linux/drivers/cpufreq/amd-pstate.c
Huang Rui ec437d71db cpufreq: amd-pstate: Introduce a new AMD P-State driver to support future processors
AMD P-State is the AMD CPU performance scaling driver that introduces a
new CPU frequency control mechanism on AMD Zen based CPU series in Linux
kernel. The new mechanism is based on Collaborative processor
performance control (CPPC) which is finer grain frequency management
than legacy ACPI hardware P-States. Current AMD CPU platforms are using
the ACPI P-states driver to manage CPU frequency and clocks with
switching only in 3 P-states. AMD P-State is to replace the ACPI
P-states controls, allows a flexible, low-latency interface for the
Linux kernel to directly communicate the performance hints to hardware.

AMD P-State leverages the Linux kernel governors such as *schedutil*,
*ondemand*, etc. to manage the performance hints which are provided by CPPC
hardware functionality. The first version for AMD P-State is to support one
of the Zen3 processors, and we will support more in future after we verify
the hardware and SBIOS functionalities.

There are two types of hardware implementations for AMD P-State: one is full
MSR support and another is shared memory support. It can use
X86_FEATURE_CPPC feature flag to distinguish the different types.

Using the new AMD P-State method + kernel governors (*schedutil*,
*ondemand*, ...) to manage the frequency update is the most appropriate
bridge between AMD Zen based hardware processor and Linux kernel, the
processor is able to adjust to the most efficiency frequency according to
the kernel scheduler loading.

Please check the detailed CPU feature and MSR register description in
Processor Programming Reference (PPR) for AMD Family 19h Model 51h,
Revision A1 Processors:

https://www.amd.com/system/files/TechDocs/56569-A1-PUB.zip

Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 18:51:39 +01:00

387 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* amd-pstate.c - AMD Processor P-state Frequency Driver
*
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Huang Rui <ray.huang@amd.com>
*
* AMD P-State introduces a new CPU performance scaling design for AMD
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
* feature which works with the AMD SMU firmware providing a finer grained
* frequency control range. It is to replace the legacy ACPI P-States control,
* allows a flexible, low-latency interface for the Linux kernel to directly
* communicate the performance hints to hardware.
*
* AMD P-State is supported on recent AMD Zen base CPU series include some of
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
* P-State supported system. And there are two types of hardware implementations
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#define AMD_PSTATE_TRANSITION_LATENCY 0x20000
#define AMD_PSTATE_TRANSITION_DELAY 500
static struct cpufreq_driver amd_pstate_driver;
/**
* struct amd_cpudata - private CPU data for AMD P-State
* @cpu: CPU number
* @cppc_req_cached: cached performance request hints
* @highest_perf: the maximum performance an individual processor may reach,
* assuming ideal conditions
* @nominal_perf: the maximum sustained performance level of the processor,
* assuming ideal operating conditions
* @lowest_nonlinear_perf: the lowest performance level at which nonlinear power
* savings are achieved
* @lowest_perf: the absolute lowest performance level of the processor
* @max_freq: the frequency that mapped to highest_perf
* @min_freq: the frequency that mapped to lowest_perf
* @nominal_freq: the frequency that mapped to nominal_perf
* @lowest_nonlinear_freq: the frequency that mapped to lowest_nonlinear_perf
*
* The amd_cpudata is key private data for each CPU thread in AMD P-State, and
* represents all the attributes and goals that AMD P-State requests at runtime.
*/
struct amd_cpudata {
int cpu;
u64 cppc_req_cached;
u32 highest_perf;
u32 nominal_perf;
u32 lowest_nonlinear_perf;
u32 lowest_perf;
u32 max_freq;
u32 min_freq;
u32 nominal_freq;
u32 lowest_nonlinear_freq;
};
static inline int amd_pstate_enable(bool enable)
{
return wrmsrl_safe(MSR_AMD_CPPC_ENABLE, enable);
}
static int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
u64 cap1;
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
&cap1);
if (ret)
return ret;
/*
* TODO: Introduce AMD specific power feature.
*
* CPPC entry doesn't indicate the highest performance in some ASICs.
*/
WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
return 0;
}
static void amd_pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
if (fast_switch)
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
else
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
READ_ONCE(cpudata->cppc_req_cached));
}
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
u64 value = prev;
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(des_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
if (value == prev)
return;
WRITE_ONCE(cpudata->cppc_req_cached, value);
amd_pstate_update_perf(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static int amd_pstate_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_freqs freqs;
struct amd_cpudata *cpudata = policy->driver_data;
unsigned long max_perf, min_perf, des_perf, cap_perf;
if (!cpudata->max_freq)
return -ENODEV;
cap_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
max_perf = cap_perf;
freqs.old = policy->cur;
freqs.new = target_freq;
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
cpudata->max_freq);
cpufreq_freq_transition_begin(policy, &freqs);
amd_pstate_update(cpudata, min_perf, des_perf,
max_perf, false);
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static int amd_get_min_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.lowest_freq * 1000;
}
static int amd_get_max_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 max_perf, max_freq, nominal_freq, nominal_perf;
u64 boost_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
max_perf = READ_ONCE(cpudata->highest_perf);
boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return max_freq * 1000;
}
static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.nominal_freq * 1000;
}
static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
nominal_freq, nominal_perf;
u64 lowest_nonlinear_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return lowest_nonlinear_freq * 1000;
}
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
struct device *dev;
struct amd_cpudata *cpudata;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata;
min_freq = amd_get_min_freq(cpudata);
max_freq = amd_get_max_freq(cpudata);
nominal_freq = amd_get_nominal_freq(cpudata);
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
min_freq, max_freq);
ret = -EINVAL;
goto free_cpudata;
}
policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;
policy->min = min_freq;
policy->max = max_freq;
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
/* Initial processor data capability frequencies */
cpudata->max_freq = max_freq;
cpudata->min_freq = min_freq;
cpudata->nominal_freq = nominal_freq;
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
policy->driver_data = cpudata;
return 0;
free_cpudata:
kfree(cpudata);
return ret;
}
static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata;
cpudata = policy->driver_data;
kfree(cpudata);
return 0;
}
static struct cpufreq_driver amd_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
.verify = amd_pstate_verify,
.target = amd_pstate_target,
.init = amd_pstate_cpu_init,
.exit = amd_pstate_cpu_exit,
.name = "amd-pstate",
};
static int __init amd_pstate_init(void)
{
int ret;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return -ENODEV;
if (!acpi_cpc_valid()) {
pr_debug("the _CPC object is not present in SBIOS\n");
return -ENODEV;
}
/* don't keep reloading if cpufreq_driver exists */
if (cpufreq_get_current_driver())
return -EEXIST;
/* capability check */
if (!boot_cpu_has(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is not supported\n");
return -ENODEV;
}
/* enable amd pstate feature */
ret = amd_pstate_enable(true);
if (ret) {
pr_err("failed to enable amd-pstate with return %d\n", ret);
return ret;
}
ret = cpufreq_register_driver(&amd_pstate_driver);
if (ret)
pr_err("failed to register amd_pstate_driver with return %d\n",
ret);
return ret;
}
static void __exit amd_pstate_exit(void)
{
cpufreq_unregister_driver(&amd_pstate_driver);
amd_pstate_enable(false);
}
module_init(amd_pstate_init);
module_exit(amd_pstate_exit);
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");
MODULE_LICENSE("GPL");