);
|
|
break;
|
|
case IO_NO_DEVICE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_PHY_DOWN;
|
|
break;
|
|
case IO_ERROR_HW_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_BUSY;
|
|
break;
|
|
case IO_XFER_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_BUSY;
|
|
break;
|
|
case IO_XFER_ERROR_PHY_NOT_READY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_BUSY;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BREAK:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
|
|
case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE:
|
|
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
|
|
pm8001_handle_event(pm8001_ha,
|
|
pm8001_dev,
|
|
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
|
|
break;
|
|
case IO_XFER_ERROR_RX_FRAME:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
break;
|
|
case IO_XFER_OPEN_RETRY_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_ERROR_INTERNAL_SMP_RESOURCE:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_QUEUE_FULL;
|
|
break;
|
|
case IO_PORT_IN_RESET:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_DS_NON_OPERATIONAL:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
break;
|
|
case IO_DS_IN_RECOVERY:
|
|
pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_OPEN_REJECT;
|
|
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAS_DEV_NO_RESPONSE;
|
|
/* not allowed case. Therefore, return failed status */
|
|
break;
|
|
}
|
|
spin_lock_irqsave(&t->task_state_lock, flags);
|
|
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
t->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p done with io_status 0x%x resp 0x%xstat 0x%x but aborted by upper layer!\n",
|
|
t, status, ts->resp, ts->stat);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
} else {
|
|
spin_unlock_irqrestore(&t->task_state_lock, flags);
|
|
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
|
|
mb();/* in order to force CPU ordering */
|
|
t->task_done(t);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pm80xx_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
|
|
* @pm8001_ha: our hba card information
|
|
* @Qnum: the outbound queue message number.
|
|
* @SEA: source of event to ack
|
|
* @port_id: port id.
|
|
* @phyId: phy id.
|
|
* @param0: parameter 0.
|
|
* @param1: parameter 1.
|
|
*/
|
|
static void pm80xx_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
|
|
u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
|
|
{
|
|
struct hw_event_ack_req payload;
|
|
u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
|
|
|
|
struct inbound_queue_table *circularQ;
|
|
|
|
memset((u8 *)&payload, 0, sizeof(payload));
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[Qnum];
|
|
payload.tag = cpu_to_le32(1);
|
|
payload.phyid_sea_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
|
|
((phyId & 0xFF) << 24) | (port_id & 0xFF));
|
|
payload.param0 = cpu_to_le32(param0);
|
|
payload.param1 = cpu_to_le32(param1);
|
|
pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
}
|
|
|
|
static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
|
|
u32 phyId, u32 phy_op);
|
|
|
|
static void hw_event_port_recover(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4);
|
|
u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate);
|
|
u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16);
|
|
u32 lr_status_evt_portid =
|
|
le32_to_cpu(pPayload->lr_status_evt_portid);
|
|
u8 deviceType = pPayload->sas_identify.dev_type;
|
|
u8 link_rate = (u8)((lr_status_evt_portid & 0xF0000000) >> 28);
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF);
|
|
struct pm8001_port *port = &pm8001_ha->port[port_id];
|
|
|
|
if (deviceType == SAS_END_DEVICE) {
|
|
pm80xx_chip_phy_ctl_req(pm8001_ha, phy_id,
|
|
PHY_NOTIFY_ENABLE_SPINUP);
|
|
}
|
|
|
|
port->wide_port_phymap |= (1U << phy_id);
|
|
pm8001_get_lrate_mode(phy, link_rate);
|
|
phy->sas_phy.oob_mode = SAS_OOB_MODE;
|
|
phy->phy_state = PHY_STATE_LINK_UP_SPCV;
|
|
phy->phy_attached = 1;
|
|
}
|
|
|
|
/**
|
|
* hw_event_sas_phy_up -FW tells me a SAS phy up event.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static void
|
|
hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct hw_event_resp *pPayload =
|
|
(struct hw_event_resp *)(piomb + 4);
|
|
u32 lr_status_evt_portid =
|
|
le32_to_cpu(pPayload->lr_status_evt_portid);
|
|
u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate);
|
|
|
|
u8 link_rate =
|
|
(u8)((lr_status_evt_portid & 0xF0000000) >> 28);
|
|
u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF);
|
|
u8 phy_id =
|
|
(u8)((phyid_npip_portstate & 0xFF0000) >> 16);
|
|
u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F);
|
|
|
|
struct pm8001_port *port = &pm8001_ha->port[port_id];
|
|
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
unsigned long flags;
|
|
u8 deviceType = pPayload->sas_identify.dev_type;
|
|
port->port_state = portstate;
|
|
port->wide_port_phymap |= (1U << phy_id);
|
|
phy->phy_state = PHY_STATE_LINK_UP_SPCV;
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"portid:%d; phyid:%d; linkrate:%d; portstate:%x; devicetype:%x\n",
|
|
port_id, phy_id, link_rate, portstate, deviceType);
|
|
|
|
switch (deviceType) {
|
|
case SAS_PHY_UNUSED:
|
|
pm8001_dbg(pm8001_ha, MSG, "device type no device.\n");
|
|
break;
|
|
case SAS_END_DEVICE:
|
|
pm8001_dbg(pm8001_ha, MSG, "end device.\n");
|
|
pm80xx_chip_phy_ctl_req(pm8001_ha, phy_id,
|
|
PHY_NOTIFY_ENABLE_SPINUP);
|
|
port->port_attached = 1;
|
|
pm8001_get_lrate_mode(phy, link_rate);
|
|
break;
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
pm8001_dbg(pm8001_ha, MSG, "expander device.\n");
|
|
port->port_attached = 1;
|
|
pm8001_get_lrate_mode(phy, link_rate);
|
|
break;
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n");
|
|
port->port_attached = 1;
|
|
pm8001_get_lrate_mode(phy, link_rate);
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n",
|
|
deviceType);
|
|
break;
|
|
}
|
|
phy->phy_type |= PORT_TYPE_SAS;
|
|
phy->identify.device_type = deviceType;
|
|
phy->phy_attached = 1;
|
|
if (phy->identify.device_type == SAS_END_DEVICE)
|
|
phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
|
|
else if (phy->identify.device_type != SAS_PHY_UNUSED)
|
|
phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
|
|
phy->sas_phy.oob_mode = SAS_OOB_MODE;
|
|
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
|
|
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
|
|
memcpy(phy->frame_rcvd, &pPayload->sas_identify,
|
|
sizeof(struct sas_identify_frame)-4);
|
|
phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
|
|
pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
|
|
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
|
|
if (pm8001_ha->flags == PM8001F_RUN_TIME)
|
|
mdelay(200); /* delay a moment to wait for disk to spin up */
|
|
pm8001_bytes_dmaed(pm8001_ha, phy_id);
|
|
}
|
|
|
|
/**
|
|
* hw_event_sata_phy_up -FW tells me a SATA phy up event.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static void
|
|
hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct hw_event_resp *pPayload =
|
|
(struct hw_event_resp *)(piomb + 4);
|
|
u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate);
|
|
u32 lr_status_evt_portid =
|
|
le32_to_cpu(pPayload->lr_status_evt_portid);
|
|
u8 link_rate =
|
|
(u8)((lr_status_evt_portid & 0xF0000000) >> 28);
|
|
u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF);
|
|
u8 phy_id =
|
|
(u8)((phyid_npip_portstate & 0xFF0000) >> 16);
|
|
|
|
u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F);
|
|
|
|
struct pm8001_port *port = &pm8001_ha->port[port_id];
|
|
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
unsigned long flags;
|
|
pm8001_dbg(pm8001_ha, DEVIO,
|
|
"port id %d, phy id %d link_rate %d portstate 0x%x\n",
|
|
port_id, phy_id, link_rate, portstate);
|
|
|
|
port->port_state = portstate;
|
|
phy->phy_state = PHY_STATE_LINK_UP_SPCV;
|
|
port->port_attached = 1;
|
|
pm8001_get_lrate_mode(phy, link_rate);
|
|
phy->phy_type |= PORT_TYPE_SATA;
|
|
phy->phy_attached = 1;
|
|
phy->sas_phy.oob_mode = SATA_OOB_MODE;
|
|
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
|
|
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
|
|
memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
|
|
sizeof(struct dev_to_host_fis));
|
|
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
|
|
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
|
|
phy->identify.device_type = SAS_SATA_DEV;
|
|
pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
|
|
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
|
|
pm8001_bytes_dmaed(pm8001_ha, phy_id);
|
|
}
|
|
|
|
/**
|
|
* hw_event_phy_down -we should notify the libsas the phy is down.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static void
|
|
hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct hw_event_resp *pPayload =
|
|
(struct hw_event_resp *)(piomb + 4);
|
|
|
|
u32 lr_status_evt_portid =
|
|
le32_to_cpu(pPayload->lr_status_evt_portid);
|
|
u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF);
|
|
u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate);
|
|
u8 phy_id =
|
|
(u8)((phyid_npip_portstate & 0xFF0000) >> 16);
|
|
u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F);
|
|
|
|
struct pm8001_port *port = &pm8001_ha->port[port_id];
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
u32 port_sata = (phy->phy_type & PORT_TYPE_SATA);
|
|
port->port_state = portstate;
|
|
phy->identify.device_type = 0;
|
|
phy->phy_attached = 0;
|
|
switch (portstate) {
|
|
case PORT_VALID:
|
|
break;
|
|
case PORT_INVALID:
|
|
pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n",
|
|
port_id);
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" Last phy Down and port invalid\n");
|
|
if (port_sata) {
|
|
phy->phy_type = 0;
|
|
port->port_attached = 0;
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
|
|
port_id, phy_id, 0, 0);
|
|
}
|
|
sas_phy_disconnected(&phy->sas_phy);
|
|
break;
|
|
case PORT_IN_RESET:
|
|
pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n",
|
|
port_id);
|
|
break;
|
|
case PORT_NOT_ESTABLISHED:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" Phy Down and PORT_NOT_ESTABLISHED\n");
|
|
port->port_attached = 0;
|
|
break;
|
|
case PORT_LOSTCOMM:
|
|
pm8001_dbg(pm8001_ha, MSG, " Phy Down and PORT_LOSTCOMM\n");
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
" Last phy Down and port invalid\n");
|
|
if (port_sata) {
|
|
port->port_attached = 0;
|
|
phy->phy_type = 0;
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
|
|
port_id, phy_id, 0, 0);
|
|
}
|
|
sas_phy_disconnected(&phy->sas_phy);
|
|
break;
|
|
default:
|
|
port->port_attached = 0;
|
|
pm8001_dbg(pm8001_ha, DEVIO,
|
|
" Phy Down and(default) = 0x%x\n",
|
|
portstate);
|
|
break;
|
|
|
|
}
|
|
if (port_sata && (portstate != PORT_IN_RESET)) {
|
|
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
|
|
|
|
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
|
|
}
|
|
}
|
|
|
|
static int mpi_phy_start_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct phy_start_resp *pPayload =
|
|
(struct phy_start_resp *)(piomb + 4);
|
|
u32 status =
|
|
le32_to_cpu(pPayload->status);
|
|
u32 phy_id =
|
|
le32_to_cpu(pPayload->phyid);
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
"phy start resp status:0x%x, phyid:0x%x\n",
|
|
status, phy_id);
|
|
if (status == 0) {
|
|
phy->phy_state = PHY_LINK_DOWN;
|
|
if (pm8001_ha->flags == PM8001F_RUN_TIME &&
|
|
phy->enable_completion != NULL) {
|
|
complete(phy->enable_completion);
|
|
phy->enable_completion = NULL;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* mpi_thermal_hw_event -The hw event has come.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_thermal_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct thermal_hw_event *pPayload =
|
|
(struct thermal_hw_event *)(piomb + 4);
|
|
|
|
u32 thermal_event = le32_to_cpu(pPayload->thermal_event);
|
|
u32 rht_lht = le32_to_cpu(pPayload->rht_lht);
|
|
|
|
if (thermal_event & 0x40) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Thermal Event: Local high temperature violated!\n");
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Thermal Event: Measured local high temperature %d\n",
|
|
((rht_lht & 0xFF00) >> 8));
|
|
}
|
|
if (thermal_event & 0x10) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Thermal Event: Remote high temperature violated!\n");
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Thermal Event: Measured remote high temperature %d\n",
|
|
((rht_lht & 0xFF000000) >> 24));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_hw_event -The hw event has come.
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
unsigned long flags, i;
|
|
struct hw_event_resp *pPayload =
|
|
(struct hw_event_resp *)(piomb + 4);
|
|
u32 lr_status_evt_portid =
|
|
le32_to_cpu(pPayload->lr_status_evt_portid);
|
|
u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate);
|
|
u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF);
|
|
u8 phy_id =
|
|
(u8)((phyid_npip_portstate & 0xFF0000) >> 16);
|
|
u16 eventType =
|
|
(u16)((lr_status_evt_portid & 0x00FFFF00) >> 8);
|
|
u8 status =
|
|
(u8)((lr_status_evt_portid & 0x0F000000) >> 24);
|
|
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
|
|
struct pm8001_port *port = &pm8001_ha->port[port_id];
|
|
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
|
|
pm8001_dbg(pm8001_ha, DEV,
|
|
"portid:%d phyid:%d event:0x%x status:0x%x\n",
|
|
port_id, phy_id, eventType, status);
|
|
|
|
switch (eventType) {
|
|
|
|
case HW_EVENT_SAS_PHY_UP:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n");
|
|
hw_event_sas_phy_up(pm8001_ha, piomb);
|
|
break;
|
|
case HW_EVENT_SATA_PHY_UP:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n");
|
|
hw_event_sata_phy_up(pm8001_ha, piomb);
|
|
break;
|
|
case HW_EVENT_SATA_SPINUP_HOLD:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n");
|
|
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
|
|
break;
|
|
case HW_EVENT_PHY_DOWN:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n");
|
|
hw_event_phy_down(pm8001_ha, piomb);
|
|
if (pm8001_ha->reset_in_progress) {
|
|
pm8001_dbg(pm8001_ha, MSG, "Reset in progress\n");
|
|
return 0;
|
|
}
|
|
phy->phy_attached = 0;
|
|
phy->phy_state = PHY_LINK_DISABLE;
|
|
break;
|
|
case HW_EVENT_PORT_INVALID:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n");
|
|
sas_phy_disconnected(sas_phy);
|
|
phy->phy_attached = 0;
|
|
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
|
|
break;
|
|
/* the broadcast change primitive received, tell the LIBSAS this event
|
|
to revalidate the sas domain*/
|
|
case HW_EVENT_BROADCAST_CHANGE:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
|
|
port_id, phy_id, 1, 0);
|
|
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
|
|
sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
|
|
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
|
|
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
|
|
break;
|
|
case HW_EVENT_PHY_ERROR:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n");
|
|
sas_phy_disconnected(&phy->sas_phy);
|
|
phy->phy_attached = 0;
|
|
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
|
|
break;
|
|
case HW_EVENT_BROADCAST_EXP:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n");
|
|
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
|
|
sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
|
|
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
|
|
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
|
|
break;
|
|
case HW_EVENT_LINK_ERR_INVALID_DWORD:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_LINK_ERR_INVALID_DWORD\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
|
|
break;
|
|
case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_LINK_ERR_DISPARITY_ERROR\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_LINK_ERR_DISPARITY_ERROR,
|
|
port_id, phy_id, 0, 0);
|
|
break;
|
|
case HW_EVENT_LINK_ERR_CODE_VIOLATION:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_LINK_ERR_CODE_VIOLATION\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_LINK_ERR_CODE_VIOLATION,
|
|
port_id, phy_id, 0, 0);
|
|
break;
|
|
case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
|
|
port_id, phy_id, 0, 0);
|
|
break;
|
|
case HW_EVENT_MALFUNCTION:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n");
|
|
break;
|
|
case HW_EVENT_BROADCAST_SES:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n");
|
|
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
|
|
sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
|
|
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
|
|
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
|
|
break;
|
|
case HW_EVENT_INBOUND_CRC_ERROR:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_INBOUND_CRC_ERROR,
|
|
port_id, phy_id, 0, 0);
|
|
break;
|
|
case HW_EVENT_HARD_RESET_RECEIVED:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n");
|
|
sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
|
|
break;
|
|
case HW_EVENT_ID_FRAME_TIMEOUT:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n");
|
|
sas_phy_disconnected(sas_phy);
|
|
phy->phy_attached = 0;
|
|
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
|
|
break;
|
|
case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
|
|
port_id, phy_id, 0, 0);
|
|
sas_phy_disconnected(sas_phy);
|
|
phy->phy_attached = 0;
|
|
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
|
|
break;
|
|
case HW_EVENT_PORT_RESET_TIMER_TMO:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
|
|
port_id, phy_id, 0, 0);
|
|
sas_phy_disconnected(sas_phy);
|
|
phy->phy_attached = 0;
|
|
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
|
|
if (pm8001_ha->phy[phy_id].reset_completion) {
|
|
pm8001_ha->phy[phy_id].port_reset_status =
|
|
PORT_RESET_TMO;
|
|
complete(pm8001_ha->phy[phy_id].reset_completion);
|
|
pm8001_ha->phy[phy_id].reset_completion = NULL;
|
|
}
|
|
break;
|
|
case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"HW_EVENT_PORT_RECOVERY_TIMER_TMO\n");
|
|
pm80xx_hw_event_ack_req(pm8001_ha, 0,
|
|
HW_EVENT_PORT_RECOVERY_TIMER_TMO,
|
|
port_id, phy_id, 0, 0);
|
|
for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
|
|
if (port->wide_port_phymap & (1 << i)) {
|
|
phy = &pm8001_ha->phy[i];
|
|
sas_ha->notify_phy_event(&phy->sas_phy,
|
|
PHYE_LOSS_OF_SIGNAL);
|
|
port->wide_port_phymap &= ~(1 << i);
|
|
}
|
|
}
|
|
break;
|
|
case HW_EVENT_PORT_RECOVER:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n");
|
|
hw_event_port_recover(pm8001_ha, piomb);
|
|
break;
|
|
case HW_EVENT_PORT_RESET_COMPLETE:
|
|
pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n");
|
|
if (pm8001_ha->phy[phy_id].reset_completion) {
|
|
pm8001_ha->phy[phy_id].port_reset_status =
|
|
PORT_RESET_SUCCESS;
|
|
complete(pm8001_ha->phy[phy_id].reset_completion);
|
|
pm8001_ha->phy[phy_id].reset_completion = NULL;
|
|
}
|
|
break;
|
|
case EVENT_BROADCAST_ASYNCH_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n");
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type 0x%x\n",
|
|
eventType);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_phy_stop_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_phy_stop_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
struct phy_stop_resp *pPayload =
|
|
(struct phy_stop_resp *)(piomb + 4);
|
|
u32 status =
|
|
le32_to_cpu(pPayload->status);
|
|
u32 phyid =
|
|
le32_to_cpu(pPayload->phyid) & 0xFF;
|
|
struct pm8001_phy *phy = &pm8001_ha->phy[phyid];
|
|
pm8001_dbg(pm8001_ha, MSG, "phy:0x%x status:0x%x\n",
|
|
phyid, status);
|
|
if (status == PHY_STOP_SUCCESS ||
|
|
status == PHY_STOP_ERR_DEVICE_ATTACHED)
|
|
phy->phy_state = PHY_LINK_DISABLE;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_set_controller_config_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_set_controller_config_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
struct set_ctrl_cfg_resp *pPayload =
|
|
(struct set_ctrl_cfg_resp *)(piomb + 4);
|
|
u32 status = le32_to_cpu(pPayload->status);
|
|
u32 err_qlfr_pgcd = le32_to_cpu(pPayload->err_qlfr_pgcd);
|
|
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"SET CONTROLLER RESP: status 0x%x qlfr_pgcd 0x%x\n",
|
|
status, err_qlfr_pgcd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_get_controller_config_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_get_controller_config_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_get_phy_profile_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_get_phy_profile_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_flash_op_ext_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_flash_op_ext_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_set_phy_profile_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_set_phy_profile_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
u32 tag;
|
|
u8 page_code;
|
|
int rc = 0;
|
|
struct set_phy_profile_resp *pPayload =
|
|
(struct set_phy_profile_resp *)(piomb + 4);
|
|
u32 ppc_phyid = le32_to_cpu(pPayload->ppc_phyid);
|
|
u32 status = le32_to_cpu(pPayload->status);
|
|
|
|
tag = le32_to_cpu(pPayload->tag);
|
|
page_code = (u8)((ppc_phyid & 0xFF00) >> 8);
|
|
if (status) {
|
|
/* status is FAILED */
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"PhyProfile command failed with status 0x%08X\n",
|
|
status);
|
|
rc = -1;
|
|
} else {
|
|
if (page_code != SAS_PHY_ANALOG_SETTINGS_PAGE) {
|
|
pm8001_dbg(pm8001_ha, FAIL, "Invalid page code 0x%X\n",
|
|
page_code);
|
|
rc = -1;
|
|
}
|
|
}
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* mpi_kek_management_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_kek_management_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
struct kek_mgmt_resp *pPayload = (struct kek_mgmt_resp *)(piomb + 4);
|
|
|
|
u32 status = le32_to_cpu(pPayload->status);
|
|
u32 kidx_new_curr_ksop = le32_to_cpu(pPayload->kidx_new_curr_ksop);
|
|
u32 err_qlfr = le32_to_cpu(pPayload->err_qlfr);
|
|
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"KEK MGMT RESP. Status 0x%x idx_ksop 0x%x err_qlfr 0x%x\n",
|
|
status, kidx_new_curr_ksop, err_qlfr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mpi_dek_management_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int mpi_dek_management_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssp_coalesced_comp_resp - SPCv specific
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static int ssp_coalesced_comp_resp(struct pm8001_hba_info *pm8001_ha,
|
|
void *piomb)
|
|
{
|
|
pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* process_one_iomb - process one outbound Queue memory block
|
|
* @pm8001_ha: our hba card information
|
|
* @piomb: IO message buffer
|
|
*/
|
|
static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
|
|
{
|
|
__le32 pHeader = *(__le32 *)piomb;
|
|
u32 opc = (u32)((le32_to_cpu(pHeader)) & 0xFFF);
|
|
|
|
switch (opc) {
|
|
case OPC_OUB_ECHO:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n");
|
|
break;
|
|
case OPC_OUB_HW_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n");
|
|
mpi_hw_event(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_THERM_HW_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_THERMAL_EVENT\n");
|
|
mpi_thermal_hw_event(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SSP_COMP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n");
|
|
mpi_ssp_completion(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SMP_COMP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n");
|
|
mpi_smp_completion(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_LOCAL_PHY_CNTRL:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n");
|
|
pm8001_mpi_local_phy_ctl(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_DEV_REGIST:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n");
|
|
pm8001_mpi_reg_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_DEREG_DEV:
|
|
pm8001_dbg(pm8001_ha, MSG, "unregister the device\n");
|
|
pm8001_mpi_dereg_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GET_DEV_HANDLE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n");
|
|
break;
|
|
case OPC_OUB_SATA_COMP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n");
|
|
mpi_sata_completion(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SATA_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n");
|
|
mpi_sata_event(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SSP_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n");
|
|
mpi_ssp_event(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_DEV_HANDLE_ARRIV:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n");
|
|
/*This is for target*/
|
|
break;
|
|
case OPC_OUB_SSP_RECV_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n");
|
|
/*This is for target*/
|
|
break;
|
|
case OPC_OUB_FW_FLASH_UPDATE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n");
|
|
pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GPIO_RESPONSE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n");
|
|
break;
|
|
case OPC_OUB_GPIO_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n");
|
|
break;
|
|
case OPC_OUB_GENERAL_EVENT:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n");
|
|
pm8001_mpi_general_event(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SSP_ABORT_RSP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n");
|
|
pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SATA_ABORT_RSP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n");
|
|
pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SAS_DIAG_MODE_START_END:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_SAS_DIAG_MODE_START_END\n");
|
|
break;
|
|
case OPC_OUB_SAS_DIAG_EXECUTE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n");
|
|
break;
|
|
case OPC_OUB_GET_TIME_STAMP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n");
|
|
break;
|
|
case OPC_OUB_SAS_HW_EVENT_ACK:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n");
|
|
break;
|
|
case OPC_OUB_PORT_CONTROL:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n");
|
|
break;
|
|
case OPC_OUB_SMP_ABORT_RSP:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n");
|
|
pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GET_NVMD_DATA:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n");
|
|
pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SET_NVMD_DATA:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n");
|
|
pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_DEVICE_HANDLE_REMOVAL:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n");
|
|
break;
|
|
case OPC_OUB_SET_DEVICE_STATE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n");
|
|
pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GET_DEVICE_STATE:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n");
|
|
break;
|
|
case OPC_OUB_SET_DEV_INFO:
|
|
pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n");
|
|
break;
|
|
/* spcv specifc commands */
|
|
case OPC_OUB_PHY_START_RESP:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_PHY_START_RESP opcode:%x\n", opc);
|
|
mpi_phy_start_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_PHY_STOP_RESP:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_PHY_STOP_RESP opcode:%x\n", opc);
|
|
mpi_phy_stop_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SET_CONTROLLER_CONFIG:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_SET_CONTROLLER_CONFIG opcode:%x\n", opc);
|
|
mpi_set_controller_config_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GET_CONTROLLER_CONFIG:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_GET_CONTROLLER_CONFIG opcode:%x\n", opc);
|
|
mpi_get_controller_config_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_GET_PHY_PROFILE:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_GET_PHY_PROFILE opcode:%x\n", opc);
|
|
mpi_get_phy_profile_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_FLASH_OP_EXT:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_FLASH_OP_EXT opcode:%x\n", opc);
|
|
mpi_flash_op_ext_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SET_PHY_PROFILE:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_SET_PHY_PROFILE opcode:%x\n", opc);
|
|
mpi_set_phy_profile_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_KEK_MANAGEMENT_RESP:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_KEK_MANAGEMENT_RESP opcode:%x\n", opc);
|
|
mpi_kek_management_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_DEK_MANAGEMENT_RESP:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_DEK_MANAGEMENT_RESP opcode:%x\n", opc);
|
|
mpi_dek_management_resp(pm8001_ha, piomb);
|
|
break;
|
|
case OPC_OUB_SSP_COALESCED_COMP_RESP:
|
|
pm8001_dbg(pm8001_ha, MSG,
|
|
"OPC_OUB_SSP_COALESCED_COMP_RESP opcode:%x\n", opc);
|
|
ssp_coalesced_comp_resp(pm8001_ha, piomb);
|
|
break;
|
|
default:
|
|
pm8001_dbg(pm8001_ha, DEVIO,
|
|
"Unknown outbound Queue IOMB OPC = 0x%x\n", opc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_scratchpad_registers(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_0: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_1:0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_2: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_3: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_0: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_1: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_1));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_2: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_2));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_3: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_3));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_4: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_4));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_5: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_5));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_RSVD_SCRATCH_PAD_0: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_6));
|
|
pm8001_dbg(pm8001_ha, FAIL, "MSGU_RSVD_SCRATCH_PAD_1: 0x%x\n",
|
|
pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_7));
|
|
}
|
|
|
|
static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec)
|
|
{
|
|
struct outbound_queue_table *circularQ;
|
|
void *pMsg1 = NULL;
|
|
u8 bc;
|
|
u32 ret = MPI_IO_STATUS_FAIL;
|
|
unsigned long flags;
|
|
u32 regval;
|
|
|
|
if (vec == (pm8001_ha->max_q_num - 1)) {
|
|
regval = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
|
|
if ((regval & SCRATCH_PAD_MIPSALL_READY) !=
|
|
SCRATCH_PAD_MIPSALL_READY) {
|
|
pm8001_ha->controller_fatal_error = true;
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"Firmware Fatal error! Regval:0x%x\n",
|
|
regval);
|
|
print_scratchpad_registers(pm8001_ha);
|
|
return ret;
|
|
}
|
|
}
|
|
spin_lock_irqsave(&pm8001_ha->lock, flags);
|
|
circularQ = &pm8001_ha->outbnd_q_tbl[vec];
|
|
do {
|
|
/* spurious interrupt during setup if kexec-ing and
|
|
* driver doing a doorbell access w/ the pre-kexec oq
|
|
* interrupt setup.
|
|
*/
|
|
if (!circularQ->pi_virt)
|
|
break;
|
|
ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
|
|
if (MPI_IO_STATUS_SUCCESS == ret) {
|
|
/* process the outbound message */
|
|
process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4));
|
|
/* free the message from the outbound circular buffer */
|
|
pm8001_mpi_msg_free_set(pm8001_ha, pMsg1,
|
|
circularQ, bc);
|
|
}
|
|
if (MPI_IO_STATUS_BUSY == ret) {
|
|
/* Update the producer index from SPC */
|
|
circularQ->producer_index =
|
|
cpu_to_le32(pm8001_read_32(circularQ->pi_virt));
|
|
if (le32_to_cpu(circularQ->producer_index) ==
|
|
circularQ->consumer_idx)
|
|
/* OQ is empty */
|
|
break;
|
|
}
|
|
} while (1);
|
|
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* DMA_... to our direction translation. */
|
|
static const u8 data_dir_flags[] = {
|
|
[DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */
|
|
[DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */
|
|
[DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */
|
|
[DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */
|
|
};
|
|
|
|
static void build_smp_cmd(u32 deviceID, __le32 hTag,
|
|
struct smp_req *psmp_cmd, int mode, int length)
|
|
{
|
|
psmp_cmd->tag = hTag;
|
|
psmp_cmd->device_id = cpu_to_le32(deviceID);
|
|
if (mode == SMP_DIRECT) {
|
|
length = length - 4; /* subtract crc */
|
|
psmp_cmd->len_ip_ir = cpu_to_le32(length << 16);
|
|
} else {
|
|
psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_smp_req - send a SMP task to FW
|
|
* @pm8001_ha: our hba card information.
|
|
* @ccb: the ccb information this request used.
|
|
*/
|
|
static int pm80xx_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_ccb_info *ccb)
|
|
{
|
|
int elem, rc;
|
|
struct sas_task *task = ccb->task;
|
|
struct domain_device *dev = task->dev;
|
|
struct pm8001_device *pm8001_dev = dev->lldd_dev;
|
|
struct scatterlist *sg_req, *sg_resp;
|
|
u32 req_len, resp_len;
|
|
struct smp_req smp_cmd;
|
|
u32 opc;
|
|
struct inbound_queue_table *circularQ;
|
|
char *preq_dma_addr = NULL;
|
|
__le64 tmp_addr;
|
|
u32 i, length;
|
|
|
|
memset(&smp_cmd, 0, sizeof(smp_cmd));
|
|
/*
|
|
* DMA-map SMP request, response buffers
|
|
*/
|
|
sg_req = &task->smp_task.smp_req;
|
|
elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE);
|
|
if (!elem)
|
|
return -ENOMEM;
|
|
req_len = sg_dma_len(sg_req);
|
|
|
|
sg_resp = &task->smp_task.smp_resp;
|
|
elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE);
|
|
if (!elem) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
resp_len = sg_dma_len(sg_resp);
|
|
/* must be in dwords */
|
|
if ((req_len & 0x3) || (resp_len & 0x3)) {
|
|
rc = -EINVAL;
|
|
goto err_out_2;
|
|
}
|
|
|
|
opc = OPC_INB_SMP_REQUEST;
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
|
|
|
|
length = sg_req->length;
|
|
pm8001_dbg(pm8001_ha, IO, "SMP Frame Length %d\n", sg_req->length);
|
|
if (!(length - 8))
|
|
pm8001_ha->smp_exp_mode = SMP_DIRECT;
|
|
else
|
|
pm8001_ha->smp_exp_mode = SMP_INDIRECT;
|
|
|
|
|
|
tmp_addr = cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
|
|
preq_dma_addr = (char *)phys_to_virt(tmp_addr);
|
|
|
|
/* INDIRECT MODE command settings. Use DMA */
|
|
if (pm8001_ha->smp_exp_mode == SMP_INDIRECT) {
|
|
pm8001_dbg(pm8001_ha, IO, "SMP REQUEST INDIRECT MODE\n");
|
|
/* for SPCv indirect mode. Place the top 4 bytes of
|
|
* SMP Request header here. */
|
|
for (i = 0; i < 4; i++)
|
|
smp_cmd.smp_req16[i] = *(preq_dma_addr + i);
|
|
/* exclude top 4 bytes for SMP req header */
|
|
smp_cmd.long_smp_req.long_req_addr =
|
|
cpu_to_le64((u64)sg_dma_address
|
|
(&task->smp_task.smp_req) + 4);
|
|
/* exclude 4 bytes for SMP req header and CRC */
|
|
smp_cmd.long_smp_req.long_req_size =
|
|
cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-8);
|
|
smp_cmd.long_smp_req.long_resp_addr =
|
|
cpu_to_le64((u64)sg_dma_address
|
|
(&task->smp_task.smp_resp));
|
|
smp_cmd.long_smp_req.long_resp_size =
|
|
cpu_to_le32((u32)sg_dma_len
|
|
(&task->smp_task.smp_resp)-4);
|
|
} else { /* DIRECT MODE */
|
|
smp_cmd.long_smp_req.long_req_addr =
|
|
cpu_to_le64((u64)sg_dma_address
|
|
(&task->smp_task.smp_req));
|
|
smp_cmd.long_smp_req.long_req_size =
|
|
cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
|
|
smp_cmd.long_smp_req.long_resp_addr =
|
|
cpu_to_le64((u64)sg_dma_address
|
|
(&task->smp_task.smp_resp));
|
|
smp_cmd.long_smp_req.long_resp_size =
|
|
cpu_to_le32
|
|
((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
|
|
}
|
|
if (pm8001_ha->smp_exp_mode == SMP_DIRECT) {
|
|
pm8001_dbg(pm8001_ha, IO, "SMP REQUEST DIRECT MODE\n");
|
|
for (i = 0; i < length; i++)
|
|
if (i < 16) {
|
|
smp_cmd.smp_req16[i] = *(preq_dma_addr+i);
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Byte[%d]:%x (DMA data:%x)\n",
|
|
i, smp_cmd.smp_req16[i],
|
|
*(preq_dma_addr));
|
|
} else {
|
|
smp_cmd.smp_req[i] = *(preq_dma_addr+i);
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Byte[%d]:%x (DMA data:%x)\n",
|
|
i, smp_cmd.smp_req[i],
|
|
*(preq_dma_addr));
|
|
}
|
|
}
|
|
|
|
build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag,
|
|
&smp_cmd, pm8001_ha->smp_exp_mode, length);
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &smp_cmd,
|
|
sizeof(smp_cmd), 0);
|
|
if (rc)
|
|
goto err_out_2;
|
|
return 0;
|
|
|
|
err_out_2:
|
|
dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
|
|
DMA_FROM_DEVICE);
|
|
err_out:
|
|
dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
|
|
DMA_TO_DEVICE);
|
|
return rc;
|
|
}
|
|
|
|
static int check_enc_sas_cmd(struct sas_task *task)
|
|
{
|
|
u8 cmd = task->ssp_task.cmd->cmnd[0];
|
|
|
|
if (cmd == READ_10 || cmd == WRITE_10 || cmd == WRITE_VERIFY)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int check_enc_sat_cmd(struct sas_task *task)
|
|
{
|
|
int ret = 0;
|
|
switch (task->ata_task.fis.command) {
|
|
case ATA_CMD_FPDMA_READ:
|
|
case ATA_CMD_READ_EXT:
|
|
case ATA_CMD_READ:
|
|
case ATA_CMD_FPDMA_WRITE:
|
|
case ATA_CMD_WRITE_EXT:
|
|
case ATA_CMD_WRITE:
|
|
case ATA_CMD_PIO_READ:
|
|
case ATA_CMD_PIO_READ_EXT:
|
|
case ATA_CMD_PIO_WRITE:
|
|
case ATA_CMD_PIO_WRITE_EXT:
|
|
ret = 1;
|
|
break;
|
|
default:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_chip_ssp_io_req - send a SSP task to FW
|
|
* @pm8001_ha: our hba card information.
|
|
* @ccb: the ccb information this request used.
|
|
*/
|
|
static int pm80xx_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_ccb_info *ccb)
|
|
{
|
|
struct sas_task *task = ccb->task;
|
|
struct domain_device *dev = task->dev;
|
|
struct pm8001_device *pm8001_dev = dev->lldd_dev;
|
|
struct ssp_ini_io_start_req ssp_cmd;
|
|
u32 tag = ccb->ccb_tag;
|
|
int ret;
|
|
u64 phys_addr, start_addr, end_addr;
|
|
u32 end_addr_high, end_addr_low;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 q_index, cpu_id;
|
|
u32 opc = OPC_INB_SSPINIIOSTART;
|
|
memset(&ssp_cmd, 0, sizeof(ssp_cmd));
|
|
memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
|
|
/* data address domain added for spcv; set to 0 by host,
|
|
* used internally by controller
|
|
* 0 for SAS 1.1 and SAS 2.0 compatible TLR
|
|
*/
|
|
ssp_cmd.dad_dir_m_tlr =
|
|
cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);
|
|
ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
|
|
ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
|
|
ssp_cmd.tag = cpu_to_le32(tag);
|
|
if (task->ssp_task.enable_first_burst)
|
|
ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
|
|
ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
|
|
ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
|
|
memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd,
|
|
task->ssp_task.cmd->cmd_len);
|
|
cpu_id = smp_processor_id();
|
|
q_index = (u32) (cpu_id) % (pm8001_ha->max_q_num);
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[q_index];
|
|
|
|
/* Check if encryption is set */
|
|
if (pm8001_ha->chip->encrypt &&
|
|
!(pm8001_ha->encrypt_info.status) && check_enc_sas_cmd(task)) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Encryption enabled.Sending Encrypt SAS command 0x%x\n",
|
|
task->ssp_task.cmd->cmnd[0]);
|
|
opc = OPC_INB_SSP_INI_DIF_ENC_IO;
|
|
/* enable encryption. 0 for SAS 1.1 and SAS 2.0 compatible TLR*/
|
|
ssp_cmd.dad_dir_m_tlr = cpu_to_le32
|
|
((data_dir_flags[task->data_dir] << 8) | 0x20 | 0x0);
|
|
|
|
/* fill in PRD (scatter/gather) table, if any */
|
|
if (task->num_scatter > 1) {
|
|
pm8001_chip_make_sg(task->scatter,
|
|
ccb->n_elem, ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
ssp_cmd.enc_addr_low =
|
|
cpu_to_le32(lower_32_bits(phys_addr));
|
|
ssp_cmd.enc_addr_high =
|
|
cpu_to_le32(upper_32_bits(phys_addr));
|
|
ssp_cmd.enc_esgl = cpu_to_le32(1<<31);
|
|
} else if (task->num_scatter == 1) {
|
|
u64 dma_addr = sg_dma_address(task->scatter);
|
|
ssp_cmd.enc_addr_low =
|
|
cpu_to_le32(lower_32_bits(dma_addr));
|
|
ssp_cmd.enc_addr_high =
|
|
cpu_to_le32(upper_32_bits(dma_addr));
|
|
ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len);
|
|
ssp_cmd.enc_esgl = 0;
|
|
/* Check 4G Boundary */
|
|
start_addr = cpu_to_le64(dma_addr);
|
|
end_addr = (start_addr + ssp_cmd.enc_len) - 1;
|
|
end_addr_low = cpu_to_le32(lower_32_bits(end_addr));
|
|
end_addr_high = cpu_to_le32(upper_32_bits(end_addr));
|
|
if (end_addr_high != ssp_cmd.enc_addr_high) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n",
|
|
start_addr, ssp_cmd.enc_len,
|
|
end_addr_high, end_addr_low);
|
|
pm8001_chip_make_sg(task->scatter, 1,
|
|
ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
ssp_cmd.enc_addr_low =
|
|
cpu_to_le32(lower_32_bits(phys_addr));
|
|
ssp_cmd.enc_addr_high =
|
|
cpu_to_le32(upper_32_bits(phys_addr));
|
|
ssp_cmd.enc_esgl = cpu_to_le32(1<<31);
|
|
}
|
|
} else if (task->num_scatter == 0) {
|
|
ssp_cmd.enc_addr_low = 0;
|
|
ssp_cmd.enc_addr_high = 0;
|
|
ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len);
|
|
ssp_cmd.enc_esgl = 0;
|
|
}
|
|
/* XTS mode. All other fields are 0 */
|
|
ssp_cmd.key_cmode = 0x6 << 4;
|
|
/* set tweak values. Should be the start lba */
|
|
ssp_cmd.twk_val0 = cpu_to_le32((task->ssp_task.cmd->cmnd[2] << 24) |
|
|
(task->ssp_task.cmd->cmnd[3] << 16) |
|
|
(task->ssp_task.cmd->cmnd[4] << 8) |
|
|
(task->ssp_task.cmd->cmnd[5]));
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Sending Normal SAS command 0x%x inb q %x\n",
|
|
task->ssp_task.cmd->cmnd[0], q_index);
|
|
/* fill in PRD (scatter/gather) table, if any */
|
|
if (task->num_scatter > 1) {
|
|
pm8001_chip_make_sg(task->scatter, ccb->n_elem,
|
|
ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
ssp_cmd.addr_low =
|
|
cpu_to_le32(lower_32_bits(phys_addr));
|
|
ssp_cmd.addr_high =
|
|
cpu_to_le32(upper_32_bits(phys_addr));
|
|
ssp_cmd.esgl = cpu_to_le32(1<<31);
|
|
} else if (task->num_scatter == 1) {
|
|
u64 dma_addr = sg_dma_address(task->scatter);
|
|
ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr));
|
|
ssp_cmd.addr_high =
|
|
cpu_to_le32(upper_32_bits(dma_addr));
|
|
ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
|
|
ssp_cmd.esgl = 0;
|
|
/* Check 4G Boundary */
|
|
start_addr = cpu_to_le64(dma_addr);
|
|
end_addr = (start_addr + ssp_cmd.len) - 1;
|
|
end_addr_low = cpu_to_le32(lower_32_bits(end_addr));
|
|
end_addr_high = cpu_to_le32(upper_32_bits(end_addr));
|
|
if (end_addr_high != ssp_cmd.addr_high) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n",
|
|
start_addr, ssp_cmd.len,
|
|
end_addr_high, end_addr_low);
|
|
pm8001_chip_make_sg(task->scatter, 1,
|
|
ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
ssp_cmd.addr_low =
|
|
cpu_to_le32(lower_32_bits(phys_addr));
|
|
ssp_cmd.addr_high =
|
|
cpu_to_le32(upper_32_bits(phys_addr));
|
|
ssp_cmd.esgl = cpu_to_le32(1<<31);
|
|
}
|
|
} else if (task->num_scatter == 0) {
|
|
ssp_cmd.addr_low = 0;
|
|
ssp_cmd.addr_high = 0;
|
|
ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
|
|
ssp_cmd.esgl = 0;
|
|
}
|
|
}
|
|
ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc,
|
|
&ssp_cmd, sizeof(ssp_cmd), q_index);
|
|
return ret;
|
|
}
|
|
|
|
static int pm80xx_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_ccb_info *ccb)
|
|
{
|
|
struct sas_task *task = ccb->task;
|
|
struct domain_device *dev = task->dev;
|
|
struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
|
|
u32 tag = ccb->ccb_tag;
|
|
int ret;
|
|
u32 q_index, cpu_id;
|
|
struct sata_start_req sata_cmd;
|
|
u32 hdr_tag, ncg_tag = 0;
|
|
u64 phys_addr, start_addr, end_addr;
|
|
u32 end_addr_high, end_addr_low;
|
|
u32 ATAP = 0x0;
|
|
u32 dir;
|
|
struct inbound_queue_table *circularQ;
|
|
unsigned long flags;
|
|
u32 opc = OPC_INB_SATA_HOST_OPSTART;
|
|
memset(&sata_cmd, 0, sizeof(sata_cmd));
|
|
cpu_id = smp_processor_id();
|
|
q_index = (u32) (cpu_id) % (pm8001_ha->max_q_num);
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[q_index];
|
|
|
|
if (task->data_dir == DMA_NONE) {
|
|
ATAP = 0x04; /* no data*/
|
|
pm8001_dbg(pm8001_ha, IO, "no data\n");
|
|
} else if (likely(!task->ata_task.device_control_reg_update)) {
|
|
if (task->ata_task.dma_xfer) {
|
|
ATAP = 0x06; /* DMA */
|
|
pm8001_dbg(pm8001_ha, IO, "DMA\n");
|
|
} else {
|
|
ATAP = 0x05; /* PIO*/
|
|
pm8001_dbg(pm8001_ha, IO, "PIO\n");
|
|
}
|
|
if (task->ata_task.use_ncq &&
|
|
dev->sata_dev.class != ATA_DEV_ATAPI) {
|
|
ATAP = 0x07; /* FPDMA */
|
|
pm8001_dbg(pm8001_ha, IO, "FPDMA\n");
|
|
}
|
|
}
|
|
if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) {
|
|
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
|
|
ncg_tag = hdr_tag;
|
|
}
|
|
dir = data_dir_flags[task->data_dir] << 8;
|
|
sata_cmd.tag = cpu_to_le32(tag);
|
|
sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
|
|
sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
|
|
|
|
sata_cmd.sata_fis = task->ata_task.fis;
|
|
if (likely(!task->ata_task.device_control_reg_update))
|
|
sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
|
|
sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
|
|
|
|
/* Check if encryption is set */
|
|
if (pm8001_ha->chip->encrypt &&
|
|
!(pm8001_ha->encrypt_info.status) && check_enc_sat_cmd(task)) {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Encryption enabled.Sending Encrypt SATA cmd 0x%x\n",
|
|
sata_cmd.sata_fis.command);
|
|
opc = OPC_INB_SATA_DIF_ENC_IO;
|
|
|
|
/* set encryption bit */
|
|
sata_cmd.ncqtag_atap_dir_m_dad =
|
|
cpu_to_le32(((ncg_tag & 0xff)<<16)|
|
|
((ATAP & 0x3f) << 10) | 0x20 | dir);
|
|
/* dad (bit 0-1) is 0 */
|
|
/* fill in PRD (scatter/gather) table, if any */
|
|
if (task->num_scatter > 1) {
|
|
pm8001_chip_make_sg(task->scatter,
|
|
ccb->n_elem, ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
sata_cmd.enc_addr_low = lower_32_bits(phys_addr);
|
|
sata_cmd.enc_addr_high = upper_32_bits(phys_addr);
|
|
sata_cmd.enc_esgl = cpu_to_le32(1 << 31);
|
|
} else if (task->num_scatter == 1) {
|
|
u64 dma_addr = sg_dma_address(task->scatter);
|
|
sata_cmd.enc_addr_low = lower_32_bits(dma_addr);
|
|
sata_cmd.enc_addr_high = upper_32_bits(dma_addr);
|
|
sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len);
|
|
sata_cmd.enc_esgl = 0;
|
|
/* Check 4G Boundary */
|
|
start_addr = cpu_to_le64(dma_addr);
|
|
end_addr = (start_addr + sata_cmd.enc_len) - 1;
|
|
end_addr_low = cpu_to_le32(lower_32_bits(end_addr));
|
|
end_addr_high = cpu_to_le32(upper_32_bits(end_addr));
|
|
if (end_addr_high != sata_cmd.enc_addr_high) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n",
|
|
start_addr, sata_cmd.enc_len,
|
|
end_addr_high, end_addr_low);
|
|
pm8001_chip_make_sg(task->scatter, 1,
|
|
ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
sata_cmd.enc_addr_low =
|
|
lower_32_bits(phys_addr);
|
|
sata_cmd.enc_addr_high =
|
|
upper_32_bits(phys_addr);
|
|
sata_cmd.enc_esgl =
|
|
cpu_to_le32(1 << 31);
|
|
}
|
|
} else if (task->num_scatter == 0) {
|
|
sata_cmd.enc_addr_low = 0;
|
|
sata_cmd.enc_addr_high = 0;
|
|
sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len);
|
|
sata_cmd.enc_esgl = 0;
|
|
}
|
|
/* XTS mode. All other fields are 0 */
|
|
sata_cmd.key_index_mode = 0x6 << 4;
|
|
/* set tweak values. Should be the start lba */
|
|
sata_cmd.twk_val0 =
|
|
cpu_to_le32((sata_cmd.sata_fis.lbal_exp << 24) |
|
|
(sata_cmd.sata_fis.lbah << 16) |
|
|
(sata_cmd.sata_fis.lbam << 8) |
|
|
(sata_cmd.sata_fis.lbal));
|
|
sata_cmd.twk_val1 =
|
|
cpu_to_le32((sata_cmd.sata_fis.lbah_exp << 8) |
|
|
(sata_cmd.sata_fis.lbam_exp));
|
|
} else {
|
|
pm8001_dbg(pm8001_ha, IO,
|
|
"Sending Normal SATA command 0x%x inb %x\n",
|
|
sata_cmd.sata_fis.command, q_index);
|
|
/* dad (bit 0-1) is 0 */
|
|
sata_cmd.ncqtag_atap_dir_m_dad =
|
|
cpu_to_le32(((ncg_tag & 0xff)<<16) |
|
|
((ATAP & 0x3f) << 10) | dir);
|
|
|
|
/* fill in PRD (scatter/gather) table, if any */
|
|
if (task->num_scatter > 1) {
|
|
pm8001_chip_make_sg(task->scatter,
|
|
ccb->n_elem, ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
sata_cmd.addr_low = lower_32_bits(phys_addr);
|
|
sata_cmd.addr_high = upper_32_bits(phys_addr);
|
|
sata_cmd.esgl = cpu_to_le32(1 << 31);
|
|
} else if (task->num_scatter == 1) {
|
|
u64 dma_addr = sg_dma_address(task->scatter);
|
|
sata_cmd.addr_low = lower_32_bits(dma_addr);
|
|
sata_cmd.addr_high = upper_32_bits(dma_addr);
|
|
sata_cmd.len = cpu_to_le32(task->total_xfer_len);
|
|
sata_cmd.esgl = 0;
|
|
/* Check 4G Boundary */
|
|
start_addr = cpu_to_le64(dma_addr);
|
|
end_addr = (start_addr + sata_cmd.len) - 1;
|
|
end_addr_low = cpu_to_le32(lower_32_bits(end_addr));
|
|
end_addr_high = cpu_to_le32(upper_32_bits(end_addr));
|
|
if (end_addr_high != sata_cmd.addr_high) {
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"The sg list address start_addr=0x%016llx data_len=0x%xend_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n",
|
|
start_addr, sata_cmd.len,
|
|
end_addr_high, end_addr_low);
|
|
pm8001_chip_make_sg(task->scatter, 1,
|
|
ccb->buf_prd);
|
|
phys_addr = ccb->ccb_dma_handle;
|
|
sata_cmd.addr_low =
|
|
lower_32_bits(phys_addr);
|
|
sata_cmd.addr_high =
|
|
upper_32_bits(phys_addr);
|
|
sata_cmd.esgl = cpu_to_le32(1 << 31);
|
|
}
|
|
} else if (task->num_scatter == 0) {
|
|
sata_cmd.addr_low = 0;
|
|
sata_cmd.addr_high = 0;
|
|
sata_cmd.len = cpu_to_le32(task->total_xfer_len);
|
|
sata_cmd.esgl = 0;
|
|
}
|
|
/* scsi cdb */
|
|
sata_cmd.atapi_scsi_cdb[0] =
|
|
cpu_to_le32(((task->ata_task.atapi_packet[0]) |
|
|
(task->ata_task.atapi_packet[1] << 8) |
|
|
(task->ata_task.atapi_packet[2] << 16) |
|
|
(task->ata_task.atapi_packet[3] << 24)));
|
|
sata_cmd.atapi_scsi_cdb[1] =
|
|
cpu_to_le32(((task->ata_task.atapi_packet[4]) |
|
|
(task->ata_task.atapi_packet[5] << 8) |
|
|
(task->ata_task.atapi_packet[6] << 16) |
|
|
(task->ata_task.atapi_packet[7] << 24)));
|
|
sata_cmd.atapi_scsi_cdb[2] =
|
|
cpu_to_le32(((task->ata_task.atapi_packet[8]) |
|
|
(task->ata_task.atapi_packet[9] << 8) |
|
|
(task->ata_task.atapi_packet[10] << 16) |
|
|
(task->ata_task.atapi_packet[11] << 24)));
|
|
sata_cmd.atapi_scsi_cdb[3] =
|
|
cpu_to_le32(((task->ata_task.atapi_packet[12]) |
|
|
(task->ata_task.atapi_packet[13] << 8) |
|
|
(task->ata_task.atapi_packet[14] << 16) |
|
|
(task->ata_task.atapi_packet[15] << 24)));
|
|
}
|
|
|
|
/* Check for read log for failed drive and return */
|
|
if (sata_cmd.sata_fis.command == 0x2f) {
|
|
if (pm8001_ha_dev && ((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) ||
|
|
(pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) ||
|
|
(pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) {
|
|
struct task_status_struct *ts;
|
|
|
|
pm8001_ha_dev->id &= 0xDFFFFFFF;
|
|
ts = &task->task_status;
|
|
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
ts->stat = SAM_STAT_GOOD;
|
|
task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
|
|
task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
|
|
task->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
if (unlikely((task->task_state_flags &
|
|
SAS_TASK_STATE_ABORTED))) {
|
|
spin_unlock_irqrestore(&task->task_state_lock,
|
|
flags);
|
|
pm8001_dbg(pm8001_ha, FAIL,
|
|
"task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n",
|
|
task, ts->resp,
|
|
ts->stat);
|
|
pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
|
|
return 0;
|
|
} else {
|
|
spin_unlock_irqrestore(&task->task_state_lock,
|
|
flags);
|
|
pm8001_ccb_task_free_done(pm8001_ha, task,
|
|
ccb, tag);
|
|
atomic_dec(&pm8001_ha_dev->running_req);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc,
|
|
&sata_cmd, sizeof(sata_cmd), q_index);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_chip_phy_start_req - start phy via PHY_START COMMAND
|
|
* @pm8001_ha: our hba card information.
|
|
* @phy_id: the phy id which we wanted to start up.
|
|
*/
|
|
static int
|
|
pm80xx_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
|
|
{
|
|
struct phy_start_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
int ret;
|
|
u32 tag = 0x01;
|
|
u32 opcode = OPC_INB_PHYSTART;
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
memset(&payload, 0, sizeof(payload));
|
|
payload.tag = cpu_to_le32(tag);
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "PHY START REQ for phy_id %d\n", phy_id);
|
|
|
|
payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
|
|
LINKMODE_AUTO | pm8001_ha->link_rate | phy_id);
|
|
/* SSC Disable and SAS Analog ST configuration */
|
|
/**
|
|
payload.ase_sh_lm_slr_phyid =
|
|
cpu_to_le32(SSC_DISABLE_30 | SAS_ASE | SPINHOLD_DISABLE |
|
|
LINKMODE_AUTO | LINKRATE_15 | LINKRATE_30 | LINKRATE_60 |
|
|
phy_id);
|
|
Have to add "SAS PHY Analog Setup SPASTI 1 Byte" Based on need
|
|
**/
|
|
|
|
payload.sas_identify.dev_type = SAS_END_DEVICE;
|
|
payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
|
|
memcpy(payload.sas_identify.sas_addr,
|
|
&pm8001_ha->sas_addr, SAS_ADDR_SIZE);
|
|
payload.sas_identify.phy_id = phy_id;
|
|
ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload,
|
|
sizeof(payload), 0);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
|
|
* @pm8001_ha: our hba card information.
|
|
* @phy_id: the phy id which we wanted to start up.
|
|
*/
|
|
static int pm80xx_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
|
|
u8 phy_id)
|
|
{
|
|
struct phy_stop_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
int ret;
|
|
u32 tag = 0x01;
|
|
u32 opcode = OPC_INB_PHYSTOP;
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
memset(&payload, 0, sizeof(payload));
|
|
payload.tag = cpu_to_le32(tag);
|
|
payload.phy_id = cpu_to_le32(phy_id);
|
|
ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload,
|
|
sizeof(payload), 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* see comments on pm8001_mpi_reg_resp.
|
|
*/
|
|
static int pm80xx_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
|
|
struct pm8001_device *pm8001_dev, u32 flag)
|
|
{
|
|
struct reg_dev_req payload;
|
|
u32 opc;
|
|
u32 stp_sspsmp_sata = 0x4;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 linkrate, phy_id;
|
|
int rc, tag = 0xdeadbeef;
|
|
struct pm8001_ccb_info *ccb;
|
|
u8 retryFlag = 0x1;
|
|
u16 firstBurstSize = 0;
|
|
u16 ITNT = 2000;
|
|
struct domain_device *dev = pm8001_dev->sas_device;
|
|
struct domain_device *parent_dev = dev->parent;
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
return rc;
|
|
ccb = &pm8001_ha->ccb_info[tag];
|
|
ccb->device = pm8001_dev;
|
|
ccb->ccb_tag = tag;
|
|
payload.tag = cpu_to_le32(tag);
|
|
|
|
if (flag == 1) {
|
|
stp_sspsmp_sata = 0x02; /*direct attached sata */
|
|
} else {
|
|
if (pm8001_dev->dev_type == SAS_SATA_DEV)
|
|
stp_sspsmp_sata = 0x00; /* stp*/
|
|
else if (pm8001_dev->dev_type == SAS_END_DEVICE ||
|
|
pm8001_dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
|
|
pm8001_dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
|
|
stp_sspsmp_sata = 0x01; /*ssp or smp*/
|
|
}
|
|
if (parent_dev && dev_is_expander(parent_dev->dev_type))
|
|
phy_id = parent_dev->ex_dev.ex_phy->phy_id;
|
|
else
|
|
phy_id = pm8001_dev->attached_phy;
|
|
|
|
opc = OPC_INB_REG_DEV;
|
|
|
|
linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
|
|
pm8001_dev->sas_device->linkrate : dev->port->linkrate;
|
|
|
|
payload.phyid_portid =
|
|
cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0xFF) |
|
|
((phy_id & 0xFF) << 8));
|
|
|
|
payload.dtype_dlr_mcn_ir_retry = cpu_to_le32((retryFlag & 0x01) |
|
|
((linkrate & 0x0F) << 24) |
|
|
((stp_sspsmp_sata & 0x03) << 28));
|
|
payload.firstburstsize_ITNexustimeout =
|
|
cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
|
|
|
|
memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr,
|
|
SAS_ADDR_SIZE);
|
|
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* pm80xx_chip_phy_ctl_req - support the local phy operation
|
|
* @pm8001_ha: our hba card information.
|
|
* @phyId: the phy id which we wanted to operate
|
|
* @phy_op: phy operation to request
|
|
*/
|
|
static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
|
|
u32 phyId, u32 phy_op)
|
|
{
|
|
u32 tag;
|
|
int rc;
|
|
struct local_phy_ctl_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
|
|
memset(&payload, 0, sizeof(payload));
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
return rc;
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
payload.tag = cpu_to_le32(tag);
|
|
payload.phyop_phyid =
|
|
cpu_to_le32(((phy_op & 0xFF) << 8) | (phyId & 0xFF));
|
|
return pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
}
|
|
|
|
static u32 pm80xx_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha)
|
|
{
|
|
#ifdef PM8001_USE_MSIX
|
|
return 1;
|
|
#else
|
|
u32 value;
|
|
|
|
value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
|
|
if (value)
|
|
return 1;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* pm8001_chip_isr - PM8001 isr handler.
|
|
* @pm8001_ha: our hba card information.
|
|
* @vec: irq number.
|
|
*/
|
|
static irqreturn_t
|
|
pm80xx_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec)
|
|
{
|
|
pm80xx_chip_interrupt_disable(pm8001_ha, vec);
|
|
pm8001_dbg(pm8001_ha, DEVIO,
|
|
"irq vec %d, ODMR:0x%x\n",
|
|
vec, pm8001_cr32(pm8001_ha, 0, 0x30));
|
|
process_oq(pm8001_ha, vec);
|
|
pm80xx_chip_interrupt_enable(pm8001_ha, vec);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void mpi_set_phy_profile_req(struct pm8001_hba_info *pm8001_ha,
|
|
u32 operation, u32 phyid,
|
|
u32 length, u32 *buf)
|
|
{
|
|
u32 tag , i, j = 0;
|
|
int rc;
|
|
struct set_phy_profile_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
u32 opc = OPC_INB_SET_PHY_PROFILE;
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
pm8001_dbg(pm8001_ha, FAIL, "Invalid tag\n");
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
payload.tag = cpu_to_le32(tag);
|
|
payload.ppc_phyid = (((operation & 0xF) << 8) | (phyid & 0xFF));
|
|
pm8001_dbg(pm8001_ha, INIT,
|
|
" phy profile command for phy %x ,length is %d\n",
|
|
payload.ppc_phyid, length);
|
|
for (i = length; i < (length + PHY_DWORD_LENGTH - 1); i++) {
|
|
payload.reserved[j] = cpu_to_le32(*((u32 *)buf + i));
|
|
j++;
|
|
}
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
}
|
|
|
|
void pm8001_set_phy_profile(struct pm8001_hba_info *pm8001_ha,
|
|
u32 length, u8 *buf)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
|
|
mpi_set_phy_profile_req(pm8001_ha,
|
|
SAS_PHY_ANALOG_SETTINGS_PAGE, i, length, (u32 *)buf);
|
|
length = length + PHY_DWORD_LENGTH;
|
|
}
|
|
pm8001_dbg(pm8001_ha, INIT, "phy settings completed\n");
|
|
}
|
|
|
|
void pm8001_set_phy_profile_single(struct pm8001_hba_info *pm8001_ha,
|
|
u32 phy, u32 length, u32 *buf)
|
|
{
|
|
u32 tag, opc;
|
|
int rc, i;
|
|
struct set_phy_profile_req payload;
|
|
struct inbound_queue_table *circularQ;
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
|
|
rc = pm8001_tag_alloc(pm8001_ha, &tag);
|
|
if (rc)
|
|
pm8001_dbg(pm8001_ha, INIT, "Invalid tag\n");
|
|
|
|
circularQ = &pm8001_ha->inbnd_q_tbl[0];
|
|
opc = OPC_INB_SET_PHY_PROFILE;
|
|
|
|
payload.tag = cpu_to_le32(tag);
|
|
payload.ppc_phyid = (((SAS_PHY_ANALOG_SETTINGS_PAGE & 0xF) << 8)
|
|
| (phy & 0xFF));
|
|
|
|
for (i = 0; i < length; i++)
|
|
payload.reserved[i] = cpu_to_le32(*(buf + i));
|
|
|
|
rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
|
|
sizeof(payload), 0);
|
|
if (rc)
|
|
pm8001_tag_free(pm8001_ha, tag);
|
|
|
|
pm8001_dbg(pm8001_ha, INIT, "PHY %d settings applied\n", phy);
|
|
}
|
|
const struct pm8001_dispatch pm8001_80xx_dispatch = {
|
|
.name = "pmc80xx",
|
|
.chip_init = pm80xx_chip_init,
|
|
.chip_soft_rst = pm80xx_chip_soft_rst,
|
|
.chip_rst = pm80xx_hw_chip_rst,
|
|
.chip_iounmap = pm8001_chip_iounmap,
|
|
.isr = pm80xx_chip_isr,
|
|
.is_our_interrupt = pm80xx_chip_is_our_interrupt,
|
|
.isr_process_oq = process_oq,
|
|
.interrupt_enable = pm80xx_chip_interrupt_enable,
|
|
.interrupt_disable = pm80xx_chip_interrupt_disable,
|
|
.make_prd = pm8001_chip_make_sg,
|
|
.smp_req = pm80xx_chip_smp_req,
|
|
.ssp_io_req = pm80xx_chip_ssp_io_req,
|
|
.sata_req = pm80xx_chip_sata_req,
|
|
.phy_start_req = pm80xx_chip_phy_start_req,
|
|
.phy_stop_req = pm80xx_chip_phy_stop_req,
|
|
.reg_dev_req = pm80xx_chip_reg_dev_req,
|
|
.dereg_dev_req = pm8001_chip_dereg_dev_req,
|
|
.phy_ctl_req = pm80xx_chip_phy_ctl_req,
|
|
.task_abort = pm8001_chip_abort_task,
|
|
.ssp_tm_req = pm8001_chip_ssp_tm_req,
|
|
.get_nvmd_req = pm8001_chip_get_nvmd_req,
|
|
.set_nvmd_req = pm8001_chip_set_nvmd_req,
|
|
.fw_flash_update_req = pm8001_chip_fw_flash_update_req,
|
|
.set_dev_state_req = pm8001_chip_set_dev_state_req,
|
|
.fatal_errors = pm80xx_fatal_errors,
|
|
};
|