c76898373f
Currently, the log-level of show_stack() depends on a platform realization. It creates situations where the headers are printed with lower log level or higher than the stacktrace (depending on a platform or user). Furthermore, it forces the logic decision from user to an architecture side. In result, some users as sysrq/kdb/etc are doing tricks with temporary rising console_loglevel while printing their messages. And in result it not only may print unwanted messages from other CPUs, but also omit printing at all in the unlucky case where the printk() was deferred. Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier approach than introducing more printk buffers. Also, it will consolidate printings with headers. Add log level argument to dump_backtrace() as a preparation for introducing show_stack_loglvl(). [1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will@kernel.org> Link: http://lkml.kernel.org/r/20200418201944.482088-10-dima@arista.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
695 lines
17 KiB
C
695 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/process.c
|
|
*
|
|
* Original Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/user.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/notifier.h>
|
|
#include <trace/events/power.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/prctl.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/arch_gicv3.h>
|
|
#include <asm/compat.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pointer_auth.h>
|
|
#include <asm/stacktrace.h>
|
|
|
|
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
|
|
#include <linux/stackprotector.h>
|
|
unsigned long __stack_chk_guard __read_mostly;
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
|
|
/*
|
|
* Function pointers to optional machine specific functions
|
|
*/
|
|
void (*pm_power_off)(void);
|
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
|
|
|
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
|
|
|
|
static void __cpu_do_idle(void)
|
|
{
|
|
dsb(sy);
|
|
wfi();
|
|
}
|
|
|
|
static void __cpu_do_idle_irqprio(void)
|
|
{
|
|
unsigned long pmr;
|
|
unsigned long daif_bits;
|
|
|
|
daif_bits = read_sysreg(daif);
|
|
write_sysreg(daif_bits | PSR_I_BIT, daif);
|
|
|
|
/*
|
|
* Unmask PMR before going idle to make sure interrupts can
|
|
* be raised.
|
|
*/
|
|
pmr = gic_read_pmr();
|
|
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
|
|
|
|
__cpu_do_idle();
|
|
|
|
gic_write_pmr(pmr);
|
|
write_sysreg(daif_bits, daif);
|
|
}
|
|
|
|
/*
|
|
* cpu_do_idle()
|
|
*
|
|
* Idle the processor (wait for interrupt).
|
|
*
|
|
* If the CPU supports priority masking we must do additional work to
|
|
* ensure that interrupts are not masked at the PMR (because the core will
|
|
* not wake up if we block the wake up signal in the interrupt controller).
|
|
*/
|
|
void cpu_do_idle(void)
|
|
{
|
|
if (system_uses_irq_prio_masking())
|
|
__cpu_do_idle_irqprio();
|
|
else
|
|
__cpu_do_idle();
|
|
}
|
|
|
|
/*
|
|
* This is our default idle handler.
|
|
*/
|
|
void arch_cpu_idle(void)
|
|
{
|
|
/*
|
|
* This should do all the clock switching and wait for interrupt
|
|
* tricks
|
|
*/
|
|
trace_cpu_idle_rcuidle(1, smp_processor_id());
|
|
cpu_do_idle();
|
|
local_irq_enable();
|
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
cpu_die();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called by kexec, immediately prior to machine_kexec().
|
|
*
|
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
|
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
|
|
*/
|
|
void machine_shutdown(void)
|
|
{
|
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
|
}
|
|
|
|
/*
|
|
* Halting simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this.
|
|
*/
|
|
void machine_halt(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
while (1);
|
|
}
|
|
|
|
/*
|
|
* Power-off simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this. When the system power is turned off, it will take all CPUs
|
|
* with it.
|
|
*/
|
|
void machine_power_off(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
}
|
|
|
|
/*
|
|
* Restart requires that the secondary CPUs stop performing any activity
|
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
|
* This is required so that any code running after reset on the primary CPU
|
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
|
* to use. Implementing such co-ordination would be essentially impossible.
|
|
*/
|
|
void machine_restart(char *cmd)
|
|
{
|
|
/* Disable interrupts first */
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
|
|
/*
|
|
* UpdateCapsule() depends on the system being reset via
|
|
* ResetSystem().
|
|
*/
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efi_reboot(reboot_mode, NULL);
|
|
|
|
/* Now call the architecture specific reboot code. */
|
|
if (arm_pm_restart)
|
|
arm_pm_restart(reboot_mode, cmd);
|
|
else
|
|
do_kernel_restart(cmd);
|
|
|
|
/*
|
|
* Whoops - the architecture was unable to reboot.
|
|
*/
|
|
printk("Reboot failed -- System halted\n");
|
|
while (1);
|
|
}
|
|
|
|
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
|
|
static const char *const btypes[] = {
|
|
bstr(NONE, "--"),
|
|
bstr( JC, "jc"),
|
|
bstr( C, "-c"),
|
|
bstr( J , "j-")
|
|
};
|
|
#undef bstr
|
|
|
|
static void print_pstate(struct pt_regs *regs)
|
|
{
|
|
u64 pstate = regs->pstate;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
|
|
pstate,
|
|
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
|
|
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
|
|
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
|
|
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_AA32_F_BIT ? 'F' : 'f');
|
|
} else {
|
|
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
|
|
PSR_BTYPE_SHIFT];
|
|
|
|
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
|
|
pstate,
|
|
pstate & PSR_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_D_BIT ? 'D' : 'd',
|
|
pstate & PSR_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_PAN_BIT ? '+' : '-',
|
|
pstate & PSR_UAO_BIT ? '+' : '-',
|
|
btype_str);
|
|
}
|
|
}
|
|
|
|
void __show_regs(struct pt_regs *regs)
|
|
{
|
|
int i, top_reg;
|
|
u64 lr, sp;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
lr = regs->compat_lr;
|
|
sp = regs->compat_sp;
|
|
top_reg = 12;
|
|
} else {
|
|
lr = regs->regs[30];
|
|
sp = regs->sp;
|
|
top_reg = 29;
|
|
}
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
print_pstate(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
printk("pc : %pS\n", (void *)regs->pc);
|
|
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
|
|
} else {
|
|
printk("pc : %016llx\n", regs->pc);
|
|
printk("lr : %016llx\n", lr);
|
|
}
|
|
|
|
printk("sp : %016llx\n", sp);
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
printk("pmr_save: %08llx\n", regs->pmr_save);
|
|
|
|
i = top_reg;
|
|
|
|
while (i >= 0) {
|
|
printk("x%-2d: %016llx ", i, regs->regs[i]);
|
|
i--;
|
|
|
|
if (i % 2 == 0) {
|
|
pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
|
|
i--;
|
|
}
|
|
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
__show_regs(regs);
|
|
dump_backtrace(regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static void tls_thread_flush(void)
|
|
{
|
|
write_sysreg(0, tpidr_el0);
|
|
|
|
if (is_compat_task()) {
|
|
current->thread.uw.tp_value = 0;
|
|
|
|
/*
|
|
* We need to ensure ordering between the shadow state and the
|
|
* hardware state, so that we don't corrupt the hardware state
|
|
* with a stale shadow state during context switch.
|
|
*/
|
|
barrier();
|
|
write_sysreg(0, tpidrro_el0);
|
|
}
|
|
}
|
|
|
|
static void flush_tagged_addr_state(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
|
|
clear_thread_flag(TIF_TAGGED_ADDR);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
fpsimd_flush_thread();
|
|
tls_thread_flush();
|
|
flush_ptrace_hw_breakpoint(current);
|
|
flush_tagged_addr_state();
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
}
|
|
|
|
void arch_release_task_struct(struct task_struct *tsk)
|
|
{
|
|
fpsimd_release_task(tsk);
|
|
}
|
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
if (current->mm)
|
|
fpsimd_preserve_current_state();
|
|
*dst = *src;
|
|
|
|
/* We rely on the above assignment to initialize dst's thread_flags: */
|
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
|
|
|
|
/*
|
|
* Detach src's sve_state (if any) from dst so that it does not
|
|
* get erroneously used or freed prematurely. dst's sve_state
|
|
* will be allocated on demand later on if dst uses SVE.
|
|
* For consistency, also clear TIF_SVE here: this could be done
|
|
* later in copy_process(), but to avoid tripping up future
|
|
* maintainers it is best not to leave TIF_SVE and sve_state in
|
|
* an inconsistent state, even temporarily.
|
|
*/
|
|
dst->thread.sve_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SVE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
|
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long stack_start,
|
|
unsigned long stk_sz, struct task_struct *p, unsigned long tls)
|
|
{
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
|
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
|
|
|
/*
|
|
* In case p was allocated the same task_struct pointer as some
|
|
* other recently-exited task, make sure p is disassociated from
|
|
* any cpu that may have run that now-exited task recently.
|
|
* Otherwise we could erroneously skip reloading the FPSIMD
|
|
* registers for p.
|
|
*/
|
|
fpsimd_flush_task_state(p);
|
|
|
|
ptrauth_thread_init_kernel(p);
|
|
|
|
if (likely(!(p->flags & PF_KTHREAD))) {
|
|
*childregs = *current_pt_regs();
|
|
childregs->regs[0] = 0;
|
|
|
|
/*
|
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
|
* out-of-sync with the saved value.
|
|
*/
|
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
|
|
|
if (stack_start) {
|
|
if (is_compat_thread(task_thread_info(p)))
|
|
childregs->compat_sp = stack_start;
|
|
else
|
|
childregs->sp = stack_start;
|
|
}
|
|
|
|
/*
|
|
* If a TLS pointer was passed to clone, use it for the new
|
|
* thread.
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS)
|
|
p->thread.uw.tp_value = tls;
|
|
} else {
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->pstate = PSR_MODE_EL1h;
|
|
if (IS_ENABLED(CONFIG_ARM64_UAO) &&
|
|
cpus_have_const_cap(ARM64_HAS_UAO))
|
|
childregs->pstate |= PSR_UAO_BIT;
|
|
|
|
if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
|
|
set_ssbs_bit(childregs);
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
childregs->pmr_save = GIC_PRIO_IRQON;
|
|
|
|
p->thread.cpu_context.x19 = stack_start;
|
|
p->thread.cpu_context.x20 = stk_sz;
|
|
}
|
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
|
|
|
ptrace_hw_copy_thread(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tls_preserve_current_state(void)
|
|
{
|
|
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
|
}
|
|
|
|
static void tls_thread_switch(struct task_struct *next)
|
|
{
|
|
tls_preserve_current_state();
|
|
|
|
if (is_compat_thread(task_thread_info(next)))
|
|
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
|
|
else if (!arm64_kernel_unmapped_at_el0())
|
|
write_sysreg(0, tpidrro_el0);
|
|
|
|
write_sysreg(*task_user_tls(next), tpidr_el0);
|
|
}
|
|
|
|
/* Restore the UAO state depending on next's addr_limit */
|
|
void uao_thread_switch(struct task_struct *next)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_UAO)) {
|
|
if (task_thread_info(next)->addr_limit == KERNEL_DS)
|
|
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
|
|
else
|
|
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force SSBS state on context-switch, since it may be lost after migrating
|
|
* from a CPU which treats the bit as RES0 in a heterogeneous system.
|
|
*/
|
|
static void ssbs_thread_switch(struct task_struct *next)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(next);
|
|
|
|
/*
|
|
* Nothing to do for kernel threads, but 'regs' may be junk
|
|
* (e.g. idle task) so check the flags and bail early.
|
|
*/
|
|
if (unlikely(next->flags & PF_KTHREAD))
|
|
return;
|
|
|
|
/*
|
|
* If all CPUs implement the SSBS extension, then we just need to
|
|
* context-switch the PSTATE field.
|
|
*/
|
|
if (cpu_have_feature(cpu_feature(SSBS)))
|
|
return;
|
|
|
|
/* If the mitigation is enabled, then we leave SSBS clear. */
|
|
if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
|
|
test_tsk_thread_flag(next, TIF_SSBD))
|
|
return;
|
|
|
|
if (compat_user_mode(regs))
|
|
set_compat_ssbs_bit(regs);
|
|
else if (user_mode(regs))
|
|
set_ssbs_bit(regs);
|
|
}
|
|
|
|
/*
|
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
|
* shadow copy so that we can restore this upon entry from userspace.
|
|
*
|
|
* This is *only* for exception entry from EL0, and is not valid until we
|
|
* __switch_to() a user task.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
|
|
|
static void entry_task_switch(struct task_struct *next)
|
|
{
|
|
__this_cpu_write(__entry_task, next);
|
|
}
|
|
|
|
/*
|
|
* Thread switching.
|
|
*/
|
|
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
struct task_struct *last;
|
|
|
|
fpsimd_thread_switch(next);
|
|
tls_thread_switch(next);
|
|
hw_breakpoint_thread_switch(next);
|
|
contextidr_thread_switch(next);
|
|
entry_task_switch(next);
|
|
uao_thread_switch(next);
|
|
ssbs_thread_switch(next);
|
|
|
|
/*
|
|
* Complete any pending TLB or cache maintenance on this CPU in case
|
|
* the thread migrates to a different CPU.
|
|
* This full barrier is also required by the membarrier system
|
|
* call.
|
|
*/
|
|
dsb(ish);
|
|
|
|
/* the actual thread switch */
|
|
last = cpu_switch_to(prev, next);
|
|
|
|
return last;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
struct stackframe frame;
|
|
unsigned long stack_page, ret = 0;
|
|
int count = 0;
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
stack_page = (unsigned long)try_get_task_stack(p);
|
|
if (!stack_page)
|
|
return 0;
|
|
|
|
start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
|
|
|
|
do {
|
|
if (unwind_frame(p, &frame))
|
|
goto out;
|
|
if (!in_sched_functions(frame.pc)) {
|
|
ret = frame.pc;
|
|
goto out;
|
|
}
|
|
} while (count ++ < 16);
|
|
|
|
out:
|
|
put_task_stack(p);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_int() & ~PAGE_MASK;
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
/*
|
|
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
|
|
*/
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
|
|
|
|
ptrauth_thread_init_user(current);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
|
|
/*
|
|
* Control the relaxed ABI allowing tagged user addresses into the kernel.
|
|
*/
|
|
static unsigned int tagged_addr_disabled;
|
|
|
|
long set_tagged_addr_ctrl(unsigned long arg)
|
|
{
|
|
if (is_compat_task())
|
|
return -EINVAL;
|
|
if (arg & ~PR_TAGGED_ADDR_ENABLE)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Do not allow the enabling of the tagged address ABI if globally
|
|
* disabled via sysctl abi.tagged_addr_disabled.
|
|
*/
|
|
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
|
|
return -EINVAL;
|
|
|
|
update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_tagged_addr_ctrl(void)
|
|
{
|
|
if (is_compat_task())
|
|
return -EINVAL;
|
|
|
|
if (test_thread_flag(TIF_TAGGED_ADDR))
|
|
return PR_TAGGED_ADDR_ENABLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Global sysctl to disable the tagged user addresses support. This control
|
|
* only prevents the tagged address ABI enabling via prctl() and does not
|
|
* disable it for tasks that already opted in to the relaxed ABI.
|
|
*/
|
|
|
|
static struct ctl_table tagged_addr_sysctl_table[] = {
|
|
{
|
|
.procname = "tagged_addr_disabled",
|
|
.mode = 0644,
|
|
.data = &tagged_addr_disabled,
|
|
.maxlen = sizeof(int),
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init tagged_addr_init(void)
|
|
{
|
|
if (!register_sysctl("abi", tagged_addr_sysctl_table))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(tagged_addr_init);
|
|
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
|
|
|
|
asmlinkage void __sched arm64_preempt_schedule_irq(void)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* Preempting a task from an IRQ means we leave copies of PSTATE
|
|
* on the stack. cpufeature's enable calls may modify PSTATE, but
|
|
* resuming one of these preempted tasks would undo those changes.
|
|
*
|
|
* Only allow a task to be preempted once cpufeatures have been
|
|
* enabled.
|
|
*/
|
|
if (system_capabilities_finalized())
|
|
preempt_schedule_irq();
|
|
}
|
|
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
|
|
bool has_interp, bool is_interp)
|
|
{
|
|
/*
|
|
* For dynamically linked executables the interpreter is
|
|
* responsible for setting PROT_BTI on everything except
|
|
* itself.
|
|
*/
|
|
if (is_interp != has_interp)
|
|
return prot;
|
|
|
|
if (!(state->flags & ARM64_ELF_BTI))
|
|
return prot;
|
|
|
|
if (prot & PROT_EXEC)
|
|
prot |= PROT_BTI;
|
|
|
|
return prot;
|
|
}
|
|
#endif
|