Kees Cook e12145cf1c lkdtm/heap: Avoid edge and middle of slabs
Har har, after I moved the slab freelist pointer into the middle of the
slab, now it looks like the contents are getting poisoned. Adjust the
test to avoid the freelist pointer again.

Fixes: 3202fa62fb43 ("slub: relocate freelist pointer to middle of object")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200625203704.317097-3-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-29 18:41:39 +02:00

222 lines
5.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This is for all the tests relating directly to heap memory, including
* page allocation and slab allocations.
*/
#include "lkdtm.h"
#include <linux/slab.h>
#include <linux/sched.h>
static struct kmem_cache *double_free_cache;
static struct kmem_cache *a_cache;
static struct kmem_cache *b_cache;
/*
* This tries to stay within the next largest power-of-2 kmalloc cache
* to avoid actually overwriting anything important if it's not detected
* correctly.
*/
void lkdtm_OVERWRITE_ALLOCATION(void)
{
size_t len = 1020;
u32 *data = kmalloc(len, GFP_KERNEL);
if (!data)
return;
data[1024 / sizeof(u32)] = 0x12345678;
kfree(data);
}
void lkdtm_WRITE_AFTER_FREE(void)
{
int *base, *again;
size_t len = 1024;
/*
* The slub allocator uses the first word to store the free
* pointer in some configurations. Use the middle of the
* allocation to avoid running into the freelist
*/
size_t offset = (len / sizeof(*base)) / 2;
base = kmalloc(len, GFP_KERNEL);
if (!base)
return;
pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
pr_info("Attempting bad write to freed memory at %p\n",
&base[offset]);
kfree(base);
base[offset] = 0x0abcdef0;
/* Attempt to notice the overwrite. */
again = kmalloc(len, GFP_KERNEL);
kfree(again);
if (again != base)
pr_info("Hmm, didn't get the same memory range.\n");
}
void lkdtm_READ_AFTER_FREE(void)
{
int *base, *val, saw;
size_t len = 1024;
/*
* The slub allocator will use the either the first word or
* the middle of the allocation to store the free pointer,
* depending on configurations. Store in the second word to
* avoid running into the freelist.
*/
size_t offset = sizeof(*base);
base = kmalloc(len, GFP_KERNEL);
if (!base) {
pr_info("Unable to allocate base memory.\n");
return;
}
val = kmalloc(len, GFP_KERNEL);
if (!val) {
pr_info("Unable to allocate val memory.\n");
kfree(base);
return;
}
*val = 0x12345678;
base[offset] = *val;
pr_info("Value in memory before free: %x\n", base[offset]);
kfree(base);
pr_info("Attempting bad read from freed memory\n");
saw = base[offset];
if (saw != *val) {
/* Good! Poisoning happened, so declare a win. */
pr_info("Memory correctly poisoned (%x)\n", saw);
BUG();
}
pr_info("Memory was not poisoned\n");
kfree(val);
}
void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
{
unsigned long p = __get_free_page(GFP_KERNEL);
if (!p) {
pr_info("Unable to allocate free page\n");
return;
}
pr_info("Writing to the buddy page before free\n");
memset((void *)p, 0x3, PAGE_SIZE);
free_page(p);
schedule();
pr_info("Attempting bad write to the buddy page after free\n");
memset((void *)p, 0x78, PAGE_SIZE);
/* Attempt to notice the overwrite. */
p = __get_free_page(GFP_KERNEL);
free_page(p);
schedule();
}
void lkdtm_READ_BUDDY_AFTER_FREE(void)
{
unsigned long p = __get_free_page(GFP_KERNEL);
int saw, *val;
int *base;
if (!p) {
pr_info("Unable to allocate free page\n");
return;
}
val = kmalloc(1024, GFP_KERNEL);
if (!val) {
pr_info("Unable to allocate val memory.\n");
free_page(p);
return;
}
base = (int *)p;
*val = 0x12345678;
base[0] = *val;
pr_info("Value in memory before free: %x\n", base[0]);
free_page(p);
pr_info("Attempting to read from freed memory\n");
saw = base[0];
if (saw != *val) {
/* Good! Poisoning happened, so declare a win. */
pr_info("Memory correctly poisoned (%x)\n", saw);
BUG();
}
pr_info("Buddy page was not poisoned\n");
kfree(val);
}
void lkdtm_SLAB_FREE_DOUBLE(void)
{
int *val;
val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
if (!val) {
pr_info("Unable to allocate double_free_cache memory.\n");
return;
}
/* Just make sure we got real memory. */
*val = 0x12345678;
pr_info("Attempting double slab free ...\n");
kmem_cache_free(double_free_cache, val);
kmem_cache_free(double_free_cache, val);
}
void lkdtm_SLAB_FREE_CROSS(void)
{
int *val;
val = kmem_cache_alloc(a_cache, GFP_KERNEL);
if (!val) {
pr_info("Unable to allocate a_cache memory.\n");
return;
}
/* Just make sure we got real memory. */
*val = 0x12345679;
pr_info("Attempting cross-cache slab free ...\n");
kmem_cache_free(b_cache, val);
}
void lkdtm_SLAB_FREE_PAGE(void)
{
unsigned long p = __get_free_page(GFP_KERNEL);
pr_info("Attempting non-Slab slab free ...\n");
kmem_cache_free(NULL, (void *)p);
free_page(p);
}
/*
* We have constructors to keep the caches distinctly separated without
* needing to boot with "slab_nomerge".
*/
static void ctor_double_free(void *region)
{ }
static void ctor_a(void *region)
{ }
static void ctor_b(void *region)
{ }
void __init lkdtm_heap_init(void)
{
double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
64, 0, 0, ctor_double_free);
a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
}
void __exit lkdtm_heap_exit(void)
{
kmem_cache_destroy(double_free_cache);
kmem_cache_destroy(a_cache);
kmem_cache_destroy(b_cache);
}