linux/drivers/gpu/drm/drm_gpuvm.c
Thomas Hellström f7749a549b drm/gpuvm: Dual-licence the drm_gpuvm code GPL-2.0 OR MIT
Dual-licence in order to make it possible for other non-GPL os'es
to re-implement the code. The use of EXPORT_SYMBOL_GPL() is intentionally
left untouched to prevent use of drm_gpuvm as a proxy for non-GPL drivers
to access GPL-only kernel symbols.

Much of the ideas and algorithms used in the drm_gpuvm code is already
present in one way or another in MIT-licensed code.

Cc: Danilo Krummrich <dakr@redhat.com>
Cc: airlied@gmail.com
Cc: daniel@ffwll.ch
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Acked-by: Danilo Krummrich <dakr@redhat.com>
Reviewed-by: Francois Dugast <francois.dugast@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231010142725.8920-1-thomas.hellstrom@linux.intel.com
2023-10-17 10:55:30 +02:00

1727 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright (c) 2022 Red Hat.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Danilo Krummrich <dakr@redhat.com>
*
*/
#include <drm/drm_gpuvm.h>
#include <linux/interval_tree_generic.h>
#include <linux/mm.h>
/**
* DOC: Overview
*
* The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
* GPU's virtual address (VA) space and manages the corresponding virtual
* mappings represented by &drm_gpuva objects. It also keeps track of the
* mapping's backing &drm_gem_object buffers.
*
* &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
* all existent GPU VA mappings using this &drm_gem_object as backing buffer.
*
* GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
* keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
*
* The GPU VA manager internally uses a rb-tree to manage the
* &drm_gpuva mappings within a GPU's virtual address space.
*
* The &drm_gpuvm structure contains a special &drm_gpuva representing the
* portion of VA space reserved by the kernel. This node is initialized together
* with the GPU VA manager instance and removed when the GPU VA manager is
* destroyed.
*
* In a typical application drivers would embed struct drm_gpuvm and
* struct drm_gpuva within their own driver specific structures, there won't be
* any memory allocations of its own nor memory allocations of &drm_gpuva
* entries.
*
* The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
* contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
* entries from within dma-fence signalling critical sections it is enough to
* pre-allocate the &drm_gpuva structures.
*/
/**
* DOC: Split and Merge
*
* Besides its capability to manage and represent a GPU VA space, the
* GPU VA manager also provides functions to let the &drm_gpuvm calculate a
* sequence of operations to satisfy a given map or unmap request.
*
* Therefore the DRM GPU VA manager provides an algorithm implementing splitting
* and merging of existent GPU VA mappings with the ones that are requested to
* be mapped or unmapped. This feature is required by the Vulkan API to
* implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
* as VM BIND.
*
* Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
* containing map, unmap and remap operations for a given newly requested
* mapping. The sequence of callbacks represents the set of operations to
* execute in order to integrate the new mapping cleanly into the current state
* of the GPU VA space.
*
* Depending on how the new GPU VA mapping intersects with the existent mappings
* of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
* of unmap operations, a maximum of two remap operations and a single map
* operation. The caller might receive no callback at all if no operation is
* required, e.g. if the requested mapping already exists in the exact same way.
*
* The single map operation represents the original map operation requested by
* the caller.
*
* &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
* &drm_gpuva to unmap is physically contiguous with the original mapping
* request. Optionally, if 'keep' is set, drivers may keep the actual page table
* entries for this &drm_gpuva, adding the missing page table entries only and
* update the &drm_gpuvm's view of things accordingly.
*
* Drivers may do the same optimization, namely delta page table updates, also
* for remap operations. This is possible since &drm_gpuva_op_remap consists of
* one unmap operation and one or two map operations, such that drivers can
* derive the page table update delta accordingly.
*
* Note that there can't be more than two existent mappings to split up, one at
* the beginning and one at the end of the new mapping, hence there is a
* maximum of two remap operations.
*
* Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
* call back into the driver in order to unmap a range of GPU VA space. The
* logic behind this function is way simpler though: For all existent mappings
* enclosed by the given range unmap operations are created. For mappings which
* are only partically located within the given range, remap operations are
* created such that those mappings are split up and re-mapped partically.
*
* As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
* drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
* to directly obtain an instance of struct drm_gpuva_ops containing a list of
* &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
* contains the &drm_gpuva_ops analogous to the callbacks one would receive when
* calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
* more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
* iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
* allocations are possible (e.g. to allocate GPU page tables) and once in the
* dma-fence signalling critical path.
*
* To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
* drm_gpuva_remove() may be used. These functions can safely be used from
* &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
* drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
* provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
* drm_gpuva_unmap() instead.
*
* The following diagram depicts the basic relationships of existent GPU VA
* mappings, a newly requested mapping and the resulting mappings as implemented
* by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
*
* 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
* could be kept.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----------| (bo_offset=n)
*
* 0 a 1
* new: |-----------| (bo_offset=n)
*
*
* 2) Requested mapping is identical, except for the BO offset, hence replace
* the mapping.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----------| (bo_offset=m)
*
* 0 a 1
* new: |-----------| (bo_offset=m)
*
*
* 3) Requested mapping is identical, except for the backing BO, hence replace
* the mapping.
*
* ::
*
* 0 a 1
* old: |-----------| (bo_offset=n)
*
* 0 b 1
* req: |-----------| (bo_offset=n)
*
* 0 b 1
* new: |-----------| (bo_offset=n)
*
*
* 4) Existent mapping is a left aligned subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 0 a 1
* old: |-----| (bo_offset=n)
*
* 0 a 2
* req: |-----------| (bo_offset=n)
*
* 0 a 2
* new: |-----------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different BO
* and/or non-contiguous BO offset.
*
*
* 5) Requested mapping's range is a left aligned subset of the existent one,
* but backed by a different BO. Hence, map the requested mapping and split
* the existent one adjusting its BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 0 b 1
* req: |-----| (bo_offset=n)
*
* 0 b 1 a' 2
* new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
*
* .. note::
* We expect to see the same result for a request with a different BO
* and/or non-contiguous BO offset.
*
*
* 6) Existent mapping is a superset of the requested mapping. Split it up, but
* indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 0 a 1
* req: |-----| (bo_offset=n)
*
* 0 a 1 a' 2
* new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
*
*
* 7) Requested mapping's range is a right aligned subset of the existent one,
* but backed by a different BO. Hence, map the requested mapping and split
* the existent one, without adjusting the BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 b 2
* req: |-----| (bo_offset=m)
*
* 0 a 1 b 2
* new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
*
*
* 8) Existent mapping is a superset of the requested mapping. Split it up, but
* indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 a 2
* req: |-----| (bo_offset=n+1)
*
* 0 a' 1 a 2
* new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
*
*
* 9) Existent mapping is overlapped at the end by the requested mapping backed
* by a different BO. Hence, map the requested mapping and split up the
* existent one, without adjusting the BO offset.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 b 3
* req: |-----------| (bo_offset=m)
*
* 0 a 1 b 3
* new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
*
*
* 10) Existent mapping is overlapped by the requested mapping, both having the
* same backing BO with a contiguous offset. Indicate the backing PTEs of
* the old mapping could be kept.
*
* ::
*
* 0 a 2
* old: |-----------| (bo_offset=n)
*
* 1 a 3
* req: |-----------| (bo_offset=n+1)
*
* 0 a' 1 a 3
* new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
*
*
* 11) Requested mapping's range is a centered subset of the existent one
* having a different backing BO. Hence, map the requested mapping and split
* up the existent one in two mappings, adjusting the BO offset of the right
* one accordingly.
*
* ::
*
* 0 a 3
* old: |-----------------| (bo_offset=n)
*
* 1 b 2
* req: |-----| (bo_offset=m)
*
* 0 a 1 b 2 a' 3
* new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
*
*
* 12) Requested mapping is a contiguous subset of the existent one. Split it
* up, but indicate that the backing PTEs could be kept.
*
* ::
*
* 0 a 3
* old: |-----------------| (bo_offset=n)
*
* 1 a 2
* req: |-----| (bo_offset=n+1)
*
* 0 a' 1 a 2 a'' 3
* old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
*
*
* 13) Existent mapping is a right aligned subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 1 a 2
* old: |-----| (bo_offset=n+1)
*
* 0 a 2
* req: |-----------| (bo_offset=n)
*
* 0 a 2
* new: |-----------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different bo
* and/or non-contiguous bo_offset.
*
*
* 14) Existent mapping is a centered subset of the requested one, hence
* replace the existent one.
*
* ::
*
* 1 a 2
* old: |-----| (bo_offset=n+1)
*
* 0 a 3
* req: |----------------| (bo_offset=n)
*
* 0 a 3
* new: |----------------| (bo_offset=n)
*
* .. note::
* We expect to see the same result for a request with a different bo
* and/or non-contiguous bo_offset.
*
*
* 15) Existent mappings is overlapped at the beginning by the requested mapping
* backed by a different BO. Hence, map the requested mapping and split up
* the existent one, adjusting its BO offset accordingly.
*
* ::
*
* 1 a 3
* old: |-----------| (bo_offset=n)
*
* 0 b 2
* req: |-----------| (bo_offset=m)
*
* 0 b 2 a' 3
* new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
*/
/**
* DOC: Locking
*
* Generally, the GPU VA manager does not take care of locking itself, it is
* the drivers responsibility to take care about locking. Drivers might want to
* protect the following operations: inserting, removing and iterating
* &drm_gpuva objects as well as generating all kinds of operations, such as
* split / merge or prefetch.
*
* The GPU VA manager also does not take care of the locking of the backing
* &drm_gem_object buffers GPU VA lists by itself; drivers are responsible to
* enforce mutual exclusion using either the GEMs dma_resv lock or alternatively
* a driver specific external lock. For the latter see also
* drm_gem_gpuva_set_lock().
*
* However, the GPU VA manager contains lockdep checks to ensure callers of its
* API hold the corresponding lock whenever the &drm_gem_objects GPU VA list is
* accessed by functions such as drm_gpuva_link() or drm_gpuva_unlink().
*/
/**
* DOC: Examples
*
* This section gives two examples on how to let the DRM GPUVA Manager generate
* &drm_gpuva_op in order to satisfy a given map or unmap request and how to
* make use of them.
*
* The below code is strictly limited to illustrate the generic usage pattern.
* To maintain simplicitly, it doesn't make use of any abstractions for common
* code, different (asyncronous) stages with fence signalling critical paths,
* any other helpers or error handling in terms of freeing memory and dropping
* previously taken locks.
*
* 1) Obtain a list of &drm_gpuva_op to create a new mapping::
*
* // Allocates a new &drm_gpuva.
* struct drm_gpuva * driver_gpuva_alloc(void);
*
* // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
* // structure in individual driver structures and lock the dma-resv with
* // drm_exec or similar helpers.
* int driver_mapping_create(struct drm_gpuvm *gpuvm,
* u64 addr, u64 range,
* struct drm_gem_object *obj, u64 offset)
* {
* struct drm_gpuva_ops *ops;
* struct drm_gpuva_op *op
*
* driver_lock_va_space();
* ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range,
* obj, offset);
* if (IS_ERR(ops))
* return PTR_ERR(ops);
*
* drm_gpuva_for_each_op(op, ops) {
* struct drm_gpuva *va;
*
* switch (op->op) {
* case DRM_GPUVA_OP_MAP:
* va = driver_gpuva_alloc();
* if (!va)
* ; // unwind previous VA space updates,
* // free memory and unlock
*
* driver_vm_map();
* drm_gpuva_map(gpuvm, va, &op->map);
* drm_gpuva_link(va);
*
* break;
* case DRM_GPUVA_OP_REMAP: {
* struct drm_gpuva *prev = NULL, *next = NULL;
*
* va = op->remap.unmap->va;
*
* if (op->remap.prev) {
* prev = driver_gpuva_alloc();
* if (!prev)
* ; // unwind previous VA space
* // updates, free memory and
* // unlock
* }
*
* if (op->remap.next) {
* next = driver_gpuva_alloc();
* if (!next)
* ; // unwind previous VA space
* // updates, free memory and
* // unlock
* }
*
* driver_vm_remap();
* drm_gpuva_remap(prev, next, &op->remap);
*
* drm_gpuva_unlink(va);
* if (prev)
* drm_gpuva_link(prev);
* if (next)
* drm_gpuva_link(next);
*
* break;
* }
* case DRM_GPUVA_OP_UNMAP:
* va = op->unmap->va;
*
* driver_vm_unmap();
* drm_gpuva_unlink(va);
* drm_gpuva_unmap(&op->unmap);
*
* break;
* default:
* break;
* }
* }
* driver_unlock_va_space();
*
* return 0;
* }
*
* 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
*
* struct driver_context {
* struct drm_gpuvm *gpuvm;
* struct drm_gpuva *new_va;
* struct drm_gpuva *prev_va;
* struct drm_gpuva *next_va;
* };
*
* // ops to pass to drm_gpuvm_init()
* static const struct drm_gpuvm_ops driver_gpuvm_ops = {
* .sm_step_map = driver_gpuva_map,
* .sm_step_remap = driver_gpuva_remap,
* .sm_step_unmap = driver_gpuva_unmap,
* };
*
* // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
* // structure in individual driver structures and lock the dma-resv with
* // drm_exec or similar helpers.
* int driver_mapping_create(struct drm_gpuvm *gpuvm,
* u64 addr, u64 range,
* struct drm_gem_object *obj, u64 offset)
* {
* struct driver_context ctx;
* struct drm_gpuva_ops *ops;
* struct drm_gpuva_op *op;
* int ret = 0;
*
* ctx.gpuvm = gpuvm;
*
* ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
* ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
* ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
* if (!ctx.new_va || !ctx.prev_va || !ctx.next_va) {
* ret = -ENOMEM;
* goto out;
* }
*
* driver_lock_va_space();
* ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
* driver_unlock_va_space();
*
* out:
* kfree(ctx.new_va);
* kfree(ctx.prev_va);
* kfree(ctx.next_va);
* return ret;
* }
*
* int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
* {
* struct driver_context *ctx = __ctx;
*
* drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
*
* drm_gpuva_link(ctx->new_va);
*
* // prevent the new GPUVA from being freed in
* // driver_mapping_create()
* ctx->new_va = NULL;
*
* return 0;
* }
*
* int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
* {
* struct driver_context *ctx = __ctx;
*
* drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
*
* drm_gpuva_unlink(op->remap.unmap->va);
* kfree(op->remap.unmap->va);
*
* if (op->remap.prev) {
* drm_gpuva_link(ctx->prev_va);
* ctx->prev_va = NULL;
* }
*
* if (op->remap.next) {
* drm_gpuva_link(ctx->next_va);
* ctx->next_va = NULL;
* }
*
* return 0;
* }
*
* int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
* {
* drm_gpuva_unlink(op->unmap.va);
* drm_gpuva_unmap(&op->unmap);
* kfree(op->unmap.va);
*
* return 0;
* }
*/
#define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node)
#define GPUVA_START(node) ((node)->va.addr)
#define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
/* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
* about this.
*/
INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
GPUVA_START, GPUVA_LAST, static __maybe_unused,
drm_gpuva_it)
static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va);
static void __drm_gpuva_remove(struct drm_gpuva *va);
static bool
drm_gpuvm_check_overflow(u64 addr, u64 range)
{
u64 end;
return WARN(check_add_overflow(addr, range, &end),
"GPUVA address limited to %zu bytes.\n", sizeof(end));
}
static bool
drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
u64 end = addr + range;
u64 mm_start = gpuvm->mm_start;
u64 mm_end = mm_start + gpuvm->mm_range;
return addr >= mm_start && end <= mm_end;
}
static bool
drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
u64 end = addr + range;
u64 kstart = gpuvm->kernel_alloc_node.va.addr;
u64 krange = gpuvm->kernel_alloc_node.va.range;
u64 kend = kstart + krange;
return krange && addr < kend && kstart < end;
}
static bool
drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
return !drm_gpuvm_check_overflow(addr, range) &&
drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
!drm_gpuvm_in_kernel_node(gpuvm, addr, range);
}
/**
* drm_gpuvm_init() - initialize a &drm_gpuvm
* @gpuvm: pointer to the &drm_gpuvm to initialize
* @name: the name of the GPU VA space
* @start_offset: the start offset of the GPU VA space
* @range: the size of the GPU VA space
* @reserve_offset: the start of the kernel reserved GPU VA area
* @reserve_range: the size of the kernel reserved GPU VA area
* @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
*
* The &drm_gpuvm must be initialized with this function before use.
*
* Note that @gpuvm must be cleared to 0 before calling this function. The given
* &name is expected to be managed by the surrounding driver structures.
*/
void
drm_gpuvm_init(struct drm_gpuvm *gpuvm,
const char *name,
u64 start_offset, u64 range,
u64 reserve_offset, u64 reserve_range,
const struct drm_gpuvm_ops *ops)
{
gpuvm->rb.tree = RB_ROOT_CACHED;
INIT_LIST_HEAD(&gpuvm->rb.list);
drm_gpuvm_check_overflow(start_offset, range);
gpuvm->mm_start = start_offset;
gpuvm->mm_range = range;
gpuvm->name = name ? name : "unknown";
gpuvm->ops = ops;
memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
if (reserve_range) {
gpuvm->kernel_alloc_node.va.addr = reserve_offset;
gpuvm->kernel_alloc_node.va.range = reserve_range;
if (likely(!drm_gpuvm_check_overflow(reserve_offset,
reserve_range)))
__drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node);
}
}
EXPORT_SYMBOL_GPL(drm_gpuvm_init);
/**
* drm_gpuvm_destroy() - cleanup a &drm_gpuvm
* @gpuvm: pointer to the &drm_gpuvm to clean up
*
* Note that it is a bug to call this function on a manager that still
* holds GPU VA mappings.
*/
void
drm_gpuvm_destroy(struct drm_gpuvm *gpuvm)
{
gpuvm->name = NULL;
if (gpuvm->kernel_alloc_node.va.range)
__drm_gpuva_remove(&gpuvm->kernel_alloc_node);
WARN(!RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
"GPUVA tree is not empty, potentially leaking memory.");
}
EXPORT_SYMBOL_GPL(drm_gpuvm_destroy);
static int
__drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va)
{
struct rb_node *node;
struct list_head *head;
if (drm_gpuva_it_iter_first(&gpuvm->rb.tree,
GPUVA_START(va),
GPUVA_LAST(va)))
return -EEXIST;
va->vm = gpuvm;
drm_gpuva_it_insert(va, &gpuvm->rb.tree);
node = rb_prev(&va->rb.node);
if (node)
head = &(to_drm_gpuva(node))->rb.entry;
else
head = &gpuvm->rb.list;
list_add(&va->rb.entry, head);
return 0;
}
/**
* drm_gpuva_insert() - insert a &drm_gpuva
* @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
* @va: the &drm_gpuva to insert
*
* Insert a &drm_gpuva with a given address and range into a
* &drm_gpuvm.
*
* It is safe to use this function using the safe versions of iterating the GPU
* VA space, such as drm_gpuvm_for_each_va_safe() and
* drm_gpuvm_for_each_va_range_safe().
*
* Returns: 0 on success, negative error code on failure.
*/
int
drm_gpuva_insert(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va)
{
u64 addr = va->va.addr;
u64 range = va->va.range;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
return -EINVAL;
return __drm_gpuva_insert(gpuvm, va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_insert);
static void
__drm_gpuva_remove(struct drm_gpuva *va)
{
drm_gpuva_it_remove(va, &va->vm->rb.tree);
list_del_init(&va->rb.entry);
}
/**
* drm_gpuva_remove() - remove a &drm_gpuva
* @va: the &drm_gpuva to remove
*
* This removes the given &va from the underlaying tree.
*
* It is safe to use this function using the safe versions of iterating the GPU
* VA space, such as drm_gpuvm_for_each_va_safe() and
* drm_gpuvm_for_each_va_range_safe().
*/
void
drm_gpuva_remove(struct drm_gpuva *va)
{
struct drm_gpuvm *gpuvm = va->vm;
if (unlikely(va == &gpuvm->kernel_alloc_node)) {
WARN(1, "Can't destroy kernel reserved node.\n");
return;
}
__drm_gpuva_remove(va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_remove);
/**
* drm_gpuva_link() - link a &drm_gpuva
* @va: the &drm_gpuva to link
*
* This adds the given &va to the GPU VA list of the &drm_gem_object it is
* associated with.
*
* This function expects the caller to protect the GEM's GPUVA list against
* concurrent access using the GEMs dma_resv lock.
*/
void
drm_gpuva_link(struct drm_gpuva *va)
{
struct drm_gem_object *obj = va->gem.obj;
if (unlikely(!obj))
return;
drm_gem_gpuva_assert_lock_held(obj);
list_add_tail(&va->gem.entry, &obj->gpuva.list);
}
EXPORT_SYMBOL_GPL(drm_gpuva_link);
/**
* drm_gpuva_unlink() - unlink a &drm_gpuva
* @va: the &drm_gpuva to unlink
*
* This removes the given &va from the GPU VA list of the &drm_gem_object it is
* associated with.
*
* This function expects the caller to protect the GEM's GPUVA list against
* concurrent access using the GEMs dma_resv lock.
*/
void
drm_gpuva_unlink(struct drm_gpuva *va)
{
struct drm_gem_object *obj = va->gem.obj;
if (unlikely(!obj))
return;
drm_gem_gpuva_assert_lock_held(obj);
list_del_init(&va->gem.entry);
}
EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
/**
* drm_gpuva_find_first() - find the first &drm_gpuva in the given range
* @gpuvm: the &drm_gpuvm to search in
* @addr: the &drm_gpuvas address
* @range: the &drm_gpuvas range
*
* Returns: the first &drm_gpuva within the given range
*/
struct drm_gpuva *
drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
u64 last = addr + range - 1;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
/**
* drm_gpuva_find() - find a &drm_gpuva
* @gpuvm: the &drm_gpuvm to search in
* @addr: the &drm_gpuvas address
* @range: the &drm_gpuvas range
*
* Returns: the &drm_gpuva at a given &addr and with a given &range
*/
struct drm_gpuva *
drm_gpuva_find(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
struct drm_gpuva *va;
va = drm_gpuva_find_first(gpuvm, addr, range);
if (!va)
goto out;
if (va->va.addr != addr ||
va->va.range != range)
goto out;
return va;
out:
return NULL;
}
EXPORT_SYMBOL_GPL(drm_gpuva_find);
/**
* drm_gpuva_find_prev() - find the &drm_gpuva before the given address
* @gpuvm: the &drm_gpuvm to search in
* @start: the given GPU VA's start address
*
* Find the adjacent &drm_gpuva before the GPU VA with given &start address.
*
* Note that if there is any free space between the GPU VA mappings no mapping
* is returned.
*
* Returns: a pointer to the found &drm_gpuva or NULL if none was found
*/
struct drm_gpuva *
drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
{
if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1))
return NULL;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
/**
* drm_gpuva_find_next() - find the &drm_gpuva after the given address
* @gpuvm: the &drm_gpuvm to search in
* @end: the given GPU VA's end address
*
* Find the adjacent &drm_gpuva after the GPU VA with given &end address.
*
* Note that if there is any free space between the GPU VA mappings no mapping
* is returned.
*
* Returns: a pointer to the found &drm_gpuva or NULL if none was found
*/
struct drm_gpuva *
drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
{
if (!drm_gpuvm_range_valid(gpuvm, end, 1))
return NULL;
return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1);
}
EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
/**
* drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
* is empty
* @gpuvm: the &drm_gpuvm to check the range for
* @addr: the start address of the range
* @range: the range of the interval
*
* Returns: true if the interval is empty, false otherwise
*/
bool
drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
{
return !drm_gpuva_find_first(gpuvm, addr, range);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
/**
* drm_gpuva_map() - helper to insert a &drm_gpuva according to a
* &drm_gpuva_op_map
* @gpuvm: the &drm_gpuvm
* @va: the &drm_gpuva to insert
* @op: the &drm_gpuva_op_map to initialize @va with
*
* Initializes the @va from the @op and inserts it into the given @gpuvm.
*/
void
drm_gpuva_map(struct drm_gpuvm *gpuvm,
struct drm_gpuva *va,
struct drm_gpuva_op_map *op)
{
drm_gpuva_init_from_op(va, op);
drm_gpuva_insert(gpuvm, va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_map);
/**
* drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
* &drm_gpuva_op_remap
* @prev: the &drm_gpuva to remap when keeping the start of a mapping
* @next: the &drm_gpuva to remap when keeping the end of a mapping
* @op: the &drm_gpuva_op_remap to initialize @prev and @next with
*
* Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
* @next.
*/
void
drm_gpuva_remap(struct drm_gpuva *prev,
struct drm_gpuva *next,
struct drm_gpuva_op_remap *op)
{
struct drm_gpuva *curr = op->unmap->va;
struct drm_gpuvm *gpuvm = curr->vm;
drm_gpuva_remove(curr);
if (op->prev) {
drm_gpuva_init_from_op(prev, op->prev);
drm_gpuva_insert(gpuvm, prev);
}
if (op->next) {
drm_gpuva_init_from_op(next, op->next);
drm_gpuva_insert(gpuvm, next);
}
}
EXPORT_SYMBOL_GPL(drm_gpuva_remap);
/**
* drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
* &drm_gpuva_op_unmap
* @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
*
* Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
*/
void
drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
{
drm_gpuva_remove(op->va);
}
EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
static int
op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
u64 addr, u64 range,
struct drm_gem_object *obj, u64 offset)
{
struct drm_gpuva_op op = {};
op.op = DRM_GPUVA_OP_MAP;
op.map.va.addr = addr;
op.map.va.range = range;
op.map.gem.obj = obj;
op.map.gem.offset = offset;
return fn->sm_step_map(&op, priv);
}
static int
op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
struct drm_gpuva_op_map *prev,
struct drm_gpuva_op_map *next,
struct drm_gpuva_op_unmap *unmap)
{
struct drm_gpuva_op op = {};
struct drm_gpuva_op_remap *r;
op.op = DRM_GPUVA_OP_REMAP;
r = &op.remap;
r->prev = prev;
r->next = next;
r->unmap = unmap;
return fn->sm_step_remap(&op, priv);
}
static int
op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
struct drm_gpuva *va, bool merge)
{
struct drm_gpuva_op op = {};
op.op = DRM_GPUVA_OP_UNMAP;
op.unmap.va = va;
op.unmap.keep = merge;
return fn->sm_step_unmap(&op, priv);
}
static int
__drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
const struct drm_gpuvm_ops *ops, void *priv,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
struct drm_gpuva *va, *next;
u64 req_end = req_addr + req_range;
int ret;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
return -EINVAL;
drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
struct drm_gem_object *obj = va->gem.obj;
u64 offset = va->gem.offset;
u64 addr = va->va.addr;
u64 range = va->va.range;
u64 end = addr + range;
bool merge = !!va->gem.obj;
if (addr == req_addr) {
merge &= obj == req_obj &&
offset == req_offset;
if (end == req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = range - req_range,
.gem.obj = obj,
.gem.offset = offset + req_range,
};
struct drm_gpuva_op_unmap u = {
.va = va,
.keep = merge,
};
ret = op_remap_cb(ops, priv, NULL, &n, &u);
if (ret)
return ret;
break;
}
} else if (addr < req_addr) {
u64 ls_range = req_addr - addr;
struct drm_gpuva_op_map p = {
.va.addr = addr,
.va.range = ls_range,
.gem.obj = obj,
.gem.offset = offset,
};
struct drm_gpuva_op_unmap u = { .va = va };
merge &= obj == req_obj &&
offset + ls_range == req_offset;
u.keep = merge;
if (end == req_end) {
ret = op_remap_cb(ops, priv, &p, NULL, &u);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_remap_cb(ops, priv, &p, NULL, &u);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = end - req_end,
.gem.obj = obj,
.gem.offset = offset + ls_range +
req_range,
};
ret = op_remap_cb(ops, priv, &p, &n, &u);
if (ret)
return ret;
break;
}
} else if (addr > req_addr) {
merge &= obj == req_obj &&
offset == req_offset +
(addr - req_addr);
if (end == req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
break;
}
if (end < req_end) {
ret = op_unmap_cb(ops, priv, va, merge);
if (ret)
return ret;
continue;
}
if (end > req_end) {
struct drm_gpuva_op_map n = {
.va.addr = req_end,
.va.range = end - req_end,
.gem.obj = obj,
.gem.offset = offset + req_end - addr,
};
struct drm_gpuva_op_unmap u = {
.va = va,
.keep = merge,
};
ret = op_remap_cb(ops, priv, NULL, &n, &u);
if (ret)
return ret;
break;
}
}
}
return op_map_cb(ops, priv,
req_addr, req_range,
req_obj, req_offset);
}
static int
__drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
const struct drm_gpuvm_ops *ops, void *priv,
u64 req_addr, u64 req_range)
{
struct drm_gpuva *va, *next;
u64 req_end = req_addr + req_range;
int ret;
if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
return -EINVAL;
drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
struct drm_gpuva_op_map prev = {}, next = {};
bool prev_split = false, next_split = false;
struct drm_gem_object *obj = va->gem.obj;
u64 offset = va->gem.offset;
u64 addr = va->va.addr;
u64 range = va->va.range;
u64 end = addr + range;
if (addr < req_addr) {
prev.va.addr = addr;
prev.va.range = req_addr - addr;
prev.gem.obj = obj;
prev.gem.offset = offset;
prev_split = true;
}
if (end > req_end) {
next.va.addr = req_end;
next.va.range = end - req_end;
next.gem.obj = obj;
next.gem.offset = offset + (req_end - addr);
next_split = true;
}
if (prev_split || next_split) {
struct drm_gpuva_op_unmap unmap = { .va = va };
ret = op_remap_cb(ops, priv,
prev_split ? &prev : NULL,
next_split ? &next : NULL,
&unmap);
if (ret)
return ret;
} else {
ret = op_unmap_cb(ops, priv, va, false);
if (ret)
return ret;
}
}
return 0;
}
/**
* drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the new mapping
* @req_range: the range of the new mapping
* @req_obj: the &drm_gem_object to map
* @req_offset: the offset within the &drm_gem_object
* @priv: pointer to a driver private data structure
*
* This function iterates the given range of the GPU VA space. It utilizes the
* &drm_gpuvm_ops to call back into the driver providing the split and merge
* steps.
*
* Drivers may use these callbacks to update the GPU VA space right away within
* the callback. In case the driver decides to copy and store the operations for
* later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
* be called before the &drm_gpuvm's view of the GPU VA space was
* updated with the previous set of operations. To update the
* &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* A sequence of callbacks can contain map, unmap and remap operations, but
* the sequence of callbacks might also be empty if no operation is required,
* e.g. if the requested mapping already exists in the exact same way.
*
* There can be an arbitrary amount of unmap operations, a maximum of two remap
* operations and a single map operation. The latter one represents the original
* map operation requested by the caller.
*
* Returns: 0 on success or a negative error code
*/
int
drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
if (unlikely(!(ops && ops->sm_step_map &&
ops->sm_step_remap &&
ops->sm_step_unmap)))
return -EINVAL;
return __drm_gpuvm_sm_map(gpuvm, ops, priv,
req_addr, req_range,
req_obj, req_offset);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
/**
* drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @priv: pointer to a driver private data structure
* @req_addr: the start address of the range to unmap
* @req_range: the range of the mappings to unmap
*
* This function iterates the given range of the GPU VA space. It utilizes the
* &drm_gpuvm_ops to call back into the driver providing the operations to
* unmap and, if required, split existent mappings.
*
* Drivers may use these callbacks to update the GPU VA space right away within
* the callback. In case the driver decides to copy and store the operations for
* later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
* called before the &drm_gpuvm's view of the GPU VA space was updated
* with the previous set of operations. To update the &drm_gpuvm's view
* of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
* drm_gpuva_destroy_unlocked() should be used.
*
* A sequence of callbacks can contain unmap and remap operations, depending on
* whether there are actual overlapping mappings to split.
*
* There can be an arbitrary amount of unmap operations and a maximum of two
* remap operations.
*
* Returns: 0 on success or a negative error code
*/
int
drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
u64 req_addr, u64 req_range)
{
const struct drm_gpuvm_ops *ops = gpuvm->ops;
if (unlikely(!(ops && ops->sm_step_remap &&
ops->sm_step_unmap)))
return -EINVAL;
return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
req_addr, req_range);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
static struct drm_gpuva_op *
gpuva_op_alloc(struct drm_gpuvm *gpuvm)
{
const struct drm_gpuvm_ops *fn = gpuvm->ops;
struct drm_gpuva_op *op;
if (fn && fn->op_alloc)
op = fn->op_alloc();
else
op = kzalloc(sizeof(*op), GFP_KERNEL);
if (unlikely(!op))
return NULL;
return op;
}
static void
gpuva_op_free(struct drm_gpuvm *gpuvm,
struct drm_gpuva_op *op)
{
const struct drm_gpuvm_ops *fn = gpuvm->ops;
if (fn && fn->op_free)
fn->op_free(op);
else
kfree(op);
}
static int
drm_gpuva_sm_step(struct drm_gpuva_op *__op,
void *priv)
{
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} *args = priv;
struct drm_gpuvm *gpuvm = args->vm;
struct drm_gpuva_ops *ops = args->ops;
struct drm_gpuva_op *op;
op = gpuva_op_alloc(gpuvm);
if (unlikely(!op))
goto err;
memcpy(op, __op, sizeof(*op));
if (op->op == DRM_GPUVA_OP_REMAP) {
struct drm_gpuva_op_remap *__r = &__op->remap;
struct drm_gpuva_op_remap *r = &op->remap;
r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap),
GFP_KERNEL);
if (unlikely(!r->unmap))
goto err_free_op;
if (__r->prev) {
r->prev = kmemdup(__r->prev, sizeof(*r->prev),
GFP_KERNEL);
if (unlikely(!r->prev))
goto err_free_unmap;
}
if (__r->next) {
r->next = kmemdup(__r->next, sizeof(*r->next),
GFP_KERNEL);
if (unlikely(!r->next))
goto err_free_prev;
}
}
list_add_tail(&op->entry, &ops->list);
return 0;
err_free_unmap:
kfree(op->remap.unmap);
err_free_prev:
kfree(op->remap.prev);
err_free_op:
gpuva_op_free(gpuvm, op);
err:
return -ENOMEM;
}
static const struct drm_gpuvm_ops gpuvm_list_ops = {
.sm_step_map = drm_gpuva_sm_step,
.sm_step_remap = drm_gpuva_sm_step,
.sm_step_unmap = drm_gpuva_sm_step,
};
/**
* drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the new mapping
* @req_range: the range of the new mapping
* @req_obj: the &drm_gem_object to map
* @req_offset: the offset within the &drm_gem_object
*
* This function creates a list of operations to perform splitting and merging
* of existent mapping(s) with the newly requested one.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain map, unmap and remap operations, but it
* also can be empty if no operation is required, e.g. if the requested mapping
* already exists is the exact same way.
*
* There can be an arbitrary amount of unmap operations, a maximum of two remap
* operations and a single map operation. The latter one represents the original
* map operation requested by the caller.
*
* Note that before calling this function again with another mapping request it
* is necessary to update the &drm_gpuvm's view of the GPU VA space. The
* previously obtained operations must be either processed or abandoned. To
* update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
u64 req_addr, u64 req_range,
struct drm_gem_object *req_obj, u64 req_offset)
{
struct drm_gpuva_ops *ops;
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} args;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (unlikely(!ops))
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
args.vm = gpuvm;
args.ops = ops;
ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args,
req_addr, req_range,
req_obj, req_offset);
if (ret)
goto err_free_ops;
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
/**
* drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
* unmap
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @req_addr: the start address of the range to unmap
* @req_range: the range of the mappings to unmap
*
* This function creates a list of operations to perform unmapping and, if
* required, splitting of the mappings overlapping the unmap range.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain unmap and remap operations, depending on
* whether there are actual overlapping mappings to split.
*
* There can be an arbitrary amount of unmap operations and a maximum of two
* remap operations.
*
* Note that before calling this function again with another range to unmap it
* is necessary to update the &drm_gpuvm's view of the GPU VA space. The
* previously obtained operations must be processed or abandoned. To update the
* &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
* drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
* used.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
u64 req_addr, u64 req_range)
{
struct drm_gpuva_ops *ops;
struct {
struct drm_gpuvm *vm;
struct drm_gpuva_ops *ops;
} args;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (unlikely(!ops))
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
args.vm = gpuvm;
args.ops = ops;
ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args,
req_addr, req_range);
if (ret)
goto err_free_ops;
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
/**
* drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @addr: the start address of the range to prefetch
* @range: the range of the mappings to prefetch
*
* This function creates a list of operations to perform prefetching.
*
* The list can be iterated with &drm_gpuva_for_each_op and must be processed
* in the given order. It can contain prefetch operations.
*
* There can be an arbitrary amount of prefetch operations.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
u64 addr, u64 range)
{
struct drm_gpuva_ops *ops;
struct drm_gpuva_op *op;
struct drm_gpuva *va;
u64 end = addr + range;
int ret;
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
op = gpuva_op_alloc(gpuvm);
if (!op) {
ret = -ENOMEM;
goto err_free_ops;
}
op->op = DRM_GPUVA_OP_PREFETCH;
op->prefetch.va = va;
list_add_tail(&op->entry, &ops->list);
}
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
/**
* drm_gpuvm_gem_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
* @gpuvm: the &drm_gpuvm representing the GPU VA space
* @obj: the &drm_gem_object to unmap
*
* This function creates a list of operations to perform unmapping for every
* GPUVA attached to a GEM.
*
* The list can be iterated with &drm_gpuva_for_each_op and consists out of an
* arbitrary amount of unmap operations.
*
* After the caller finished processing the returned &drm_gpuva_ops, they must
* be freed with &drm_gpuva_ops_free.
*
* It is the callers responsibility to protect the GEMs GPUVA list against
* concurrent access using the GEMs dma_resv lock.
*
* Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
*/
struct drm_gpuva_ops *
drm_gpuvm_gem_unmap_ops_create(struct drm_gpuvm *gpuvm,
struct drm_gem_object *obj)
{
struct drm_gpuva_ops *ops;
struct drm_gpuva_op *op;
struct drm_gpuva *va;
int ret;
drm_gem_gpuva_assert_lock_held(obj);
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ops->list);
drm_gem_for_each_gpuva(va, obj) {
op = gpuva_op_alloc(gpuvm);
if (!op) {
ret = -ENOMEM;
goto err_free_ops;
}
op->op = DRM_GPUVA_OP_UNMAP;
op->unmap.va = va;
list_add_tail(&op->entry, &ops->list);
}
return ops;
err_free_ops:
drm_gpuva_ops_free(gpuvm, ops);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(drm_gpuvm_gem_unmap_ops_create);
/**
* drm_gpuva_ops_free() - free the given &drm_gpuva_ops
* @gpuvm: the &drm_gpuvm the ops were created for
* @ops: the &drm_gpuva_ops to free
*
* Frees the given &drm_gpuva_ops structure including all the ops associated
* with it.
*/
void
drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
struct drm_gpuva_ops *ops)
{
struct drm_gpuva_op *op, *next;
drm_gpuva_for_each_op_safe(op, next, ops) {
list_del(&op->entry);
if (op->op == DRM_GPUVA_OP_REMAP) {
kfree(op->remap.prev);
kfree(op->remap.next);
kfree(op->remap.unmap);
}
gpuva_op_free(gpuvm, op);
}
kfree(ops);
}
EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
MODULE_DESCRIPTION("DRM GPUVM");
MODULE_LICENSE("GPL");