Zach O'Keefe edb5d0cf55 mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups
In commit 34488399fa08 ("mm/madvise: add file and shmem support to
MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none():

	-       if (!pmd_present(pmde))
	-               return SCAN_PMD_NULL;
	+       if (pmd_none(pmde))
	+               return SCAN_PMD_NONE;

This was for-use by MADV_COLLAPSE file/shmem codepaths, where
MADV_COLLAPSE might identify a pte-mapped hugepage, only to have
khugepaged race-in, free the pte table, and clear the pmd.  Such codepaths
include:

A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER
   already in the pagecache.
B) In retract_page_tables(), if we fail to grab mmap_lock for the target
   mm/address.

In these cases, collapse_pte_mapped_thp() really does expect a none (not
just !present) pmd, and we want to suitably identify that case separate
from the case where no pmd is found, or it's a bad-pmd (of course, many
things could happen once we drop mmap_lock, and the pmd could plausibly
undergo multiple transitions due to intervening fault, split, etc). 
Regardless, the code is prepared install a huge-pmd only when the existing
pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd.

However, the commit introduces a logical hole; namely, that we've allowed
!none- && !huge- && !bad-pmds to be classified as genuine
pte-table-mapping-pmds.  One such example that could leak through are swap
entries.  The pmd values aren't checked again before use in
pte_offset_map_lock(), which is expecting nothing less than a genuine
pte-table-mapping-pmd.

We want to put back the !pmd_present() check (below the pmd_none() check),
but need to be careful to deal with subtleties in pmd transitions and
treatments by various arch.

The issue is that __split_huge_pmd_locked() temporarily clears the present
bit (or otherwise marks the entry as invalid), but pmd_present() and
pmd_trans_huge() still need to return true while the pmd is in this
transitory state.  For example, x86's pmd_present() also checks the
_PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also
checks a PMD_PRESENT_INVALID bit.

Covering all 4 cases for x86 (all checks done on the same pmd value):

1) pmd_present() && pmd_trans_huge()
   All we actually know here is that the PSE bit is set. Either:
   a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE
      is set.
      => huge-pmd
   b) We are currently racing with __split_huge_page().  The danger here
      is that we proceed as-if we have a huge-pmd, but really we are
      looking at a pte-mapping-pmd.  So, what is the risk of this
      danger?

      The only relevant path is:

	madvise_collapse() -> collapse_pte_mapped_thp()

      Where we might just incorrectly report back "success", when really
      the memory isn't pmd-backed.  This is fine, since split could
      happen immediately after (actually) successful madvise_collapse().
      So, it should be safe to just assume huge-pmd here.

2) pmd_present() && !pmd_trans_huge()
   Either:
   a) PSE not set and either PRESENT or PROTNONE is.
      => pte-table-mapping pmd (or PROT_NONE)
   b) devmap.  This routine can be called immediately after
      unlocking/locking mmap_lock -- or called with no locks held (see
      khugepaged_scan_mm_slot()), so previous VMA checks have since been
      invalidated.

3) !pmd_present() && pmd_trans_huge()
  Not possible.

4) !pmd_present() && !pmd_trans_huge()
  Neither PRESENT nor PROTNONE set
  => not present

I've checked all archs that implement pmd_trans_huge() (arm64, riscv,
powerpc, longarch, x86, mips, s390) and this logic roughly translates
(though devmap treatment is unique to x86 and powerpc, and (3) doesn't
necessarily hold in general -- but that doesn't matter since
!pmd_present() always takes failure path).

Also, add a comment above find_pmd_or_thp_or_none() to help future
travelers reason about the validity of the code; namely, the possible
mutations that might happen out from under us, depending on how mmap_lock
is held (if at all).

Link: https://lkml.kernel.org/r/20230125225358.2576151-1-zokeefe@google.com
Fixes: 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-31 16:44:09 -08:00
2023-01-13 17:41:19 -06:00
2023-01-31 16:44:08 -08:00
2023-01-18 16:52:20 -08:00
2022-12-12 17:28:58 -08:00
2023-01-14 08:17:27 -06:00
2023-01-12 18:20:44 -06:00
2022-12-04 01:59:16 +01:00
2023-01-13 08:20:29 -06:00
2022-12-14 09:15:43 -08:00
2022-12-30 17:22:14 +09:00
2022-09-28 09:02:20 +02:00
2022-10-10 12:00:45 -07:00
2023-01-18 16:52:20 -08:00
2023-01-15 09:22:43 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%