ec39f7696c
Async CRCs and compression submit IO through helper threads, which means they have IO priority inversions when cgroup IO controllers are in use. This flags all of the writes submitted by btrfs helper threads as REQ_CGROUP_PUNT. submit_bio() will punt these to dedicated per-blkcg work items to avoid the priority inversion. For the compression code, we take a reference on the wbc's blkg css and pass it down to the async workers. For the async CRCs, the bio already has the correct css, we just need to tell the block layer to use REQ_CGROUP_PUNT. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Chris Mason <clm@fb.com> Modified-and-reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
4577 lines
124 KiB
C
4577 lines
124 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/error-injection.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/hash.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "volumes.h"
|
|
#include "print-tree.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "free-space-cache.h"
|
|
#include "free-space-tree.h"
|
|
#include "inode-map.h"
|
|
#include "check-integrity.h"
|
|
#include "rcu-string.h"
|
|
#include "dev-replace.h"
|
|
#include "raid56.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "compression.h"
|
|
#include "tree-checker.h"
|
|
#include "ref-verify.h"
|
|
#include "block-group.h"
|
|
|
|
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
|
|
BTRFS_HEADER_FLAG_RELOC |\
|
|
BTRFS_SUPER_FLAG_ERROR |\
|
|
BTRFS_SUPER_FLAG_SEEDING |\
|
|
BTRFS_SUPER_FLAG_METADUMP |\
|
|
BTRFS_SUPER_FLAG_METADUMP_V2)
|
|
|
|
static const struct extent_io_ops btree_extent_io_ops;
|
|
static void end_workqueue_fn(struct btrfs_work *work);
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_fs_info *fs_info);
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
|
|
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark);
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *pinned_extents);
|
|
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
|
|
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
|
|
|
|
/*
|
|
* btrfs_end_io_wq structs are used to do processing in task context when an IO
|
|
* is complete. This is used during reads to verify checksums, and it is used
|
|
* by writes to insert metadata for new file extents after IO is complete.
|
|
*/
|
|
struct btrfs_end_io_wq {
|
|
struct bio *bio;
|
|
bio_end_io_t *end_io;
|
|
void *private;
|
|
struct btrfs_fs_info *info;
|
|
blk_status_t status;
|
|
enum btrfs_wq_endio_type metadata;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static struct kmem_cache *btrfs_end_io_wq_cache;
|
|
|
|
int __init btrfs_end_io_wq_init(void)
|
|
{
|
|
btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
|
|
sizeof(struct btrfs_end_io_wq),
|
|
0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_end_io_wq_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __cold btrfs_end_io_wq_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_end_io_wq_cache);
|
|
}
|
|
|
|
/*
|
|
* async submit bios are used to offload expensive checksumming
|
|
* onto the worker threads. They checksum file and metadata bios
|
|
* just before they are sent down the IO stack.
|
|
*/
|
|
struct async_submit_bio {
|
|
void *private_data;
|
|
struct bio *bio;
|
|
extent_submit_bio_start_t *submit_bio_start;
|
|
int mirror_num;
|
|
/*
|
|
* bio_offset is optional, can be used if the pages in the bio
|
|
* can't tell us where in the file the bio should go
|
|
*/
|
|
u64 bio_offset;
|
|
struct btrfs_work work;
|
|
blk_status_t status;
|
|
};
|
|
|
|
/*
|
|
* Lockdep class keys for extent_buffer->lock's in this root. For a given
|
|
* eb, the lockdep key is determined by the btrfs_root it belongs to and
|
|
* the level the eb occupies in the tree.
|
|
*
|
|
* Different roots are used for different purposes and may nest inside each
|
|
* other and they require separate keysets. As lockdep keys should be
|
|
* static, assign keysets according to the purpose of the root as indicated
|
|
* by btrfs_root->root_key.objectid. This ensures that all special purpose
|
|
* roots have separate keysets.
|
|
*
|
|
* Lock-nesting across peer nodes is always done with the immediate parent
|
|
* node locked thus preventing deadlock. As lockdep doesn't know this, use
|
|
* subclass to avoid triggering lockdep warning in such cases.
|
|
*
|
|
* The key is set by the readpage_end_io_hook after the buffer has passed
|
|
* csum validation but before the pages are unlocked. It is also set by
|
|
* btrfs_init_new_buffer on freshly allocated blocks.
|
|
*
|
|
* We also add a check to make sure the highest level of the tree is the
|
|
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
|
|
* needs update as well.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
# if BTRFS_MAX_LEVEL != 8
|
|
# error
|
|
# endif
|
|
|
|
static struct btrfs_lockdep_keyset {
|
|
u64 id; /* root objectid */
|
|
const char *name_stem; /* lock name stem */
|
|
char names[BTRFS_MAX_LEVEL + 1][20];
|
|
struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
|
|
} btrfs_lockdep_keysets[] = {
|
|
{ .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
|
|
{ .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
|
|
{ .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
|
|
{ .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
|
|
{ .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
|
|
{ .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
|
|
{ .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
|
|
{ .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
|
|
{ .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
|
|
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
|
|
{ .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
|
|
{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
|
|
{ .id = 0, .name_stem = "tree" },
|
|
};
|
|
|
|
void __init btrfs_init_lockdep(void)
|
|
{
|
|
int i, j;
|
|
|
|
/* initialize lockdep class names */
|
|
for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
|
|
struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(ks->names); j++)
|
|
snprintf(ks->names[j], sizeof(ks->names[j]),
|
|
"btrfs-%s-%02d", ks->name_stem, j);
|
|
}
|
|
}
|
|
|
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
|
|
int level)
|
|
{
|
|
struct btrfs_lockdep_keyset *ks;
|
|
|
|
BUG_ON(level >= ARRAY_SIZE(ks->keys));
|
|
|
|
/* find the matching keyset, id 0 is the default entry */
|
|
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
|
|
if (ks->id == objectid)
|
|
break;
|
|
|
|
lockdep_set_class_and_name(&eb->lock,
|
|
&ks->keys[level], ks->names[level]);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* extents on the btree inode are pretty simple, there's one extent
|
|
* that covers the entire device
|
|
*/
|
|
struct extent_map *btree_get_extent(struct btrfs_inode *inode,
|
|
struct page *page, size_t pg_offset, u64 start, u64 len,
|
|
int create)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em) {
|
|
em->bdev = fs_info->fs_devices->latest_bdev;
|
|
read_unlock(&em_tree->lock);
|
|
goto out;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
em = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
em->start = 0;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
em->block_start = 0;
|
|
em->bdev = fs_info->fs_devices->latest_bdev;
|
|
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 0);
|
|
if (ret == -EEXIST) {
|
|
free_extent_map(em);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em)
|
|
em = ERR_PTR(-EIO);
|
|
} else if (ret) {
|
|
free_extent_map(em);
|
|
em = ERR_PTR(ret);
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
out:
|
|
return em;
|
|
}
|
|
|
|
/*
|
|
* Compute the csum of a btree block and store the result to provided buffer.
|
|
*
|
|
* Returns error if the extent buffer cannot be mapped.
|
|
*/
|
|
static int csum_tree_block(struct extent_buffer *buf, u8 *result)
|
|
{
|
|
struct btrfs_fs_info *fs_info = buf->fs_info;
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
unsigned long len;
|
|
unsigned long cur_len;
|
|
unsigned long offset = BTRFS_CSUM_SIZE;
|
|
char *kaddr;
|
|
unsigned long map_start;
|
|
unsigned long map_len;
|
|
int err;
|
|
|
|
shash->tfm = fs_info->csum_shash;
|
|
crypto_shash_init(shash);
|
|
|
|
len = buf->len - offset;
|
|
|
|
while (len > 0) {
|
|
/*
|
|
* Note: we don't need to check for the err == 1 case here, as
|
|
* with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
|
|
* and 'min_len = 32' and the currently implemented mapping
|
|
* algorithm we cannot cross a page boundary.
|
|
*/
|
|
err = map_private_extent_buffer(buf, offset, 32,
|
|
&kaddr, &map_start, &map_len);
|
|
if (WARN_ON(err))
|
|
return err;
|
|
cur_len = min(len, map_len - (offset - map_start));
|
|
crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
|
|
len -= cur_len;
|
|
offset += cur_len;
|
|
}
|
|
memset(result, 0, BTRFS_CSUM_SIZE);
|
|
|
|
crypto_shash_final(shash, result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we can't consider a given block up to date unless the transid of the
|
|
* block matches the transid in the parent node's pointer. This is how we
|
|
* detect blocks that either didn't get written at all or got written
|
|
* in the wrong place.
|
|
*/
|
|
static int verify_parent_transid(struct extent_io_tree *io_tree,
|
|
struct extent_buffer *eb, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
int ret;
|
|
bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
|
|
|
|
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
|
|
return 0;
|
|
|
|
if (atomic)
|
|
return -EAGAIN;
|
|
|
|
if (need_lock) {
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_read(eb);
|
|
}
|
|
|
|
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state);
|
|
if (extent_buffer_uptodate(eb) &&
|
|
btrfs_header_generation(eb) == parent_transid) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_err_rl(eb->fs_info,
|
|
"parent transid verify failed on %llu wanted %llu found %llu",
|
|
eb->start,
|
|
parent_transid, btrfs_header_generation(eb));
|
|
ret = 1;
|
|
|
|
/*
|
|
* Things reading via commit roots that don't have normal protection,
|
|
* like send, can have a really old block in cache that may point at a
|
|
* block that has been freed and re-allocated. So don't clear uptodate
|
|
* if we find an eb that is under IO (dirty/writeback) because we could
|
|
* end up reading in the stale data and then writing it back out and
|
|
* making everybody very sad.
|
|
*/
|
|
if (!extent_buffer_under_io(eb))
|
|
clear_extent_buffer_uptodate(eb);
|
|
out:
|
|
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state);
|
|
if (need_lock)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
return ret;
|
|
}
|
|
|
|
static bool btrfs_supported_super_csum(u16 csum_type)
|
|
{
|
|
switch (csum_type) {
|
|
case BTRFS_CSUM_TYPE_CRC32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the superblock checksum type matches the checksum value of that
|
|
* algorithm. Pass the raw disk superblock data.
|
|
*/
|
|
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
|
|
char *raw_disk_sb)
|
|
{
|
|
struct btrfs_super_block *disk_sb =
|
|
(struct btrfs_super_block *)raw_disk_sb;
|
|
char result[BTRFS_CSUM_SIZE];
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
|
|
shash->tfm = fs_info->csum_shash;
|
|
crypto_shash_init(shash);
|
|
|
|
/*
|
|
* The super_block structure does not span the whole
|
|
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
|
|
* filled with zeros and is included in the checksum.
|
|
*/
|
|
crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
|
|
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
crypto_shash_final(shash, result);
|
|
|
|
if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
|
|
struct btrfs_key *first_key, u64 parent_transid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
int found_level;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
|
|
found_level = btrfs_header_level(eb);
|
|
if (found_level != level) {
|
|
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
|
|
KERN_ERR "BTRFS: tree level check failed\n");
|
|
btrfs_err(fs_info,
|
|
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
|
|
eb->start, level, found_level);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!first_key)
|
|
return 0;
|
|
|
|
/*
|
|
* For live tree block (new tree blocks in current transaction),
|
|
* we need proper lock context to avoid race, which is impossible here.
|
|
* So we only checks tree blocks which is read from disk, whose
|
|
* generation <= fs_info->last_trans_committed.
|
|
*/
|
|
if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
|
|
return 0;
|
|
|
|
/* We have @first_key, so this @eb must have at least one item */
|
|
if (btrfs_header_nritems(eb) == 0) {
|
|
btrfs_err(fs_info,
|
|
"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
|
|
eb->start);
|
|
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (found_level)
|
|
btrfs_node_key_to_cpu(eb, &found_key, 0);
|
|
else
|
|
btrfs_item_key_to_cpu(eb, &found_key, 0);
|
|
ret = btrfs_comp_cpu_keys(first_key, &found_key);
|
|
|
|
if (ret) {
|
|
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
|
|
KERN_ERR "BTRFS: tree first key check failed\n");
|
|
btrfs_err(fs_info,
|
|
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
|
|
eb->start, parent_transid, first_key->objectid,
|
|
first_key->type, first_key->offset,
|
|
found_key.objectid, found_key.type,
|
|
found_key.offset);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to read a given tree block, doing retries as required when
|
|
* the checksums don't match and we have alternate mirrors to try.
|
|
*
|
|
* @parent_transid: expected transid, skip check if 0
|
|
* @level: expected level, mandatory check
|
|
* @first_key: expected key of first slot, skip check if NULL
|
|
*/
|
|
static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
|
|
u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct extent_io_tree *io_tree;
|
|
int failed = 0;
|
|
int ret;
|
|
int num_copies = 0;
|
|
int mirror_num = 0;
|
|
int failed_mirror = 0;
|
|
|
|
io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
|
|
while (1) {
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
|
|
if (!ret) {
|
|
if (verify_parent_transid(io_tree, eb,
|
|
parent_transid, 0))
|
|
ret = -EIO;
|
|
else if (btrfs_verify_level_key(eb, level,
|
|
first_key, parent_transid))
|
|
ret = -EUCLEAN;
|
|
else
|
|
break;
|
|
}
|
|
|
|
num_copies = btrfs_num_copies(fs_info,
|
|
eb->start, eb->len);
|
|
if (num_copies == 1)
|
|
break;
|
|
|
|
if (!failed_mirror) {
|
|
failed = 1;
|
|
failed_mirror = eb->read_mirror;
|
|
}
|
|
|
|
mirror_num++;
|
|
if (mirror_num == failed_mirror)
|
|
mirror_num++;
|
|
|
|
if (mirror_num > num_copies)
|
|
break;
|
|
}
|
|
|
|
if (failed && !ret && failed_mirror)
|
|
btrfs_repair_eb_io_failure(eb, failed_mirror);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* checksum a dirty tree block before IO. This has extra checks to make sure
|
|
* we only fill in the checksum field in the first page of a multi-page block
|
|
*/
|
|
|
|
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
|
|
{
|
|
u64 start = page_offset(page);
|
|
u64 found_start;
|
|
u8 result[BTRFS_CSUM_SIZE];
|
|
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
if (page != eb->pages[0])
|
|
return 0;
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
/*
|
|
* Please do not consolidate these warnings into a single if.
|
|
* It is useful to know what went wrong.
|
|
*/
|
|
if (WARN_ON(found_start != start))
|
|
return -EUCLEAN;
|
|
if (WARN_ON(!PageUptodate(page)))
|
|
return -EUCLEAN;
|
|
|
|
ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
|
|
btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
|
|
|
|
if (csum_tree_block(eb, result))
|
|
return -EINVAL;
|
|
|
|
if (btrfs_header_level(eb))
|
|
ret = btrfs_check_node(eb);
|
|
else
|
|
ret = btrfs_check_leaf_full(eb);
|
|
|
|
if (ret < 0) {
|
|
btrfs_err(fs_info,
|
|
"block=%llu write time tree block corruption detected",
|
|
eb->start);
|
|
return ret;
|
|
}
|
|
write_extent_buffer(eb, result, 0, csum_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_tree_block_fsid(struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u8 fsid[BTRFS_FSID_SIZE];
|
|
int ret = 1;
|
|
|
|
read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
|
|
while (fs_devices) {
|
|
u8 *metadata_uuid;
|
|
|
|
/*
|
|
* Checking the incompat flag is only valid for the current
|
|
* fs. For seed devices it's forbidden to have their uuid
|
|
* changed so reading ->fsid in this case is fine
|
|
*/
|
|
if (fs_devices == fs_info->fs_devices &&
|
|
btrfs_fs_incompat(fs_info, METADATA_UUID))
|
|
metadata_uuid = fs_devices->metadata_uuid;
|
|
else
|
|
metadata_uuid = fs_devices->fsid;
|
|
|
|
if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
|
|
u64 phy_offset, struct page *page,
|
|
u64 start, u64 end, int mirror)
|
|
{
|
|
u64 found_start;
|
|
int found_level;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
int ret = 0;
|
|
u8 result[BTRFS_CSUM_SIZE];
|
|
int reads_done;
|
|
|
|
if (!page->private)
|
|
goto out;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
|
|
/* the pending IO might have been the only thing that kept this buffer
|
|
* in memory. Make sure we have a ref for all this other checks
|
|
*/
|
|
extent_buffer_get(eb);
|
|
|
|
reads_done = atomic_dec_and_test(&eb->io_pages);
|
|
if (!reads_done)
|
|
goto err;
|
|
|
|
eb->read_mirror = mirror;
|
|
if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (found_start != eb->start) {
|
|
btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
|
|
eb->start, found_start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
if (check_tree_block_fsid(eb)) {
|
|
btrfs_err_rl(fs_info, "bad fsid on block %llu",
|
|
eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
found_level = btrfs_header_level(eb);
|
|
if (found_level >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "bad tree block level %d on %llu",
|
|
(int)btrfs_header_level(eb), eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
|
|
eb, found_level);
|
|
|
|
ret = csum_tree_block(eb, result);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
|
|
u32 val;
|
|
u32 found = 0;
|
|
|
|
memcpy(&found, result, csum_size);
|
|
|
|
read_extent_buffer(eb, &val, 0, csum_size);
|
|
btrfs_warn_rl(fs_info,
|
|
"%s checksum verify failed on %llu wanted %x found %x level %d",
|
|
fs_info->sb->s_id, eb->start,
|
|
val, found, btrfs_header_level(eb));
|
|
ret = -EUCLEAN;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If this is a leaf block and it is corrupt, set the corrupt bit so
|
|
* that we don't try and read the other copies of this block, just
|
|
* return -EIO.
|
|
*/
|
|
if (found_level == 0 && btrfs_check_leaf_full(eb)) {
|
|
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (found_level > 0 && btrfs_check_node(eb))
|
|
ret = -EIO;
|
|
|
|
if (!ret)
|
|
set_extent_buffer_uptodate(eb);
|
|
else
|
|
btrfs_err(fs_info,
|
|
"block=%llu read time tree block corruption detected",
|
|
eb->start);
|
|
err:
|
|
if (reads_done &&
|
|
test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
|
|
btree_readahead_hook(eb, ret);
|
|
|
|
if (ret) {
|
|
/*
|
|
* our io error hook is going to dec the io pages
|
|
* again, we have to make sure it has something
|
|
* to decrement
|
|
*/
|
|
atomic_inc(&eb->io_pages);
|
|
clear_extent_buffer_uptodate(eb);
|
|
}
|
|
free_extent_buffer(eb);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void end_workqueue_bio(struct bio *bio)
|
|
{
|
|
struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_workqueue *wq;
|
|
|
|
fs_info = end_io_wq->info;
|
|
end_io_wq->status = bio->bi_status;
|
|
|
|
if (bio_op(bio) == REQ_OP_WRITE) {
|
|
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
|
|
wq = fs_info->endio_meta_write_workers;
|
|
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
|
|
wq = fs_info->endio_freespace_worker;
|
|
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
|
|
wq = fs_info->endio_raid56_workers;
|
|
else
|
|
wq = fs_info->endio_write_workers;
|
|
} else {
|
|
if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
|
|
wq = fs_info->endio_repair_workers;
|
|
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
|
|
wq = fs_info->endio_raid56_workers;
|
|
else if (end_io_wq->metadata)
|
|
wq = fs_info->endio_meta_workers;
|
|
else
|
|
wq = fs_info->endio_workers;
|
|
}
|
|
|
|
btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
|
|
btrfs_queue_work(wq, &end_io_wq->work);
|
|
}
|
|
|
|
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
|
|
enum btrfs_wq_endio_type metadata)
|
|
{
|
|
struct btrfs_end_io_wq *end_io_wq;
|
|
|
|
end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
|
|
if (!end_io_wq)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
end_io_wq->private = bio->bi_private;
|
|
end_io_wq->end_io = bio->bi_end_io;
|
|
end_io_wq->info = info;
|
|
end_io_wq->status = 0;
|
|
end_io_wq->bio = bio;
|
|
end_io_wq->metadata = metadata;
|
|
|
|
bio->bi_private = end_io_wq;
|
|
bio->bi_end_io = end_workqueue_bio;
|
|
return 0;
|
|
}
|
|
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
blk_status_t ret;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
ret = async->submit_bio_start(async->private_data, async->bio,
|
|
async->bio_offset);
|
|
if (ret)
|
|
async->status = ret;
|
|
}
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the tree.
|
|
*/
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
struct inode *inode;
|
|
blk_status_t ret;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
inode = async->private_data;
|
|
|
|
/* If an error occurred we just want to clean up the bio and move on */
|
|
if (async->status) {
|
|
async->bio->bi_status = async->status;
|
|
bio_endio(async->bio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All of the bios that pass through here are from async helpers.
|
|
* Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
|
|
* This changes nothing when cgroups aren't in use.
|
|
*/
|
|
async->bio->bi_opf |= REQ_CGROUP_PUNT;
|
|
ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
|
|
if (ret) {
|
|
async->bio->bi_status = ret;
|
|
bio_endio(async->bio);
|
|
}
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
kfree(async);
|
|
}
|
|
|
|
blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset, void *private_data,
|
|
extent_submit_bio_start_t *submit_bio_start)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
async->private_data = private_data;
|
|
async->bio = bio;
|
|
async->mirror_num = mirror_num;
|
|
async->submit_bio_start = submit_bio_start;
|
|
|
|
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
|
|
run_one_async_free);
|
|
|
|
async->bio_offset = bio_offset;
|
|
|
|
async->status = 0;
|
|
|
|
if (op_is_sync(bio->bi_opf))
|
|
btrfs_set_work_high_priority(&async->work);
|
|
|
|
btrfs_queue_work(fs_info->workers, &async->work);
|
|
return 0;
|
|
}
|
|
|
|
static blk_status_t btree_csum_one_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct btrfs_root *root;
|
|
int ret = 0;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
ASSERT(!bio_flagged(bio, BIO_CLONED));
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
|
|
ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return errno_to_blk_status(ret);
|
|
}
|
|
|
|
static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
|
|
u64 bio_offset)
|
|
{
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
return btree_csum_one_bio(bio);
|
|
}
|
|
|
|
static int check_async_write(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_inode *bi)
|
|
{
|
|
if (atomic_read(&bi->sync_writers))
|
|
return 0;
|
|
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
|
|
int mirror_num,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
int async = check_async_write(fs_info, BTRFS_I(inode));
|
|
blk_status_t ret;
|
|
|
|
if (bio_op(bio) != REQ_OP_WRITE) {
|
|
/*
|
|
* called for a read, do the setup so that checksum validation
|
|
* can happen in the async kernel threads
|
|
*/
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio,
|
|
BTRFS_WQ_ENDIO_METADATA);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
} else if (!async) {
|
|
ret = btree_csum_one_bio(bio);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
} else {
|
|
/*
|
|
* kthread helpers are used to submit writes so that
|
|
* checksumming can happen in parallel across all CPUs
|
|
*/
|
|
ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
|
|
0, inode, btree_submit_bio_start);
|
|
}
|
|
|
|
if (ret)
|
|
goto out_w_error;
|
|
return 0;
|
|
|
|
out_w_error:
|
|
bio->bi_status = ret;
|
|
bio_endio(bio);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btree_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
/*
|
|
* we can't safely write a btree page from here,
|
|
* we haven't done the locking hook
|
|
*/
|
|
if (PageDirty(page))
|
|
return -EAGAIN;
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int btree_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
int ret;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
|
|
if (wbc->for_kupdate)
|
|
return 0;
|
|
|
|
fs_info = BTRFS_I(mapping->host)->root->fs_info;
|
|
/* this is a bit racy, but that's ok */
|
|
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH,
|
|
fs_info->dirty_metadata_batch);
|
|
if (ret < 0)
|
|
return 0;
|
|
}
|
|
return btree_write_cache_pages(mapping, wbc);
|
|
}
|
|
|
|
static int btree_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_read_full_page(tree, page, btree_get_extent, 0);
|
|
}
|
|
|
|
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
|
|
return try_release_extent_buffer(page);
|
|
}
|
|
|
|
static void btree_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
extent_invalidatepage(tree, page, offset);
|
|
btree_releasepage(page, GFP_NOFS);
|
|
if (PagePrivate(page)) {
|
|
btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
|
|
"page private not zero on page %llu",
|
|
(unsigned long long)page_offset(page));
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
static int btree_set_page_dirty(struct page *page)
|
|
{
|
|
#ifdef DEBUG
|
|
struct extent_buffer *eb;
|
|
|
|
BUG_ON(!PagePrivate(page));
|
|
eb = (struct extent_buffer *)page->private;
|
|
BUG_ON(!eb);
|
|
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
|
|
BUG_ON(!atomic_read(&eb->refs));
|
|
btrfs_assert_tree_locked(eb);
|
|
#endif
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static const struct address_space_operations btree_aops = {
|
|
.readpage = btree_readpage,
|
|
.writepages = btree_writepages,
|
|
.releasepage = btree_releasepage,
|
|
.invalidatepage = btree_invalidatepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btree_migratepage,
|
|
#endif
|
|
.set_page_dirty = btree_set_page_dirty,
|
|
};
|
|
|
|
void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (IS_ERR(buf))
|
|
return;
|
|
|
|
ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
|
|
if (ret < 0)
|
|
free_extent_buffer_stale(buf);
|
|
else
|
|
free_extent_buffer(buf);
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_create_tree_block(
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 bytenr)
|
|
{
|
|
if (btrfs_is_testing(fs_info))
|
|
return alloc_test_extent_buffer(fs_info, bytenr);
|
|
return alloc_extent_buffer(fs_info, bytenr);
|
|
}
|
|
|
|
/*
|
|
* Read tree block at logical address @bytenr and do variant basic but critical
|
|
* verification.
|
|
*
|
|
* @parent_transid: expected transid of this tree block, skip check if 0
|
|
* @level: expected level, mandatory check
|
|
* @first_key: expected key in slot 0, skip check if NULL
|
|
*/
|
|
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (IS_ERR(buf))
|
|
return buf;
|
|
|
|
ret = btree_read_extent_buffer_pages(buf, parent_transid,
|
|
level, first_key);
|
|
if (ret) {
|
|
free_extent_buffer_stale(buf);
|
|
return ERR_PTR(ret);
|
|
}
|
|
return buf;
|
|
|
|
}
|
|
|
|
void btrfs_clean_tree_block(struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_fs_info *fs_info = buf->fs_info;
|
|
if (btrfs_header_generation(buf) ==
|
|
fs_info->running_transaction->transid) {
|
|
btrfs_assert_tree_locked(buf);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
|
|
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
|
|
-buf->len,
|
|
fs_info->dirty_metadata_batch);
|
|
/* ugh, clear_extent_buffer_dirty needs to lock the page */
|
|
btrfs_set_lock_blocking_write(buf);
|
|
clear_extent_buffer_dirty(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
|
|
{
|
|
struct btrfs_subvolume_writers *writers;
|
|
int ret;
|
|
|
|
writers = kmalloc(sizeof(*writers), GFP_NOFS);
|
|
if (!writers)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
|
|
if (ret < 0) {
|
|
kfree(writers);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
init_waitqueue_head(&writers->wait);
|
|
return writers;
|
|
}
|
|
|
|
static void
|
|
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
|
|
{
|
|
percpu_counter_destroy(&writers->counter);
|
|
kfree(writers);
|
|
}
|
|
|
|
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
root->state = 0;
|
|
root->orphan_cleanup_state = 0;
|
|
|
|
root->last_trans = 0;
|
|
root->highest_objectid = 0;
|
|
root->nr_delalloc_inodes = 0;
|
|
root->nr_ordered_extents = 0;
|
|
root->inode_tree = RB_ROOT;
|
|
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
|
|
root->block_rsv = NULL;
|
|
|
|
INIT_LIST_HEAD(&root->dirty_list);
|
|
INIT_LIST_HEAD(&root->root_list);
|
|
INIT_LIST_HEAD(&root->delalloc_inodes);
|
|
INIT_LIST_HEAD(&root->delalloc_root);
|
|
INIT_LIST_HEAD(&root->ordered_extents);
|
|
INIT_LIST_HEAD(&root->ordered_root);
|
|
INIT_LIST_HEAD(&root->reloc_dirty_list);
|
|
INIT_LIST_HEAD(&root->logged_list[0]);
|
|
INIT_LIST_HEAD(&root->logged_list[1]);
|
|
spin_lock_init(&root->inode_lock);
|
|
spin_lock_init(&root->delalloc_lock);
|
|
spin_lock_init(&root->ordered_extent_lock);
|
|
spin_lock_init(&root->accounting_lock);
|
|
spin_lock_init(&root->log_extents_lock[0]);
|
|
spin_lock_init(&root->log_extents_lock[1]);
|
|
spin_lock_init(&root->qgroup_meta_rsv_lock);
|
|
mutex_init(&root->objectid_mutex);
|
|
mutex_init(&root->log_mutex);
|
|
mutex_init(&root->ordered_extent_mutex);
|
|
mutex_init(&root->delalloc_mutex);
|
|
init_waitqueue_head(&root->log_writer_wait);
|
|
init_waitqueue_head(&root->log_commit_wait[0]);
|
|
init_waitqueue_head(&root->log_commit_wait[1]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[0]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[1]);
|
|
atomic_set(&root->log_commit[0], 0);
|
|
atomic_set(&root->log_commit[1], 0);
|
|
atomic_set(&root->log_writers, 0);
|
|
atomic_set(&root->log_batch, 0);
|
|
refcount_set(&root->refs, 1);
|
|
atomic_set(&root->will_be_snapshotted, 0);
|
|
atomic_set(&root->snapshot_force_cow, 0);
|
|
atomic_set(&root->nr_swapfiles, 0);
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
if (!dummy)
|
|
extent_io_tree_init(fs_info, &root->dirty_log_pages,
|
|
IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
|
|
|
|
memset(&root->root_key, 0, sizeof(root->root_key));
|
|
memset(&root->root_item, 0, sizeof(root->root_item));
|
|
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
|
|
if (!dummy)
|
|
root->defrag_trans_start = fs_info->generation;
|
|
else
|
|
root->defrag_trans_start = 0;
|
|
root->root_key.objectid = objectid;
|
|
root->anon_dev = 0;
|
|
|
|
spin_lock_init(&root->root_item_lock);
|
|
btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
|
|
gfp_t flags)
|
|
{
|
|
struct btrfs_root *root = kzalloc(sizeof(*root), flags);
|
|
if (root)
|
|
root->fs_info = fs_info;
|
|
return root;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/* Should only be used by the testing infrastructure */
|
|
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
if (!fs_info)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* We don't use the stripesize in selftest, set it as sectorsize */
|
|
__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
root->alloc_bytenr = 0;
|
|
|
|
return root;
|
|
}
|
|
#endif
|
|
|
|
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
|
|
u64 objectid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
unsigned int nofs_flag;
|
|
int ret = 0;
|
|
uuid_le uuid = NULL_UUID_LE;
|
|
|
|
/*
|
|
* We're holding a transaction handle, so use a NOFS memory allocation
|
|
* context to avoid deadlock if reclaim happens.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(root, fs_info, objectid);
|
|
root->root_key.objectid = objectid;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = 0;
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
leaf = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
root->node = leaf;
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
root->commit_root = btrfs_root_node(root);
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
|
|
root->root_item.flags = 0;
|
|
root->root_item.byte_limit = 0;
|
|
btrfs_set_root_bytenr(&root->root_item, leaf->start);
|
|
btrfs_set_root_generation(&root->root_item, trans->transid);
|
|
btrfs_set_root_level(&root->root_item, 0);
|
|
btrfs_set_root_refs(&root->root_item, 1);
|
|
btrfs_set_root_used(&root->root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(&root->root_item, 0);
|
|
btrfs_set_root_dirid(&root->root_item, 0);
|
|
if (is_fstree(objectid))
|
|
uuid_le_gen(&uuid);
|
|
memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
|
|
root->root_item.drop_level = 0;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
|
|
return root;
|
|
|
|
fail:
|
|
if (leaf) {
|
|
btrfs_tree_unlock(leaf);
|
|
free_extent_buffer(root->commit_root);
|
|
free_extent_buffer(leaf);
|
|
}
|
|
kfree(root);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_NOFS);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
|
|
|
|
/*
|
|
* DON'T set REF_COWS for log trees
|
|
*
|
|
* log trees do not get reference counted because they go away
|
|
* before a real commit is actually done. They do store pointers
|
|
* to file data extents, and those reference counts still get
|
|
* updated (along with back refs to the log tree).
|
|
*/
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
|
|
NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
kfree(root);
|
|
return ERR_CAST(leaf);
|
|
}
|
|
|
|
root->node = leaf;
|
|
|
|
btrfs_mark_buffer_dirty(root->node);
|
|
btrfs_tree_unlock(root->node);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
WARN_ON(fs_info->log_root_tree);
|
|
fs_info->log_root_tree = log_root;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *log_root;
|
|
struct btrfs_inode_item *inode_item;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
|
|
log_root->last_trans = trans->transid;
|
|
log_root->root_key.offset = root->root_key.objectid;
|
|
|
|
inode_item = &log_root->root_item.inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item,
|
|
fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_node(&log_root->root_item, log_root->node);
|
|
|
|
WARN_ON(root->log_root);
|
|
root->log_root = log_root;
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_fs_info *fs_info = tree_root->fs_info;
|
|
struct btrfs_path *path;
|
|
u64 generation;
|
|
int ret;
|
|
int level;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_NOFS);
|
|
if (!root) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
__setup_root(root, fs_info, key->objectid);
|
|
|
|
ret = btrfs_find_root(tree_root, key, path,
|
|
&root->root_item, &root->root_key);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto find_fail;
|
|
}
|
|
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
level = btrfs_root_level(&root->root_item);
|
|
root->node = read_tree_block(fs_info,
|
|
btrfs_root_bytenr(&root->root_item),
|
|
generation, level, NULL);
|
|
if (IS_ERR(root->node)) {
|
|
ret = PTR_ERR(root->node);
|
|
goto find_fail;
|
|
} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
|
|
ret = -EIO;
|
|
free_extent_buffer(root->node);
|
|
goto find_fail;
|
|
}
|
|
root->commit_root = btrfs_root_node(root);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return root;
|
|
|
|
find_fail:
|
|
kfree(root);
|
|
alloc_fail:
|
|
root = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = btrfs_read_tree_root(tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
set_bit(BTRFS_ROOT_REF_COWS, &root->state);
|
|
btrfs_check_and_init_root_item(&root->root_item);
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_fs_root(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_subvolume_writers *writers;
|
|
|
|
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
|
|
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
|
|
GFP_NOFS);
|
|
if (!root->free_ino_pinned || !root->free_ino_ctl) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
writers = btrfs_alloc_subvolume_writers();
|
|
if (IS_ERR(writers)) {
|
|
ret = PTR_ERR(writers);
|
|
goto fail;
|
|
}
|
|
root->subv_writers = writers;
|
|
|
|
btrfs_init_free_ino_ctl(root);
|
|
spin_lock_init(&root->ino_cache_lock);
|
|
init_waitqueue_head(&root->ino_cache_wait);
|
|
|
|
ret = get_anon_bdev(&root->anon_dev);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
mutex_lock(&root->objectid_mutex);
|
|
ret = btrfs_find_highest_objectid(root,
|
|
&root->highest_objectid);
|
|
if (ret) {
|
|
mutex_unlock(&root->objectid_mutex);
|
|
goto fail;
|
|
}
|
|
|
|
ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
|
|
|
|
mutex_unlock(&root->objectid_mutex);
|
|
|
|
return 0;
|
|
fail:
|
|
/* The caller is responsible to call btrfs_free_fs_root */
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
|
|
u64 root_id)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)root_id);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = radix_tree_preload(GFP_NOFS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
ret = radix_tree_insert(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
root);
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_preload_end();
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location,
|
|
bool check_ref)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return fs_info->tree_root;
|
|
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
|
|
return fs_info->extent_root;
|
|
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
|
|
return fs_info->chunk_root;
|
|
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
|
|
return fs_info->dev_root;
|
|
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return fs_info->csum_root;
|
|
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
|
|
return fs_info->quota_root ? fs_info->quota_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
|
|
return fs_info->uuid_root ? fs_info->uuid_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
|
|
return fs_info->free_space_root ? fs_info->free_space_root :
|
|
ERR_PTR(-ENOENT);
|
|
again:
|
|
root = btrfs_lookup_fs_root(fs_info, location->objectid);
|
|
if (root) {
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0)
|
|
return ERR_PTR(-ENOENT);
|
|
return root;
|
|
}
|
|
|
|
root = btrfs_read_fs_root(fs_info->tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
|
|
ret = -ENOENT;
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_init_fs_root(root);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
key.objectid = BTRFS_ORPHAN_OBJECTID;
|
|
key.type = BTRFS_ORPHAN_ITEM_KEY;
|
|
key.offset = location->objectid;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
btrfs_free_path(path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
|
|
|
|
ret = btrfs_insert_fs_root(fs_info, root);
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
btrfs_free_fs_root(root);
|
|
goto again;
|
|
}
|
|
goto fail;
|
|
}
|
|
return root;
|
|
fail:
|
|
btrfs_free_fs_root(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
|
|
{
|
|
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
|
|
int ret = 0;
|
|
struct btrfs_device *device;
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
bdi = device->bdev->bd_bdi;
|
|
if (bdi_congested(bdi, bdi_bits)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called by the kthread helper functions to finally call the bio end_io
|
|
* functions. This is where read checksum verification actually happens
|
|
*/
|
|
static void end_workqueue_fn(struct btrfs_work *work)
|
|
{
|
|
struct bio *bio;
|
|
struct btrfs_end_io_wq *end_io_wq;
|
|
|
|
end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
|
|
bio = end_io_wq->bio;
|
|
|
|
bio->bi_status = end_io_wq->status;
|
|
bio->bi_private = end_io_wq->private;
|
|
bio->bi_end_io = end_io_wq->end_io;
|
|
bio_endio(bio);
|
|
kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
|
|
}
|
|
|
|
static int cleaner_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int again;
|
|
|
|
while (1) {
|
|
again = 0;
|
|
|
|
set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
|
|
|
|
/* Make the cleaner go to sleep early. */
|
|
if (btrfs_need_cleaner_sleep(fs_info))
|
|
goto sleep;
|
|
|
|
/*
|
|
* Do not do anything if we might cause open_ctree() to block
|
|
* before we have finished mounting the filesystem.
|
|
*/
|
|
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
|
|
goto sleep;
|
|
|
|
if (!mutex_trylock(&fs_info->cleaner_mutex))
|
|
goto sleep;
|
|
|
|
/*
|
|
* Avoid the problem that we change the status of the fs
|
|
* during the above check and trylock.
|
|
*/
|
|
if (btrfs_need_cleaner_sleep(fs_info)) {
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
goto sleep;
|
|
}
|
|
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
|
|
again = btrfs_clean_one_deleted_snapshot(root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
|
|
/*
|
|
* The defragger has dealt with the R/O remount and umount,
|
|
* needn't do anything special here.
|
|
*/
|
|
btrfs_run_defrag_inodes(fs_info);
|
|
|
|
/*
|
|
* Acquires fs_info->delete_unused_bgs_mutex to avoid racing
|
|
* with relocation (btrfs_relocate_chunk) and relocation
|
|
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
|
|
* after acquiring fs_info->delete_unused_bgs_mutex. So we
|
|
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
|
|
* unused block groups.
|
|
*/
|
|
btrfs_delete_unused_bgs(fs_info);
|
|
sleep:
|
|
clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
|
|
if (kthread_should_park())
|
|
kthread_parkme();
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
if (!again) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int transaction_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_transaction *cur;
|
|
u64 transid;
|
|
time64_t now;
|
|
unsigned long delay;
|
|
bool cannot_commit;
|
|
|
|
do {
|
|
cannot_commit = false;
|
|
delay = HZ * fs_info->commit_interval;
|
|
mutex_lock(&fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur = fs_info->running_transaction;
|
|
if (!cur) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
goto sleep;
|
|
}
|
|
|
|
now = ktime_get_seconds();
|
|
if (cur->state < TRANS_STATE_COMMIT_START &&
|
|
!test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
|
|
(now < cur->start_time ||
|
|
now - cur->start_time < fs_info->commit_interval)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
delay = HZ * 5;
|
|
goto sleep;
|
|
}
|
|
transid = cur->transid;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/* If the file system is aborted, this will always fail. */
|
|
trans = btrfs_attach_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
cannot_commit = true;
|
|
goto sleep;
|
|
}
|
|
if (transid == trans->transid) {
|
|
btrfs_commit_transaction(trans);
|
|
} else {
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
sleep:
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
mutex_unlock(&fs_info->transaction_kthread_mutex);
|
|
|
|
if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
|
|
&fs_info->fs_state)))
|
|
btrfs_cleanup_transaction(fs_info);
|
|
if (!kthread_should_stop() &&
|
|
(!btrfs_transaction_blocked(fs_info) ||
|
|
cannot_commit))
|
|
schedule_timeout_interruptible(delay);
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this will find the highest generation in the array of
|
|
* root backups. The index of the highest array is returned,
|
|
* or -1 if we can't find anything.
|
|
*
|
|
* We check to make sure the array is valid by comparing the
|
|
* generation of the latest root in the array with the generation
|
|
* in the super block. If they don't match we pitch it.
|
|
*/
|
|
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
|
|
{
|
|
u64 cur;
|
|
int newest_index = -1;
|
|
struct btrfs_root_backup *root_backup;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
|
|
root_backup = info->super_copy->super_roots + i;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = i;
|
|
}
|
|
|
|
/* check to see if we actually wrapped around */
|
|
if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
|
|
root_backup = info->super_copy->super_roots;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = 0;
|
|
}
|
|
return newest_index;
|
|
}
|
|
|
|
|
|
/*
|
|
* find the oldest backup so we know where to store new entries
|
|
* in the backup array. This will set the backup_root_index
|
|
* field in the fs_info struct
|
|
*/
|
|
static void find_oldest_super_backup(struct btrfs_fs_info *info,
|
|
u64 newest_gen)
|
|
{
|
|
int newest_index = -1;
|
|
|
|
newest_index = find_newest_super_backup(info, newest_gen);
|
|
/* if there was garbage in there, just move along */
|
|
if (newest_index == -1) {
|
|
info->backup_root_index = 0;
|
|
} else {
|
|
info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* copy all the root pointers into the super backup array.
|
|
* this will bump the backup pointer by one when it is
|
|
* done
|
|
*/
|
|
static void backup_super_roots(struct btrfs_fs_info *info)
|
|
{
|
|
int next_backup;
|
|
struct btrfs_root_backup *root_backup;
|
|
int last_backup;
|
|
|
|
next_backup = info->backup_root_index;
|
|
last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
/*
|
|
* just overwrite the last backup if we're at the same generation
|
|
* this happens only at umount
|
|
*/
|
|
root_backup = info->super_for_commit->super_roots + last_backup;
|
|
if (btrfs_backup_tree_root_gen(root_backup) ==
|
|
btrfs_header_generation(info->tree_root->node))
|
|
next_backup = last_backup;
|
|
|
|
root_backup = info->super_for_commit->super_roots + next_backup;
|
|
|
|
/*
|
|
* make sure all of our padding and empty slots get zero filled
|
|
* regardless of which ones we use today
|
|
*/
|
|
memset(root_backup, 0, sizeof(*root_backup));
|
|
|
|
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
|
|
btrfs_set_backup_tree_root_gen(root_backup,
|
|
btrfs_header_generation(info->tree_root->node));
|
|
|
|
btrfs_set_backup_tree_root_level(root_backup,
|
|
btrfs_header_level(info->tree_root->node));
|
|
|
|
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
|
|
btrfs_set_backup_chunk_root_gen(root_backup,
|
|
btrfs_header_generation(info->chunk_root->node));
|
|
btrfs_set_backup_chunk_root_level(root_backup,
|
|
btrfs_header_level(info->chunk_root->node));
|
|
|
|
btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
|
|
btrfs_set_backup_extent_root_gen(root_backup,
|
|
btrfs_header_generation(info->extent_root->node));
|
|
btrfs_set_backup_extent_root_level(root_backup,
|
|
btrfs_header_level(info->extent_root->node));
|
|
|
|
/*
|
|
* we might commit during log recovery, which happens before we set
|
|
* the fs_root. Make sure it is valid before we fill it in.
|
|
*/
|
|
if (info->fs_root && info->fs_root->node) {
|
|
btrfs_set_backup_fs_root(root_backup,
|
|
info->fs_root->node->start);
|
|
btrfs_set_backup_fs_root_gen(root_backup,
|
|
btrfs_header_generation(info->fs_root->node));
|
|
btrfs_set_backup_fs_root_level(root_backup,
|
|
btrfs_header_level(info->fs_root->node));
|
|
}
|
|
|
|
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
|
|
btrfs_set_backup_dev_root_gen(root_backup,
|
|
btrfs_header_generation(info->dev_root->node));
|
|
btrfs_set_backup_dev_root_level(root_backup,
|
|
btrfs_header_level(info->dev_root->node));
|
|
|
|
btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
|
|
btrfs_set_backup_csum_root_gen(root_backup,
|
|
btrfs_header_generation(info->csum_root->node));
|
|
btrfs_set_backup_csum_root_level(root_backup,
|
|
btrfs_header_level(info->csum_root->node));
|
|
|
|
btrfs_set_backup_total_bytes(root_backup,
|
|
btrfs_super_total_bytes(info->super_copy));
|
|
btrfs_set_backup_bytes_used(root_backup,
|
|
btrfs_super_bytes_used(info->super_copy));
|
|
btrfs_set_backup_num_devices(root_backup,
|
|
btrfs_super_num_devices(info->super_copy));
|
|
|
|
/*
|
|
* if we don't copy this out to the super_copy, it won't get remembered
|
|
* for the next commit
|
|
*/
|
|
memcpy(&info->super_copy->super_roots,
|
|
&info->super_for_commit->super_roots,
|
|
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
|
|
}
|
|
|
|
/*
|
|
* this copies info out of the root backup array and back into
|
|
* the in-memory super block. It is meant to help iterate through
|
|
* the array, so you send it the number of backups you've already
|
|
* tried and the last backup index you used.
|
|
*
|
|
* this returns -1 when it has tried all the backups
|
|
*/
|
|
static noinline int next_root_backup(struct btrfs_fs_info *info,
|
|
struct btrfs_super_block *super,
|
|
int *num_backups_tried, int *backup_index)
|
|
{
|
|
struct btrfs_root_backup *root_backup;
|
|
int newest = *backup_index;
|
|
|
|
if (*num_backups_tried == 0) {
|
|
u64 gen = btrfs_super_generation(super);
|
|
|
|
newest = find_newest_super_backup(info, gen);
|
|
if (newest == -1)
|
|
return -1;
|
|
|
|
*backup_index = newest;
|
|
*num_backups_tried = 1;
|
|
} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
|
|
/* we've tried all the backups, all done */
|
|
return -1;
|
|
} else {
|
|
/* jump to the next oldest backup */
|
|
newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
*backup_index = newest;
|
|
*num_backups_tried += 1;
|
|
}
|
|
root_backup = super->super_roots + newest;
|
|
|
|
btrfs_set_super_generation(super,
|
|
btrfs_backup_tree_root_gen(root_backup));
|
|
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
|
|
btrfs_set_super_root_level(super,
|
|
btrfs_backup_tree_root_level(root_backup));
|
|
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
|
|
|
|
/*
|
|
* fixme: the total bytes and num_devices need to match or we should
|
|
* need a fsck
|
|
*/
|
|
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
|
|
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
|
|
return 0;
|
|
}
|
|
|
|
/* helper to cleanup workers */
|
|
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
|
|
{
|
|
btrfs_destroy_workqueue(fs_info->fixup_workers);
|
|
btrfs_destroy_workqueue(fs_info->delalloc_workers);
|
|
btrfs_destroy_workqueue(fs_info->workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_repair_workers);
|
|
btrfs_destroy_workqueue(fs_info->rmw_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_write_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
|
|
btrfs_destroy_workqueue(fs_info->delayed_workers);
|
|
btrfs_destroy_workqueue(fs_info->caching_workers);
|
|
btrfs_destroy_workqueue(fs_info->readahead_workers);
|
|
btrfs_destroy_workqueue(fs_info->flush_workers);
|
|
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
|
|
/*
|
|
* Now that all other work queues are destroyed, we can safely destroy
|
|
* the queues used for metadata I/O, since tasks from those other work
|
|
* queues can do metadata I/O operations.
|
|
*/
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
|
|
}
|
|
|
|
static void free_root_extent_buffers(struct btrfs_root *root)
|
|
{
|
|
if (root) {
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
}
|
|
}
|
|
|
|
/* helper to cleanup tree roots */
|
|
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
|
|
{
|
|
free_root_extent_buffers(info->tree_root);
|
|
|
|
free_root_extent_buffers(info->dev_root);
|
|
free_root_extent_buffers(info->extent_root);
|
|
free_root_extent_buffers(info->csum_root);
|
|
free_root_extent_buffers(info->quota_root);
|
|
free_root_extent_buffers(info->uuid_root);
|
|
if (chunk_root)
|
|
free_root_extent_buffers(info->chunk_root);
|
|
free_root_extent_buffers(info->free_space_root);
|
|
}
|
|
|
|
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
|
|
while (!list_empty(&fs_info->dead_roots)) {
|
|
gang[0] = list_entry(fs_info->dead_roots.next,
|
|
struct btrfs_root, root_list);
|
|
list_del(&gang[0]->root_list);
|
|
|
|
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
|
|
} else {
|
|
free_extent_buffer(gang[0]->node);
|
|
free_extent_buffer(gang[0]->commit_root);
|
|
btrfs_put_fs_root(gang[0]);
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret)
|
|
break;
|
|
for (i = 0; i < ret; i++)
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_free_log_root_tree(NULL, fs_info);
|
|
btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
|
|
}
|
|
}
|
|
|
|
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
|
|
{
|
|
mutex_init(&fs_info->scrub_lock);
|
|
atomic_set(&fs_info->scrubs_running, 0);
|
|
atomic_set(&fs_info->scrub_pause_req, 0);
|
|
atomic_set(&fs_info->scrubs_paused, 0);
|
|
atomic_set(&fs_info->scrub_cancel_req, 0);
|
|
init_waitqueue_head(&fs_info->scrub_pause_wait);
|
|
refcount_set(&fs_info->scrub_workers_refcnt, 0);
|
|
}
|
|
|
|
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock_init(&fs_info->balance_lock);
|
|
mutex_init(&fs_info->balance_mutex);
|
|
atomic_set(&fs_info->balance_pause_req, 0);
|
|
atomic_set(&fs_info->balance_cancel_req, 0);
|
|
fs_info->balance_ctl = NULL;
|
|
init_waitqueue_head(&fs_info->balance_wait_q);
|
|
}
|
|
|
|
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode *inode = fs_info->btree_inode;
|
|
|
|
inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
|
|
set_nlink(inode, 1);
|
|
/*
|
|
* we set the i_size on the btree inode to the max possible int.
|
|
* the real end of the address space is determined by all of
|
|
* the devices in the system
|
|
*/
|
|
inode->i_size = OFFSET_MAX;
|
|
inode->i_mapping->a_ops = &btree_aops;
|
|
|
|
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
|
|
extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
|
|
IO_TREE_INODE_IO, inode);
|
|
BTRFS_I(inode)->io_tree.track_uptodate = false;
|
|
extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
|
|
|
|
BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
|
|
|
|
BTRFS_I(inode)->root = fs_info->tree_root;
|
|
memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
|
|
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
|
|
btrfs_insert_inode_hash(inode);
|
|
}
|
|
|
|
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
|
|
{
|
|
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
|
|
init_rwsem(&fs_info->dev_replace.rwsem);
|
|
init_waitqueue_head(&fs_info->dev_replace.replace_wait);
|
|
}
|
|
|
|
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock_init(&fs_info->qgroup_lock);
|
|
mutex_init(&fs_info->qgroup_ioctl_lock);
|
|
fs_info->qgroup_tree = RB_ROOT;
|
|
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
|
|
fs_info->qgroup_seq = 1;
|
|
fs_info->qgroup_ulist = NULL;
|
|
fs_info->qgroup_rescan_running = false;
|
|
mutex_init(&fs_info->qgroup_rescan_lock);
|
|
}
|
|
|
|
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
u32 max_active = fs_info->thread_pool_size;
|
|
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
|
|
|
|
fs_info->workers =
|
|
btrfs_alloc_workqueue(fs_info, "worker",
|
|
flags | WQ_HIGHPRI, max_active, 16);
|
|
|
|
fs_info->delalloc_workers =
|
|
btrfs_alloc_workqueue(fs_info, "delalloc",
|
|
flags, max_active, 2);
|
|
|
|
fs_info->flush_workers =
|
|
btrfs_alloc_workqueue(fs_info, "flush_delalloc",
|
|
flags, max_active, 0);
|
|
|
|
fs_info->caching_workers =
|
|
btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
|
|
|
|
fs_info->fixup_workers =
|
|
btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
|
|
|
|
/*
|
|
* endios are largely parallel and should have a very
|
|
* low idle thresh
|
|
*/
|
|
fs_info->endio_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
|
|
fs_info->endio_meta_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
|
|
max_active, 4);
|
|
fs_info->endio_meta_write_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
|
|
max_active, 2);
|
|
fs_info->endio_raid56_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
|
|
max_active, 4);
|
|
fs_info->endio_repair_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
|
|
fs_info->rmw_workers =
|
|
btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
|
|
fs_info->endio_write_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-write", flags,
|
|
max_active, 2);
|
|
fs_info->endio_freespace_worker =
|
|
btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
|
|
max_active, 0);
|
|
fs_info->delayed_workers =
|
|
btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
|
|
max_active, 0);
|
|
fs_info->readahead_workers =
|
|
btrfs_alloc_workqueue(fs_info, "readahead", flags,
|
|
max_active, 2);
|
|
fs_info->qgroup_rescan_workers =
|
|
btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
|
|
|
|
if (!(fs_info->workers && fs_info->delalloc_workers &&
|
|
fs_info->flush_workers &&
|
|
fs_info->endio_workers && fs_info->endio_meta_workers &&
|
|
fs_info->endio_meta_write_workers &&
|
|
fs_info->endio_repair_workers &&
|
|
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
|
|
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
|
|
fs_info->caching_workers && fs_info->readahead_workers &&
|
|
fs_info->fixup_workers && fs_info->delayed_workers &&
|
|
fs_info->qgroup_rescan_workers)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
|
|
{
|
|
struct crypto_shash *csum_shash;
|
|
const char *csum_name = btrfs_super_csum_name(csum_type);
|
|
|
|
csum_shash = crypto_alloc_shash(csum_name, 0, 0);
|
|
|
|
if (IS_ERR(csum_shash)) {
|
|
btrfs_err(fs_info, "error allocating %s hash for checksum",
|
|
csum_name);
|
|
return PTR_ERR(csum_shash);
|
|
}
|
|
|
|
fs_info->csum_shash = csum_shash;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
|
|
{
|
|
crypto_free_shash(fs_info->csum_shash);
|
|
}
|
|
|
|
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *log_tree_root;
|
|
struct btrfs_super_block *disk_super = fs_info->super_copy;
|
|
u64 bytenr = btrfs_super_log_root(disk_super);
|
|
int level = btrfs_super_log_root_level(disk_super);
|
|
|
|
if (fs_devices->rw_devices == 0) {
|
|
btrfs_warn(fs_info, "log replay required on RO media");
|
|
return -EIO;
|
|
}
|
|
|
|
log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!log_tree_root)
|
|
return -ENOMEM;
|
|
|
|
__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
log_tree_root->node = read_tree_block(fs_info, bytenr,
|
|
fs_info->generation + 1,
|
|
level, NULL);
|
|
if (IS_ERR(log_tree_root->node)) {
|
|
btrfs_warn(fs_info, "failed to read log tree");
|
|
ret = PTR_ERR(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return ret;
|
|
} else if (!extent_buffer_uptodate(log_tree_root->node)) {
|
|
btrfs_err(fs_info, "failed to read log tree");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return -EIO;
|
|
}
|
|
/* returns with log_tree_root freed on success */
|
|
ret = btrfs_recover_log_trees(log_tree_root);
|
|
if (ret) {
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Failed to recover log tree");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return ret;
|
|
}
|
|
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
ret = btrfs_commit_super(fs_info);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key location;
|
|
int ret;
|
|
|
|
BUG_ON(!fs_info->tree_root);
|
|
|
|
location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->extent_root = root;
|
|
|
|
location.objectid = BTRFS_DEV_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->dev_root = root;
|
|
btrfs_init_devices_late(fs_info);
|
|
|
|
location.objectid = BTRFS_CSUM_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->csum_root = root;
|
|
|
|
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (!IS_ERR(root)) {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
|
|
fs_info->quota_root = root;
|
|
}
|
|
|
|
location.objectid = BTRFS_UUID_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
if (ret != -ENOENT)
|
|
goto out;
|
|
} else {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->uuid_root = root;
|
|
}
|
|
|
|
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->free_space_root = root;
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
|
|
location.objectid, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Real super block validation
|
|
* NOTE: super csum type and incompat features will not be checked here.
|
|
*
|
|
* @sb: super block to check
|
|
* @mirror_num: the super block number to check its bytenr:
|
|
* 0 the primary (1st) sb
|
|
* 1, 2 2nd and 3rd backup copy
|
|
* -1 skip bytenr check
|
|
*/
|
|
static int validate_super(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *sb, int mirror_num)
|
|
{
|
|
u64 nodesize = btrfs_super_nodesize(sb);
|
|
u64 sectorsize = btrfs_super_sectorsize(sb);
|
|
int ret = 0;
|
|
|
|
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
|
|
btrfs_err(fs_info, "no valid FS found");
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
|
|
btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
|
|
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "tree_root level too big: %d >= %d",
|
|
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
|
|
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "log_root level too big: %d >= %d",
|
|
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check sectorsize and nodesize first, other check will need it.
|
|
* Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
|
|
*/
|
|
if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
|
|
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
|
|
btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
|
|
ret = -EINVAL;
|
|
}
|
|
/* Only PAGE SIZE is supported yet */
|
|
if (sectorsize != PAGE_SIZE) {
|
|
btrfs_err(fs_info,
|
|
"sectorsize %llu not supported yet, only support %lu",
|
|
sectorsize, PAGE_SIZE);
|
|
ret = -EINVAL;
|
|
}
|
|
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
|
|
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
|
|
btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
|
|
ret = -EINVAL;
|
|
}
|
|
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
|
|
btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
|
|
le32_to_cpu(sb->__unused_leafsize), nodesize);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Root alignment check */
|
|
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "tree_root block unaligned: %llu",
|
|
btrfs_super_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
|
|
btrfs_super_chunk_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "log_root block unaligned: %llu",
|
|
btrfs_super_log_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
|
|
BTRFS_FSID_SIZE) != 0) {
|
|
btrfs_err(fs_info,
|
|
"dev_item UUID does not match metadata fsid: %pU != %pU",
|
|
fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
|
|
* done later
|
|
*/
|
|
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
|
|
btrfs_err(fs_info, "bytes_used is too small %llu",
|
|
btrfs_super_bytes_used(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
|
|
btrfs_err(fs_info, "invalid stripesize %u",
|
|
btrfs_super_stripesize(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_num_devices(sb) > (1UL << 31))
|
|
btrfs_warn(fs_info, "suspicious number of devices: %llu",
|
|
btrfs_super_num_devices(sb));
|
|
if (btrfs_super_num_devices(sb) == 0) {
|
|
btrfs_err(fs_info, "number of devices is 0");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (mirror_num >= 0 &&
|
|
btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
|
|
btrfs_err(fs_info, "super offset mismatch %llu != %u",
|
|
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Obvious sys_chunk_array corruptions, it must hold at least one key
|
|
* and one chunk
|
|
*/
|
|
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
|
|
btrfs_err(fs_info, "system chunk array too big %u > %u",
|
|
btrfs_super_sys_array_size(sb),
|
|
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
|
|
+ sizeof(struct btrfs_chunk)) {
|
|
btrfs_err(fs_info, "system chunk array too small %u < %zu",
|
|
btrfs_super_sys_array_size(sb),
|
|
sizeof(struct btrfs_disk_key)
|
|
+ sizeof(struct btrfs_chunk));
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The generation is a global counter, we'll trust it more than the others
|
|
* but it's still possible that it's the one that's wrong.
|
|
*/
|
|
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
|
|
btrfs_warn(fs_info,
|
|
"suspicious: generation < chunk_root_generation: %llu < %llu",
|
|
btrfs_super_generation(sb),
|
|
btrfs_super_chunk_root_generation(sb));
|
|
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
|
|
&& btrfs_super_cache_generation(sb) != (u64)-1)
|
|
btrfs_warn(fs_info,
|
|
"suspicious: generation < cache_generation: %llu < %llu",
|
|
btrfs_super_generation(sb),
|
|
btrfs_super_cache_generation(sb));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Validation of super block at mount time.
|
|
* Some checks already done early at mount time, like csum type and incompat
|
|
* flags will be skipped.
|
|
*/
|
|
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
return validate_super(fs_info, fs_info->super_copy, 0);
|
|
}
|
|
|
|
/*
|
|
* Validation of super block at write time.
|
|
* Some checks like bytenr check will be skipped as their values will be
|
|
* overwritten soon.
|
|
* Extra checks like csum type and incompat flags will be done here.
|
|
*/
|
|
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *sb)
|
|
{
|
|
int ret;
|
|
|
|
ret = validate_super(fs_info, sb, -1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
|
|
ret = -EUCLEAN;
|
|
btrfs_err(fs_info, "invalid csum type, has %u want %u",
|
|
btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
|
|
goto out;
|
|
}
|
|
if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
|
|
ret = -EUCLEAN;
|
|
btrfs_err(fs_info,
|
|
"invalid incompat flags, has 0x%llx valid mask 0x%llx",
|
|
btrfs_super_incompat_flags(sb),
|
|
(unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
|
|
goto out;
|
|
}
|
|
out:
|
|
if (ret < 0)
|
|
btrfs_err(fs_info,
|
|
"super block corruption detected before writing it to disk");
|
|
return ret;
|
|
}
|
|
|
|
int __cold open_ctree(struct super_block *sb,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
char *options)
|
|
{
|
|
u32 sectorsize;
|
|
u32 nodesize;
|
|
u32 stripesize;
|
|
u64 generation;
|
|
u64 features;
|
|
u16 csum_type;
|
|
struct btrfs_key location;
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *tree_root;
|
|
struct btrfs_root *chunk_root;
|
|
int ret;
|
|
int err = -EINVAL;
|
|
int num_backups_tried = 0;
|
|
int backup_index = 0;
|
|
int clear_free_space_tree = 0;
|
|
int level;
|
|
|
|
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!tree_root || !chunk_root) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
ret = init_srcu_struct(&fs_info->subvol_srcu);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_srcu;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_dio_bytes;
|
|
}
|
|
fs_info->dirty_metadata_batch = PAGE_SIZE *
|
|
(1 + ilog2(nr_cpu_ids));
|
|
|
|
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_dirty_metadata_bytes;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
|
|
GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_delalloc_bytes;
|
|
}
|
|
|
|
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
|
|
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&fs_info->trans_list);
|
|
INIT_LIST_HEAD(&fs_info->dead_roots);
|
|
INIT_LIST_HEAD(&fs_info->delayed_iputs);
|
|
INIT_LIST_HEAD(&fs_info->delalloc_roots);
|
|
INIT_LIST_HEAD(&fs_info->caching_block_groups);
|
|
spin_lock_init(&fs_info->delalloc_root_lock);
|
|
spin_lock_init(&fs_info->trans_lock);
|
|
spin_lock_init(&fs_info->fs_roots_radix_lock);
|
|
spin_lock_init(&fs_info->delayed_iput_lock);
|
|
spin_lock_init(&fs_info->defrag_inodes_lock);
|
|
spin_lock_init(&fs_info->tree_mod_seq_lock);
|
|
spin_lock_init(&fs_info->super_lock);
|
|
spin_lock_init(&fs_info->buffer_lock);
|
|
spin_lock_init(&fs_info->unused_bgs_lock);
|
|
rwlock_init(&fs_info->tree_mod_log_lock);
|
|
mutex_init(&fs_info->unused_bg_unpin_mutex);
|
|
mutex_init(&fs_info->delete_unused_bgs_mutex);
|
|
mutex_init(&fs_info->reloc_mutex);
|
|
mutex_init(&fs_info->delalloc_root_mutex);
|
|
seqlock_init(&fs_info->profiles_lock);
|
|
|
|
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
|
|
INIT_LIST_HEAD(&fs_info->space_info);
|
|
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
|
|
INIT_LIST_HEAD(&fs_info->unused_bgs);
|
|
extent_map_tree_init(&fs_info->mapping_tree);
|
|
btrfs_init_block_rsv(&fs_info->global_block_rsv,
|
|
BTRFS_BLOCK_RSV_GLOBAL);
|
|
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
|
|
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
|
|
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
|
|
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
|
|
BTRFS_BLOCK_RSV_DELOPS);
|
|
btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
|
|
BTRFS_BLOCK_RSV_DELREFS);
|
|
|
|
atomic_set(&fs_info->async_delalloc_pages, 0);
|
|
atomic_set(&fs_info->defrag_running, 0);
|
|
atomic_set(&fs_info->reada_works_cnt, 0);
|
|
atomic_set(&fs_info->nr_delayed_iputs, 0);
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
fs_info->sb = sb;
|
|
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
|
|
fs_info->metadata_ratio = 0;
|
|
fs_info->defrag_inodes = RB_ROOT;
|
|
atomic64_set(&fs_info->free_chunk_space, 0);
|
|
fs_info->tree_mod_log = RB_ROOT;
|
|
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
|
|
fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
|
|
/* readahead state */
|
|
INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
|
|
spin_lock_init(&fs_info->reada_lock);
|
|
btrfs_init_ref_verify(fs_info);
|
|
|
|
fs_info->thread_pool_size = min_t(unsigned long,
|
|
num_online_cpus() + 2, 8);
|
|
|
|
INIT_LIST_HEAD(&fs_info->ordered_roots);
|
|
spin_lock_init(&fs_info->ordered_root_lock);
|
|
|
|
fs_info->btree_inode = new_inode(sb);
|
|
if (!fs_info->btree_inode) {
|
|
err = -ENOMEM;
|
|
goto fail_bio_counter;
|
|
}
|
|
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
|
|
|
|
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
|
|
GFP_KERNEL);
|
|
if (!fs_info->delayed_root) {
|
|
err = -ENOMEM;
|
|
goto fail_iput;
|
|
}
|
|
btrfs_init_delayed_root(fs_info->delayed_root);
|
|
|
|
btrfs_init_scrub(fs_info);
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
fs_info->check_integrity_print_mask = 0;
|
|
#endif
|
|
btrfs_init_balance(fs_info);
|
|
btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
|
|
|
|
sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
|
|
sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
|
|
|
|
btrfs_init_btree_inode(fs_info);
|
|
|
|
spin_lock_init(&fs_info->block_group_cache_lock);
|
|
fs_info->block_group_cache_tree = RB_ROOT;
|
|
fs_info->first_logical_byte = (u64)-1;
|
|
|
|
extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
|
|
IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
|
|
extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
|
|
IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
|
|
|
|
mutex_init(&fs_info->ordered_operations_mutex);
|
|
mutex_init(&fs_info->tree_log_mutex);
|
|
mutex_init(&fs_info->chunk_mutex);
|
|
mutex_init(&fs_info->transaction_kthread_mutex);
|
|
mutex_init(&fs_info->cleaner_mutex);
|
|
mutex_init(&fs_info->ro_block_group_mutex);
|
|
init_rwsem(&fs_info->commit_root_sem);
|
|
init_rwsem(&fs_info->cleanup_work_sem);
|
|
init_rwsem(&fs_info->subvol_sem);
|
|
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
|
|
|
|
btrfs_init_dev_replace_locks(fs_info);
|
|
btrfs_init_qgroup(fs_info);
|
|
|
|
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
|
|
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
|
|
|
|
init_waitqueue_head(&fs_info->transaction_throttle);
|
|
init_waitqueue_head(&fs_info->transaction_wait);
|
|
init_waitqueue_head(&fs_info->transaction_blocked_wait);
|
|
init_waitqueue_head(&fs_info->async_submit_wait);
|
|
init_waitqueue_head(&fs_info->delayed_iputs_wait);
|
|
|
|
/* Usable values until the real ones are cached from the superblock */
|
|
fs_info->nodesize = 4096;
|
|
fs_info->sectorsize = 4096;
|
|
fs_info->stripesize = 4096;
|
|
|
|
spin_lock_init(&fs_info->swapfile_pins_lock);
|
|
fs_info->swapfile_pins = RB_ROOT;
|
|
|
|
fs_info->send_in_progress = 0;
|
|
|
|
ret = btrfs_alloc_stripe_hash_table(fs_info);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
|
|
invalidate_bdev(fs_devices->latest_bdev);
|
|
|
|
/*
|
|
* Read super block and check the signature bytes only
|
|
*/
|
|
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
|
|
if (IS_ERR(bh)) {
|
|
err = PTR_ERR(bh);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* Verify the type first, if that or the the checksum value are
|
|
* corrupted, we'll find out
|
|
*/
|
|
csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
|
|
if (!btrfs_supported_super_csum(csum_type)) {
|
|
btrfs_err(fs_info, "unsupported checksum algorithm: %u",
|
|
csum_type);
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
ret = btrfs_init_csum_hash(fs_info, csum_type);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* We want to check superblock checksum, the type is stored inside.
|
|
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
|
|
*/
|
|
if (btrfs_check_super_csum(fs_info, bh->b_data)) {
|
|
btrfs_err(fs_info, "superblock checksum mismatch");
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
goto fail_csum;
|
|
}
|
|
|
|
/*
|
|
* super_copy is zeroed at allocation time and we never touch the
|
|
* following bytes up to INFO_SIZE, the checksum is calculated from
|
|
* the whole block of INFO_SIZE
|
|
*/
|
|
memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
|
|
brelse(bh);
|
|
|
|
disk_super = fs_info->super_copy;
|
|
|
|
ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
|
|
BTRFS_FSID_SIZE));
|
|
|
|
if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
|
|
ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
|
|
fs_info->super_copy->metadata_uuid,
|
|
BTRFS_FSID_SIZE));
|
|
}
|
|
|
|
features = btrfs_super_flags(disk_super);
|
|
if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
|
|
features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
|
|
btrfs_set_super_flags(disk_super, features);
|
|
btrfs_info(fs_info,
|
|
"found metadata UUID change in progress flag, clearing");
|
|
}
|
|
|
|
memcpy(fs_info->super_for_commit, fs_info->super_copy,
|
|
sizeof(*fs_info->super_for_commit));
|
|
|
|
ret = btrfs_validate_mount_super(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "superblock contains fatal errors");
|
|
err = -EINVAL;
|
|
goto fail_csum;
|
|
}
|
|
|
|
if (!btrfs_super_root(disk_super))
|
|
goto fail_csum;
|
|
|
|
/* check FS state, whether FS is broken. */
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
|
|
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
|
|
|
|
/*
|
|
* run through our array of backup supers and setup
|
|
* our ring pointer to the oldest one
|
|
*/
|
|
generation = btrfs_super_generation(disk_super);
|
|
find_oldest_super_backup(fs_info, generation);
|
|
|
|
/*
|
|
* In the long term, we'll store the compression type in the super
|
|
* block, and it'll be used for per file compression control.
|
|
*/
|
|
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
|
|
|
|
ret = btrfs_parse_options(fs_info, options, sb->s_flags);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_csum;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super) &
|
|
~BTRFS_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
btrfs_err(fs_info,
|
|
"cannot mount because of unsupported optional features (%llx)",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_csum;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super);
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
|
|
if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
|
|
else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
|
|
|
|
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
|
|
btrfs_info(fs_info, "has skinny extents");
|
|
|
|
/*
|
|
* flag our filesystem as having big metadata blocks if
|
|
* they are bigger than the page size
|
|
*/
|
|
if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
|
|
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
|
|
btrfs_info(fs_info,
|
|
"flagging fs with big metadata feature");
|
|
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
|
|
}
|
|
|
|
nodesize = btrfs_super_nodesize(disk_super);
|
|
sectorsize = btrfs_super_sectorsize(disk_super);
|
|
stripesize = sectorsize;
|
|
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
|
|
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
|
|
|
|
/* Cache block sizes */
|
|
fs_info->nodesize = nodesize;
|
|
fs_info->sectorsize = sectorsize;
|
|
fs_info->stripesize = stripesize;
|
|
|
|
/*
|
|
* mixed block groups end up with duplicate but slightly offset
|
|
* extent buffers for the same range. It leads to corruptions
|
|
*/
|
|
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
|
|
(sectorsize != nodesize)) {
|
|
btrfs_err(fs_info,
|
|
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
|
|
nodesize, sectorsize);
|
|
goto fail_csum;
|
|
}
|
|
|
|
/*
|
|
* Needn't use the lock because there is no other task which will
|
|
* update the flag.
|
|
*/
|
|
btrfs_set_super_incompat_flags(disk_super, features);
|
|
|
|
features = btrfs_super_compat_ro_flags(disk_super) &
|
|
~BTRFS_FEATURE_COMPAT_RO_SUPP;
|
|
if (!sb_rdonly(sb) && features) {
|
|
btrfs_err(fs_info,
|
|
"cannot mount read-write because of unsupported optional features (%llx)",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_csum;
|
|
}
|
|
|
|
ret = btrfs_init_workqueues(fs_info, fs_devices);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
sb->s_bdi->congested_fn = btrfs_congested_fn;
|
|
sb->s_bdi->congested_data = fs_info;
|
|
sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
|
|
sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
|
|
sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
|
|
sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
|
|
|
|
sb->s_blocksize = sectorsize;
|
|
sb->s_blocksize_bits = blksize_bits(sectorsize);
|
|
memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_read_sys_array(fs_info);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read the system array: %d", ret);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
generation = btrfs_super_chunk_root_generation(disk_super);
|
|
level = btrfs_super_chunk_root_level(disk_super);
|
|
|
|
__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
|
|
|
|
chunk_root->node = read_tree_block(fs_info,
|
|
btrfs_super_chunk_root(disk_super),
|
|
generation, level, NULL);
|
|
if (IS_ERR(chunk_root->node) ||
|
|
!extent_buffer_uptodate(chunk_root->node)) {
|
|
btrfs_err(fs_info, "failed to read chunk root");
|
|
if (!IS_ERR(chunk_root->node))
|
|
free_extent_buffer(chunk_root->node);
|
|
chunk_root->node = NULL;
|
|
goto fail_tree_roots;
|
|
}
|
|
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
|
|
chunk_root->commit_root = btrfs_root_node(chunk_root);
|
|
|
|
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
|
|
|
|
ret = btrfs_read_chunk_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
/*
|
|
* Keep the devid that is marked to be the target device for the
|
|
* device replace procedure
|
|
*/
|
|
btrfs_free_extra_devids(fs_devices, 0);
|
|
|
|
if (!fs_devices->latest_bdev) {
|
|
btrfs_err(fs_info, "failed to read devices");
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
retry_root_backup:
|
|
generation = btrfs_super_generation(disk_super);
|
|
level = btrfs_super_root_level(disk_super);
|
|
|
|
tree_root->node = read_tree_block(fs_info,
|
|
btrfs_super_root(disk_super),
|
|
generation, level, NULL);
|
|
if (IS_ERR(tree_root->node) ||
|
|
!extent_buffer_uptodate(tree_root->node)) {
|
|
btrfs_warn(fs_info, "failed to read tree root");
|
|
if (!IS_ERR(tree_root->node))
|
|
free_extent_buffer(tree_root->node);
|
|
tree_root->node = NULL;
|
|
goto recovery_tree_root;
|
|
}
|
|
|
|
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
|
|
tree_root->commit_root = btrfs_root_node(tree_root);
|
|
btrfs_set_root_refs(&tree_root->root_item, 1);
|
|
|
|
mutex_lock(&tree_root->objectid_mutex);
|
|
ret = btrfs_find_highest_objectid(tree_root,
|
|
&tree_root->highest_objectid);
|
|
if (ret) {
|
|
mutex_unlock(&tree_root->objectid_mutex);
|
|
goto recovery_tree_root;
|
|
}
|
|
|
|
ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
|
|
|
|
mutex_unlock(&tree_root->objectid_mutex);
|
|
|
|
ret = btrfs_read_roots(fs_info);
|
|
if (ret)
|
|
goto recovery_tree_root;
|
|
|
|
fs_info->generation = generation;
|
|
fs_info->last_trans_committed = generation;
|
|
|
|
ret = btrfs_verify_dev_extents(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info,
|
|
"failed to verify dev extents against chunks: %d",
|
|
ret);
|
|
goto fail_block_groups;
|
|
}
|
|
ret = btrfs_recover_balance(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to recover balance: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_stats(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_replace(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
btrfs_free_extra_devids(fs_devices, 1);
|
|
|
|
ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
|
|
ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_sysfs_add_device(fs_devices);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs device interface: %d",
|
|
ret);
|
|
goto fail_fsdev_sysfs;
|
|
}
|
|
|
|
ret = btrfs_sysfs_add_mounted(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
|
|
goto fail_fsdev_sysfs;
|
|
}
|
|
|
|
ret = btrfs_init_space_info(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to initialize space info: %d", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
ret = btrfs_read_block_groups(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read block groups: %d", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
|
|
btrfs_warn(fs_info,
|
|
"writable mount is not allowed due to too many missing devices");
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
|
|
"btrfs-cleaner");
|
|
if (IS_ERR(fs_info->cleaner_kthread))
|
|
goto fail_sysfs;
|
|
|
|
fs_info->transaction_kthread = kthread_run(transaction_kthread,
|
|
tree_root,
|
|
"btrfs-transaction");
|
|
if (IS_ERR(fs_info->transaction_kthread))
|
|
goto fail_cleaner;
|
|
|
|
if (!btrfs_test_opt(fs_info, NOSSD) &&
|
|
!fs_info->fs_devices->rotating) {
|
|
btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
|
|
}
|
|
|
|
/*
|
|
* Mount does not set all options immediately, we can do it now and do
|
|
* not have to wait for transaction commit
|
|
*/
|
|
btrfs_apply_pending_changes(fs_info);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
|
|
ret = btrfsic_mount(fs_info, fs_devices,
|
|
btrfs_test_opt(fs_info,
|
|
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
|
|
1 : 0,
|
|
fs_info->check_integrity_print_mask);
|
|
if (ret)
|
|
btrfs_warn(fs_info,
|
|
"failed to initialize integrity check module: %d",
|
|
ret);
|
|
}
|
|
#endif
|
|
ret = btrfs_read_qgroup_config(fs_info);
|
|
if (ret)
|
|
goto fail_trans_kthread;
|
|
|
|
if (btrfs_build_ref_tree(fs_info))
|
|
btrfs_err(fs_info, "couldn't build ref tree");
|
|
|
|
/* do not make disk changes in broken FS or nologreplay is given */
|
|
if (btrfs_super_log_root(disk_super) != 0 &&
|
|
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
|
|
ret = btrfs_replay_log(fs_info, fs_devices);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_find_orphan_roots(fs_info);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
if (!sb_rdonly(sb)) {
|
|
ret = btrfs_cleanup_fs_roots(fs_info);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
ret = btrfs_recover_relocation(tree_root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "failed to recover relocation: %d",
|
|
ret);
|
|
err = -EINVAL;
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
location.objectid = BTRFS_FS_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
|
|
if (IS_ERR(fs_info->fs_root)) {
|
|
err = PTR_ERR(fs_info->fs_root);
|
|
btrfs_warn(fs_info, "failed to read fs tree: %d", err);
|
|
goto fail_qgroup;
|
|
}
|
|
|
|
if (sb_rdonly(sb))
|
|
return 0;
|
|
|
|
if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
|
|
btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
clear_free_space_tree = 1;
|
|
} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
|
|
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
|
|
btrfs_warn(fs_info, "free space tree is invalid");
|
|
clear_free_space_tree = 1;
|
|
}
|
|
|
|
if (clear_free_space_tree) {
|
|
btrfs_info(fs_info, "clearing free space tree");
|
|
ret = btrfs_clear_free_space_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to clear free space tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
|
|
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
btrfs_info(fs_info, "creating free space tree");
|
|
ret = btrfs_create_free_space_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to create free space tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
|
|
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
|
|
ret = btrfs_resume_balance_async(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info, "failed to resume balance: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_resume_dev_replace_async(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_qgroup_rescan_resume(fs_info);
|
|
|
|
if (!fs_info->uuid_root) {
|
|
btrfs_info(fs_info, "creating UUID tree");
|
|
ret = btrfs_create_uuid_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to create the UUID tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
|
|
fs_info->generation !=
|
|
btrfs_super_uuid_tree_generation(disk_super)) {
|
|
btrfs_info(fs_info, "checking UUID tree");
|
|
ret = btrfs_check_uuid_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to check the UUID tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
} else {
|
|
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
|
|
}
|
|
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
|
|
|
|
/*
|
|
* backuproot only affect mount behavior, and if open_ctree succeeded,
|
|
* no need to keep the flag
|
|
*/
|
|
btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
|
|
|
|
return 0;
|
|
|
|
fail_qgroup:
|
|
btrfs_free_qgroup_config(fs_info);
|
|
fail_trans_kthread:
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
btrfs_cleanup_transaction(fs_info);
|
|
btrfs_free_fs_roots(fs_info);
|
|
fail_cleaner:
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
/*
|
|
* make sure we're done with the btree inode before we stop our
|
|
* kthreads
|
|
*/
|
|
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sysfs:
|
|
btrfs_sysfs_remove_mounted(fs_info);
|
|
|
|
fail_fsdev_sysfs:
|
|
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
|
|
|
|
fail_block_groups:
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
fail_tree_roots:
|
|
free_root_pointers(fs_info, 1);
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sb_buffer:
|
|
btrfs_stop_all_workers(fs_info);
|
|
btrfs_free_block_groups(fs_info);
|
|
fail_csum:
|
|
btrfs_free_csum_hash(fs_info);
|
|
fail_alloc:
|
|
fail_iput:
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
iput(fs_info->btree_inode);
|
|
fail_bio_counter:
|
|
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
|
|
fail_delalloc_bytes:
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
fail_dirty_metadata_bytes:
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
fail_dio_bytes:
|
|
percpu_counter_destroy(&fs_info->dio_bytes);
|
|
fail_srcu:
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
fail:
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
return err;
|
|
|
|
recovery_tree_root:
|
|
if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
|
|
goto fail_tree_roots;
|
|
|
|
free_root_pointers(fs_info, 0);
|
|
|
|
/* don't use the log in recovery mode, it won't be valid */
|
|
btrfs_set_super_log_root(disk_super, 0);
|
|
|
|
/* we can't trust the free space cache either */
|
|
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
|
|
|
|
ret = next_root_backup(fs_info, fs_info->super_copy,
|
|
&num_backups_tried, &backup_index);
|
|
if (ret == -1)
|
|
goto fail_block_groups;
|
|
goto retry_root_backup;
|
|
}
|
|
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
|
|
|
|
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
struct btrfs_device *device = (struct btrfs_device *)
|
|
bh->b_private;
|
|
|
|
btrfs_warn_rl_in_rcu(device->fs_info,
|
|
"lost page write due to IO error on %s",
|
|
rcu_str_deref(device->name));
|
|
/* note, we don't set_buffer_write_io_error because we have
|
|
* our own ways of dealing with the IO errors
|
|
*/
|
|
clear_buffer_uptodate(bh);
|
|
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
|
|
struct buffer_head **bh_ret)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *super;
|
|
u64 bytenr;
|
|
|
|
bytenr = btrfs_sb_offset(copy_num);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
|
|
return -EINVAL;
|
|
|
|
bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
|
|
/*
|
|
* If we fail to read from the underlying devices, as of now
|
|
* the best option we have is to mark it EIO.
|
|
*/
|
|
if (!bh)
|
|
return -EIO;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
if (btrfs_super_bytenr(super) != bytenr ||
|
|
btrfs_super_magic(super) != BTRFS_MAGIC) {
|
|
brelse(bh);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*bh_ret = bh;
|
|
return 0;
|
|
}
|
|
|
|
|
|
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *latest = NULL;
|
|
struct btrfs_super_block *super;
|
|
int i;
|
|
u64 transid = 0;
|
|
int ret = -EINVAL;
|
|
|
|
/* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
for (i = 0; i < 1; i++) {
|
|
ret = btrfs_read_dev_one_super(bdev, i, &bh);
|
|
if (ret)
|
|
continue;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
|
|
if (!latest || btrfs_super_generation(super) > transid) {
|
|
brelse(latest);
|
|
latest = bh;
|
|
transid = btrfs_super_generation(super);
|
|
} else {
|
|
brelse(bh);
|
|
}
|
|
}
|
|
|
|
if (!latest)
|
|
return ERR_PTR(ret);
|
|
|
|
return latest;
|
|
}
|
|
|
|
/*
|
|
* Write superblock @sb to the @device. Do not wait for completion, all the
|
|
* buffer heads we write are pinned.
|
|
*
|
|
* Write @max_mirrors copies of the superblock, where 0 means default that fit
|
|
* the expected device size at commit time. Note that max_mirrors must be
|
|
* same for write and wait phases.
|
|
*
|
|
* Return number of errors when buffer head is not found or submission fails.
|
|
*/
|
|
static int write_dev_supers(struct btrfs_device *device,
|
|
struct btrfs_super_block *sb, int max_mirrors)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int ret;
|
|
int errors = 0;
|
|
u64 bytenr;
|
|
int op_flags;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
shash->tfm = fs_info->csum_shash;
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
device->commit_total_bytes)
|
|
break;
|
|
|
|
btrfs_set_super_bytenr(sb, bytenr);
|
|
|
|
crypto_shash_init(shash);
|
|
crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
|
|
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
crypto_shash_final(shash, sb->csum);
|
|
|
|
/* One reference for us, and we leave it for the caller */
|
|
bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
btrfs_err(device->fs_info,
|
|
"couldn't get super buffer head for bytenr %llu",
|
|
bytenr);
|
|
errors++;
|
|
continue;
|
|
}
|
|
|
|
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
/* one reference for submit_bh */
|
|
get_bh(bh);
|
|
|
|
set_buffer_uptodate(bh);
|
|
lock_buffer(bh);
|
|
bh->b_end_io = btrfs_end_buffer_write_sync;
|
|
bh->b_private = device;
|
|
|
|
/*
|
|
* we fua the first super. The others we allow
|
|
* to go down lazy.
|
|
*/
|
|
op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
|
|
if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
|
|
op_flags |= REQ_FUA;
|
|
ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
|
|
if (ret)
|
|
errors++;
|
|
}
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* Wait for write completion of superblocks done by write_dev_supers,
|
|
* @max_mirrors same for write and wait phases.
|
|
*
|
|
* Return number of errors when buffer head is not found or not marked up to
|
|
* date.
|
|
*/
|
|
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
|
|
{
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int errors = 0;
|
|
bool primary_failed = false;
|
|
u64 bytenr;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
device->commit_total_bytes)
|
|
break;
|
|
|
|
bh = __find_get_block(device->bdev,
|
|
bytenr / BTRFS_BDEV_BLOCKSIZE,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
errors++;
|
|
if (i == 0)
|
|
primary_failed = true;
|
|
continue;
|
|
}
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh)) {
|
|
errors++;
|
|
if (i == 0)
|
|
primary_failed = true;
|
|
}
|
|
|
|
/* drop our reference */
|
|
brelse(bh);
|
|
|
|
/* drop the reference from the writing run */
|
|
brelse(bh);
|
|
}
|
|
|
|
/* log error, force error return */
|
|
if (primary_failed) {
|
|
btrfs_err(device->fs_info, "error writing primary super block to device %llu",
|
|
device->devid);
|
|
return -1;
|
|
}
|
|
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* endio for the write_dev_flush, this will wake anyone waiting
|
|
* for the barrier when it is done
|
|
*/
|
|
static void btrfs_end_empty_barrier(struct bio *bio)
|
|
{
|
|
complete(bio->bi_private);
|
|
}
|
|
|
|
/*
|
|
* Submit a flush request to the device if it supports it. Error handling is
|
|
* done in the waiting counterpart.
|
|
*/
|
|
static void write_dev_flush(struct btrfs_device *device)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(device->bdev);
|
|
struct bio *bio = device->flush_bio;
|
|
|
|
if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
|
|
return;
|
|
|
|
bio_reset(bio);
|
|
bio->bi_end_io = btrfs_end_empty_barrier;
|
|
bio_set_dev(bio, device->bdev);
|
|
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
|
|
init_completion(&device->flush_wait);
|
|
bio->bi_private = &device->flush_wait;
|
|
|
|
btrfsic_submit_bio(bio);
|
|
set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
|
|
}
|
|
|
|
/*
|
|
* If the flush bio has been submitted by write_dev_flush, wait for it.
|
|
*/
|
|
static blk_status_t wait_dev_flush(struct btrfs_device *device)
|
|
{
|
|
struct bio *bio = device->flush_bio;
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
|
|
return BLK_STS_OK;
|
|
|
|
clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
|
|
wait_for_completion_io(&device->flush_wait);
|
|
|
|
return bio->bi_status;
|
|
}
|
|
|
|
static int check_barrier_error(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!btrfs_check_rw_degradable(fs_info, NULL))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* send an empty flush down to each device in parallel,
|
|
* then wait for them
|
|
*/
|
|
static int barrier_all_devices(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
int errors_wait = 0;
|
|
blk_status_t ret;
|
|
|
|
lockdep_assert_held(&info->fs_devices->device_list_mutex);
|
|
/* send down all the barriers */
|
|
head = &info->fs_devices->devices;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
|
|
continue;
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
write_dev_flush(dev);
|
|
dev->last_flush_error = BLK_STS_OK;
|
|
}
|
|
|
|
/* wait for all the barriers */
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
|
|
continue;
|
|
if (!dev->bdev) {
|
|
errors_wait++;
|
|
continue;
|
|
}
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
ret = wait_dev_flush(dev);
|
|
if (ret) {
|
|
dev->last_flush_error = ret;
|
|
btrfs_dev_stat_inc_and_print(dev,
|
|
BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
errors_wait++;
|
|
}
|
|
}
|
|
|
|
if (errors_wait) {
|
|
/*
|
|
* At some point we need the status of all disks
|
|
* to arrive at the volume status. So error checking
|
|
* is being pushed to a separate loop.
|
|
*/
|
|
return check_barrier_error(info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
|
|
{
|
|
int raid_type;
|
|
int min_tolerated = INT_MAX;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
|
|
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
|
|
min_tolerated = min_t(int, min_tolerated,
|
|
btrfs_raid_array[BTRFS_RAID_SINGLE].
|
|
tolerated_failures);
|
|
|
|
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
|
|
if (raid_type == BTRFS_RAID_SINGLE)
|
|
continue;
|
|
if (!(flags & btrfs_raid_array[raid_type].bg_flag))
|
|
continue;
|
|
min_tolerated = min_t(int, min_tolerated,
|
|
btrfs_raid_array[raid_type].
|
|
tolerated_failures);
|
|
}
|
|
|
|
if (min_tolerated == INT_MAX) {
|
|
pr_warn("BTRFS: unknown raid flag: %llu", flags);
|
|
min_tolerated = 0;
|
|
}
|
|
|
|
return min_tolerated;
|
|
}
|
|
|
|
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_super_block *sb;
|
|
struct btrfs_dev_item *dev_item;
|
|
int ret;
|
|
int do_barriers;
|
|
int max_errors;
|
|
int total_errors = 0;
|
|
u64 flags;
|
|
|
|
do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
|
|
|
|
/*
|
|
* max_mirrors == 0 indicates we're from commit_transaction,
|
|
* not from fsync where the tree roots in fs_info have not
|
|
* been consistent on disk.
|
|
*/
|
|
if (max_mirrors == 0)
|
|
backup_super_roots(fs_info);
|
|
|
|
sb = fs_info->super_for_commit;
|
|
dev_item = &sb->dev_item;
|
|
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
head = &fs_info->fs_devices->devices;
|
|
max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
|
|
|
|
if (do_barriers) {
|
|
ret = barrier_all_devices(fs_info);
|
|
if (ret) {
|
|
mutex_unlock(
|
|
&fs_info->fs_devices->device_list_mutex);
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"errors while submitting device barriers.");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (!dev->bdev) {
|
|
total_errors++;
|
|
continue;
|
|
}
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
btrfs_set_stack_device_generation(dev_item, 0);
|
|
btrfs_set_stack_device_type(dev_item, dev->type);
|
|
btrfs_set_stack_device_id(dev_item, dev->devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item,
|
|
dev->commit_total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item,
|
|
dev->commit_bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
|
|
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
|
|
BTRFS_FSID_SIZE);
|
|
|
|
flags = btrfs_super_flags(sb);
|
|
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
ret = btrfs_validate_write_super(fs_info, sb);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
btrfs_handle_fs_error(fs_info, -EUCLEAN,
|
|
"unexpected superblock corruption detected");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
ret = write_dev_supers(dev, sb, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
if (total_errors > max_errors) {
|
|
btrfs_err(fs_info, "%d errors while writing supers",
|
|
total_errors);
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
|
|
/* FUA is masked off if unsupported and can't be the reason */
|
|
btrfs_handle_fs_error(fs_info, -EIO,
|
|
"%d errors while writing supers",
|
|
total_errors);
|
|
return -EIO;
|
|
}
|
|
|
|
total_errors = 0;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
ret = wait_dev_supers(dev, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
if (total_errors > max_errors) {
|
|
btrfs_handle_fs_error(fs_info, -EIO,
|
|
"%d errors while writing supers",
|
|
total_errors);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Drop a fs root from the radix tree and free it. */
|
|
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_delete(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
synchronize_srcu(&fs_info->subvol_srcu);
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_free_log(NULL, root);
|
|
if (root->reloc_root) {
|
|
free_extent_buffer(root->reloc_root->node);
|
|
free_extent_buffer(root->reloc_root->commit_root);
|
|
btrfs_put_fs_root(root->reloc_root);
|
|
root->reloc_root = NULL;
|
|
}
|
|
}
|
|
|
|
if (root->free_ino_pinned)
|
|
__btrfs_remove_free_space_cache(root->free_ino_pinned);
|
|
if (root->free_ino_ctl)
|
|
__btrfs_remove_free_space_cache(root->free_ino_ctl);
|
|
btrfs_free_fs_root(root);
|
|
}
|
|
|
|
void btrfs_free_fs_root(struct btrfs_root *root)
|
|
{
|
|
iput(root->ino_cache_inode);
|
|
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
|
|
if (root->anon_dev)
|
|
free_anon_bdev(root->anon_dev);
|
|
if (root->subv_writers)
|
|
btrfs_free_subvolume_writers(root->subv_writers);
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root->free_ino_ctl);
|
|
kfree(root->free_ino_pinned);
|
|
btrfs_put_fs_root(root);
|
|
}
|
|
|
|
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 root_objectid = 0;
|
|
struct btrfs_root *gang[8];
|
|
int i = 0;
|
|
int err = 0;
|
|
unsigned int ret = 0;
|
|
int index;
|
|
|
|
while (1) {
|
|
index = srcu_read_lock(&fs_info->subvol_srcu);
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, root_objectid,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
break;
|
|
}
|
|
root_objectid = gang[ret - 1]->root_key.objectid + 1;
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
/* Avoid to grab roots in dead_roots */
|
|
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
|
|
gang[i] = NULL;
|
|
continue;
|
|
}
|
|
/* grab all the search result for later use */
|
|
gang[i] = btrfs_grab_fs_root(gang[i]);
|
|
}
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
if (!gang[i])
|
|
continue;
|
|
root_objectid = gang[i]->root_key.objectid;
|
|
err = btrfs_orphan_cleanup(gang[i]);
|
|
if (err)
|
|
break;
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
root_objectid++;
|
|
}
|
|
|
|
/* release the uncleaned roots due to error */
|
|
for (; i < ret; i++) {
|
|
if (gang[i])
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
|
|
/* wait until ongoing cleanup work done */
|
|
down_write(&fs_info->cleanup_work_sem);
|
|
up_write(&fs_info->cleanup_work_sem);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
return btrfs_commit_transaction(trans);
|
|
}
|
|
|
|
void __cold close_ctree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
|
|
set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
|
|
/*
|
|
* We don't want the cleaner to start new transactions, add more delayed
|
|
* iputs, etc. while we're closing. We can't use kthread_stop() yet
|
|
* because that frees the task_struct, and the transaction kthread might
|
|
* still try to wake up the cleaner.
|
|
*/
|
|
kthread_park(fs_info->cleaner_kthread);
|
|
|
|
/* wait for the qgroup rescan worker to stop */
|
|
btrfs_qgroup_wait_for_completion(fs_info, false);
|
|
|
|
/* wait for the uuid_scan task to finish */
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
/* avoid complains from lockdep et al., set sem back to initial state */
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
|
|
/* pause restriper - we want to resume on mount */
|
|
btrfs_pause_balance(fs_info);
|
|
|
|
btrfs_dev_replace_suspend_for_unmount(fs_info);
|
|
|
|
btrfs_scrub_cancel(fs_info);
|
|
|
|
/* wait for any defraggers to finish */
|
|
wait_event(fs_info->transaction_wait,
|
|
(atomic_read(&fs_info->defrag_running) == 0));
|
|
|
|
/* clear out the rbtree of defraggable inodes */
|
|
btrfs_cleanup_defrag_inodes(fs_info);
|
|
|
|
cancel_work_sync(&fs_info->async_reclaim_work);
|
|
|
|
if (!sb_rdonly(fs_info->sb)) {
|
|
/*
|
|
* The cleaner kthread is stopped, so do one final pass over
|
|
* unused block groups.
|
|
*/
|
|
btrfs_delete_unused_bgs(fs_info);
|
|
|
|
ret = btrfs_commit_super(fs_info);
|
|
if (ret)
|
|
btrfs_err(fs_info, "commit super ret %d", ret);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
|
|
test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
|
|
btrfs_error_commit_super(fs_info);
|
|
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
ASSERT(list_empty(&fs_info->delayed_iputs));
|
|
set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
|
|
|
|
btrfs_free_qgroup_config(fs_info);
|
|
ASSERT(list_empty(&fs_info->delalloc_roots));
|
|
|
|
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
|
|
btrfs_info(fs_info, "at unmount delalloc count %lld",
|
|
percpu_counter_sum(&fs_info->delalloc_bytes));
|
|
}
|
|
|
|
if (percpu_counter_sum(&fs_info->dio_bytes))
|
|
btrfs_info(fs_info, "at unmount dio bytes count %lld",
|
|
percpu_counter_sum(&fs_info->dio_bytes));
|
|
|
|
btrfs_sysfs_remove_mounted(fs_info);
|
|
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
|
|
|
|
btrfs_free_fs_roots(fs_info);
|
|
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
/*
|
|
* we must make sure there is not any read request to
|
|
* submit after we stopping all workers.
|
|
*/
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
btrfs_stop_all_workers(fs_info);
|
|
|
|
btrfs_free_block_groups(fs_info);
|
|
|
|
clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
|
|
free_root_pointers(fs_info, 1);
|
|
|
|
iput(fs_info->btree_inode);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
|
|
btrfsic_unmount(fs_info->fs_devices);
|
|
#endif
|
|
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
percpu_counter_destroy(&fs_info->dio_bytes);
|
|
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
|
|
btrfs_free_csum_hash(fs_info);
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
btrfs_free_ref_cache(fs_info);
|
|
}
|
|
|
|
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
int ret;
|
|
struct inode *btree_inode = buf->pages[0]->mapping->host;
|
|
|
|
ret = extent_buffer_uptodate(buf);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
|
|
parent_transid, atomic);
|
|
if (ret == -EAGAIN)
|
|
return ret;
|
|
return !ret;
|
|
}
|
|
|
|
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root;
|
|
u64 transid = btrfs_header_generation(buf);
|
|
int was_dirty;
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/*
|
|
* This is a fast path so only do this check if we have sanity tests
|
|
* enabled. Normal people shouldn't be using unmapped buffers as dirty
|
|
* outside of the sanity tests.
|
|
*/
|
|
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
|
|
return;
|
|
#endif
|
|
root = BTRFS_I(buf->pages[0]->mapping->host)->root;
|
|
fs_info = root->fs_info;
|
|
btrfs_assert_tree_locked(buf);
|
|
if (transid != fs_info->generation)
|
|
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
|
|
buf->start, transid, fs_info->generation);
|
|
was_dirty = set_extent_buffer_dirty(buf);
|
|
if (!was_dirty)
|
|
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
|
|
buf->len,
|
|
fs_info->dirty_metadata_batch);
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
/*
|
|
* Since btrfs_mark_buffer_dirty() can be called with item pointer set
|
|
* but item data not updated.
|
|
* So here we should only check item pointers, not item data.
|
|
*/
|
|
if (btrfs_header_level(buf) == 0 &&
|
|
btrfs_check_leaf_relaxed(buf)) {
|
|
btrfs_print_leaf(buf);
|
|
ASSERT(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
|
|
int flush_delayed)
|
|
{
|
|
/*
|
|
* looks as though older kernels can get into trouble with
|
|
* this code, they end up stuck in balance_dirty_pages forever
|
|
*/
|
|
int ret;
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
return;
|
|
|
|
if (flush_delayed)
|
|
btrfs_balance_delayed_items(fs_info);
|
|
|
|
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH,
|
|
fs_info->dirty_metadata_batch);
|
|
if (ret > 0) {
|
|
balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
|
|
}
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
|
|
{
|
|
__btrfs_btree_balance_dirty(fs_info, 1);
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
|
|
{
|
|
__btrfs_btree_balance_dirty(fs_info, 0);
|
|
}
|
|
|
|
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
return btree_read_extent_buffer_pages(buf, parent_transid,
|
|
level, first_key);
|
|
}
|
|
|
|
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/* cleanup FS via transaction */
|
|
btrfs_cleanup_transaction(fs_info);
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
|
|
down_write(&fs_info->cleanup_work_sem);
|
|
up_write(&fs_info->cleanup_work_sem);
|
|
}
|
|
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
/*
|
|
* This will just short circuit the ordered completion stuff which will
|
|
* make sure the ordered extent gets properly cleaned up.
|
|
*/
|
|
list_for_each_entry(ordered, &root->ordered_extents,
|
|
root_extent_list)
|
|
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
btrfs_destroy_ordered_extents(root);
|
|
|
|
cond_resched();
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
/*
|
|
* We need this here because if we've been flipped read-only we won't
|
|
* get sync() from the umount, so we need to make sure any ordered
|
|
* extents that haven't had their dirty pages IO start writeout yet
|
|
* actually get run and error out properly.
|
|
*/
|
|
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
|
|
}
|
|
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->delayed_refs;
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
if (atomic_read(&delayed_refs->num_entries) == 0) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_info(fs_info, "delayed_refs has NO entry");
|
|
return ret;
|
|
}
|
|
|
|
while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct rb_node *n;
|
|
bool pin_bytes = false;
|
|
|
|
head = rb_entry(node, struct btrfs_delayed_ref_head,
|
|
href_node);
|
|
if (btrfs_delayed_ref_lock(delayed_refs, head))
|
|
continue;
|
|
|
|
spin_lock(&head->lock);
|
|
while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
|
|
ref = rb_entry(n, struct btrfs_delayed_ref_node,
|
|
ref_node);
|
|
ref->in_tree = 0;
|
|
rb_erase_cached(&ref->ref_node, &head->ref_tree);
|
|
RB_CLEAR_NODE(&ref->ref_node);
|
|
if (!list_empty(&ref->add_list))
|
|
list_del(&ref->add_list);
|
|
atomic_dec(&delayed_refs->num_entries);
|
|
btrfs_put_delayed_ref(ref);
|
|
}
|
|
if (head->must_insert_reserved)
|
|
pin_bytes = true;
|
|
btrfs_free_delayed_extent_op(head->extent_op);
|
|
btrfs_delete_ref_head(delayed_refs, head);
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
if (pin_bytes)
|
|
btrfs_pin_extent(fs_info, head->bytenr,
|
|
head->num_bytes, 1);
|
|
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
|
|
btrfs_put_delayed_ref_head(head);
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_init(&root->delalloc_inodes, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
struct inode *inode = NULL;
|
|
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
__btrfs_del_delalloc_inode(root, btrfs_inode);
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
/*
|
|
* Make sure we get a live inode and that it'll not disappear
|
|
* meanwhile.
|
|
*/
|
|
inode = igrab(&btrfs_inode->vfs_inode);
|
|
if (inode) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
iput(inode);
|
|
}
|
|
spin_lock(&root->delalloc_lock);
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_init(&fs_info->delalloc_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
delalloc_root);
|
|
root = btrfs_grab_fs_root(root);
|
|
BUG_ON(!root);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
btrfs_destroy_delalloc_inodes(root);
|
|
btrfs_put_fs_root(root);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
|
|
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *eb;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
clear_extent_bits(dirty_pages, start, end, mark);
|
|
while (start <= end) {
|
|
eb = find_extent_buffer(fs_info, start);
|
|
start += fs_info->nodesize;
|
|
if (!eb)
|
|
continue;
|
|
wait_on_extent_buffer_writeback(eb);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
|
|
&eb->bflags))
|
|
clear_extent_buffer_dirty(eb);
|
|
free_extent_buffer_stale(eb);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *pinned_extents)
|
|
{
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
bool loop = true;
|
|
|
|
unpin = pinned_extents;
|
|
again:
|
|
while (1) {
|
|
struct extent_state *cached_state = NULL;
|
|
|
|
/*
|
|
* The btrfs_finish_extent_commit() may get the same range as
|
|
* ours between find_first_extent_bit and clear_extent_dirty.
|
|
* Hence, hold the unused_bg_unpin_mutex to avoid double unpin
|
|
* the same extent range.
|
|
*/
|
|
mutex_lock(&fs_info->unused_bg_unpin_mutex);
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY, &cached_state);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
break;
|
|
}
|
|
|
|
clear_extent_dirty(unpin, start, end, &cached_state);
|
|
free_extent_state(cached_state);
|
|
btrfs_error_unpin_extent_range(fs_info, start, end);
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
cond_resched();
|
|
}
|
|
|
|
if (loop) {
|
|
if (unpin == &fs_info->freed_extents[0])
|
|
unpin = &fs_info->freed_extents[1];
|
|
else
|
|
unpin = &fs_info->freed_extents[0];
|
|
loop = false;
|
|
goto again;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = cache->io_ctl.inode;
|
|
if (inode) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
BTRFS_I(inode)->generation = 0;
|
|
cache->io_ctl.inode = NULL;
|
|
iput(inode);
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
while (!list_empty(&cur_trans->dirty_bgs)) {
|
|
cache = list_first_entry(&cur_trans->dirty_bgs,
|
|
struct btrfs_block_group_cache,
|
|
dirty_list);
|
|
|
|
if (!list_empty(&cache->io_list)) {
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
list_del_init(&cache->io_list);
|
|
btrfs_cleanup_bg_io(cache);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
|
|
list_del_init(&cache->dirty_list);
|
|
spin_lock(&cache->lock);
|
|
cache->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&cache->lock);
|
|
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
btrfs_put_block_group(cache);
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
|
|
/*
|
|
* Refer to the definition of io_bgs member for details why it's safe
|
|
* to use it without any locking
|
|
*/
|
|
while (!list_empty(&cur_trans->io_bgs)) {
|
|
cache = list_first_entry(&cur_trans->io_bgs,
|
|
struct btrfs_block_group_cache,
|
|
io_list);
|
|
|
|
list_del_init(&cache->io_list);
|
|
spin_lock(&cache->lock);
|
|
cache->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&cache->lock);
|
|
btrfs_cleanup_bg_io(cache);
|
|
}
|
|
}
|
|
|
|
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_device *dev, *tmp;
|
|
|
|
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
|
|
ASSERT(list_empty(&cur_trans->dirty_bgs));
|
|
ASSERT(list_empty(&cur_trans->io_bgs));
|
|
|
|
list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
|
|
post_commit_list) {
|
|
list_del_init(&dev->post_commit_list);
|
|
}
|
|
|
|
btrfs_destroy_delayed_refs(cur_trans, fs_info);
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
wake_up(&fs_info->transaction_wait);
|
|
|
|
btrfs_destroy_delayed_inodes(fs_info);
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
|
|
btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
btrfs_destroy_pinned_extent(fs_info,
|
|
fs_info->pinned_extents);
|
|
|
|
cur_trans->state =TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
}
|
|
|
|
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_transaction *t;
|
|
|
|
mutex_lock(&fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
while (!list_empty(&fs_info->trans_list)) {
|
|
t = list_first_entry(&fs_info->trans_list,
|
|
struct btrfs_transaction, list);
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
refcount_inc(&t->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_wait_for_commit(fs_info, t->transid);
|
|
btrfs_put_transaction(t);
|
|
spin_lock(&fs_info->trans_lock);
|
|
continue;
|
|
}
|
|
if (t == fs_info->running_transaction) {
|
|
t->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
/*
|
|
* We wait for 0 num_writers since we don't hold a trans
|
|
* handle open currently for this transaction.
|
|
*/
|
|
wait_event(t->writer_wait,
|
|
atomic_read(&t->num_writers) == 0);
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
btrfs_cleanup_one_transaction(t, fs_info);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (t == fs_info->running_transaction)
|
|
fs_info->running_transaction = NULL;
|
|
list_del_init(&t->list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_put_transaction(t);
|
|
trace_btrfs_transaction_commit(fs_info->tree_root);
|
|
spin_lock(&fs_info->trans_lock);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_destroy_all_ordered_extents(fs_info);
|
|
btrfs_destroy_delayed_inodes(fs_info);
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
|
|
btrfs_destroy_all_delalloc_inodes(fs_info);
|
|
mutex_unlock(&fs_info->transaction_kthread_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct extent_io_ops btree_extent_io_ops = {
|
|
/* mandatory callbacks */
|
|
.submit_bio_hook = btree_submit_bio_hook,
|
|
.readpage_end_io_hook = btree_readpage_end_io_hook,
|
|
};
|