linux/sound/soc/codecs/tscs454.c
Kuninori Morimoto cf6e26c71b
ASoC: soc-component: merge snd_soc_component_read() and snd_soc_component_read32()
We had read/write function for Codec, Platform, etc,
but these has been merged into snd_soc_component_read/write().

Internally, it is using regmap or driver function.
In read case, each styles are like below

regmap
	ret = regmap_read(..., reg, &val);

driver function
	val = xxx->read(..., reg);

Because of this kind of different style, to keep same read style,
when we merged each read function into snd_soc_component_read(),
we created snd_soc_component_read32(), like below.
commit 738b49efe6c6 ("ASoC: add snd_soc_component_read32")

(1)	val = snd_soc_component_read32(component, reg);

(2)	ret = snd_soc_component_read(component, reg, &val);

Many drivers are using snd_soc_component_read32(), and
some drivers are using snd_soc_component_read() today.

In generally, we don't check read function successes,
because, we will have many other issues at initial timing
if read function didn't work.

Now we can use soc_component_err() when error case.
This means, it is easy to notice if error occurred.

This patch aggressively merge snd_soc_component_read() and _read32(),
and makes snd_soc_component_read/write() as generally style.

This patch do
	1) merge snd_soc_component_read() and snd_soc_component_read32()
	2) it uses soc_component_err() when error case (easy to notice)
	3) keeps read32 for now by #define
	4) update snd_soc_component_read() for all drivers

Because _read() user drivers are not too many, this patch changes
all user drivers.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Reviewed-by: Kai Vehmanen <kai.vehmanen@linux.intel.com>
Link: https://lore.kernel.org/r/87sgev4mfl.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-06-22 15:13:36 +01:00

3481 lines
107 KiB
C

// SPDX-License-Identifier: GPL-2.0
// tscs454.c -- TSCS454 ALSA SoC Audio driver
// Copyright 2018 Tempo Semiconductor, Inc.
// Author: Steven Eckhoff <steven.eckhoff.opensource@gmail.com>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <sound/tlv.h>
#include <sound/pcm_params.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include "tscs454.h"
static const unsigned int PLL_44_1K_RATE = (44100 * 256);
#define COEFF_SIZE 3
#define BIQUAD_COEFF_COUNT 5
#define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT)
#define COEFF_RAM_MAX_ADDR 0xcd
#define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1)
#define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT)
enum {
TSCS454_DAI1_ID,
TSCS454_DAI2_ID,
TSCS454_DAI3_ID,
TSCS454_DAI_COUNT,
};
struct pll {
int id;
unsigned int users;
struct mutex lock;
};
static inline void pll_init(struct pll *pll, int id)
{
pll->id = id;
mutex_init(&pll->lock);
}
struct internal_rate {
struct pll *pll;
};
struct aif {
unsigned int id;
bool master;
struct pll *pll;
};
static inline void aif_init(struct aif *aif, unsigned int id)
{
aif->id = id;
}
struct coeff_ram {
u8 cache[COEFF_RAM_SIZE];
bool synced;
struct mutex lock;
};
static inline void init_coeff_ram_cache(u8 *cache)
{
static const u8 norm_addrs[] = { 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19,
0x1f, 0x20, 0x25, 0x2a, 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45,
0x4a, 0x4f, 0x54, 0x59, 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74,
0x79, 0x7f, 0x80, 0x85, 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3,
0xa8, 0xad, 0xaf, 0xb0, 0xb5, 0xba, 0xbf, 0xc4, 0xc9};
int i;
for (i = 0; i < ARRAY_SIZE(norm_addrs); i++)
cache[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40;
}
static inline void coeff_ram_init(struct coeff_ram *ram)
{
init_coeff_ram_cache(ram->cache);
mutex_init(&ram->lock);
}
struct aifs_status {
u8 streams;
};
static inline void set_aif_status_active(struct aifs_status *status,
int aif_id, bool playback)
{
u8 mask = 0x01 << (aif_id * 2 + !playback);
status->streams |= mask;
}
static inline void set_aif_status_inactive(struct aifs_status *status,
int aif_id, bool playback)
{
u8 mask = ~(0x01 << (aif_id * 2 + !playback));
status->streams &= mask;
}
static bool aifs_active(struct aifs_status *status)
{
return status->streams;
}
static bool aif_active(struct aifs_status *status, int aif_id)
{
return (0x03 << aif_id * 2) & status->streams;
}
struct tscs454 {
struct regmap *regmap;
struct aif aifs[TSCS454_DAI_COUNT];
struct aifs_status aifs_status;
struct mutex aifs_status_lock;
struct pll pll1;
struct pll pll2;
struct internal_rate internal_rate;
struct coeff_ram dac_ram;
struct coeff_ram spk_ram;
struct coeff_ram sub_ram;
struct clk *sysclk;
int sysclk_src_id;
unsigned int bclk_freq;
};
struct coeff_ram_ctl {
unsigned int addr;
struct soc_bytes_ext bytes_ext;
};
static const struct reg_sequence tscs454_patch[] = {
/* Assign ASRC out of the box so DAI 1 just works */
{ R_AUDIOMUX1, FV_ASRCIMUX_I2S1 | FV_I2S2MUX_I2S2 },
{ R_AUDIOMUX2, FV_ASRCOMUX_I2S1 | FV_DACMUX_I2S1 | FV_I2S3MUX_I2S3 },
{ R_AUDIOMUX3, FV_CLSSDMUX_I2S1 | FV_SUBMUX_I2S1_LR },
{ R_TDMCTL0, FV_TDMMD_256 },
{ VIRT_ADDR(0x0A, 0x13), 1 << 3 },
};
static bool tscs454_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_PLLSTAT:
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_SPKCRS:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_DACCRS:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
case R_SUBCRS:
return true;
default:
return false;
};
}
static bool tscs454_writable(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
return false;
default:
return true;
};
}
static bool tscs454_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRWDL:
case R_SPKCRWDM:
case R_SPKCRWDH:
case R_DACCRWDL:
case R_DACCRWDM:
case R_DACCRWDH:
case R_SUBCRWDL:
case R_SUBCRWDM:
case R_SUBCRWDH:
return false;
default:
return true;
};
}
static bool tscs454_precious(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRWDL:
case R_SPKCRWDM:
case R_SPKCRWDH:
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_DACCRWDL:
case R_DACCRWDM:
case R_DACCRWDH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_SUBCRWDL:
case R_SUBCRWDM:
case R_SUBCRWDH:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
return true;
default:
return false;
};
}
static const struct regmap_range_cfg tscs454_regmap_range_cfg = {
.name = "Pages",
.range_min = VIRT_BASE,
.range_max = VIRT_ADDR(0xFE, 0x02),
.selector_reg = R_PAGESEL,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
};
static struct regmap_config const tscs454_regmap_cfg = {
.reg_bits = 8,
.val_bits = 8,
.writeable_reg = tscs454_writable,
.readable_reg = tscs454_readable,
.volatile_reg = tscs454_volatile,
.precious_reg = tscs454_precious,
.ranges = &tscs454_regmap_range_cfg,
.num_ranges = 1,
.max_register = VIRT_ADDR(0xFE, 0x02),
.cache_type = REGCACHE_RBTREE,
};
static inline int tscs454_data_init(struct tscs454 *tscs454,
struct i2c_client *i2c)
{
int i;
int ret;
tscs454->regmap = devm_regmap_init_i2c(i2c, &tscs454_regmap_cfg);
if (IS_ERR(tscs454->regmap)) {
ret = PTR_ERR(tscs454->regmap);
return ret;
}
for (i = 0; i < TSCS454_DAI_COUNT; i++)
aif_init(&tscs454->aifs[i], i);
mutex_init(&tscs454->aifs_status_lock);
pll_init(&tscs454->pll1, 1);
pll_init(&tscs454->pll2, 2);
coeff_ram_init(&tscs454->dac_ram);
coeff_ram_init(&tscs454->spk_ram);
coeff_ram_init(&tscs454->sub_ram);
return 0;
}
struct reg_setting {
unsigned int addr;
unsigned int val;
};
static int coeff_ram_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
u8 *coeff_ram;
struct mutex *coeff_ram_lock;
if (strstr(kcontrol->id.name, "DAC")) {
coeff_ram = tscs454->dac_ram.cache;
coeff_ram_lock = &tscs454->dac_ram.lock;
} else if (strstr(kcontrol->id.name, "Speaker")) {
coeff_ram = tscs454->spk_ram.cache;
coeff_ram_lock = &tscs454->spk_ram.lock;
} else if (strstr(kcontrol->id.name, "Sub")) {
coeff_ram = tscs454->sub_ram.cache;
coeff_ram_lock = &tscs454->sub_ram.lock;
} else {
return -EINVAL;
}
mutex_lock(coeff_ram_lock);
memcpy(ucontrol->value.bytes.data,
&coeff_ram[ctl->addr * COEFF_SIZE], params->max);
mutex_unlock(coeff_ram_lock);
return 0;
}
#define DACCRSTAT_MAX_TRYS 10
static int write_coeff_ram(struct snd_soc_component *component, u8 *coeff_ram,
unsigned int r_stat, unsigned int r_addr, unsigned int r_wr,
unsigned int coeff_addr, unsigned int coeff_cnt)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int cnt;
int trys;
int ret;
for (cnt = 0; cnt < coeff_cnt; cnt++, coeff_addr++) {
for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) {
val = snd_soc_component_read(component, r_stat);
if (!val)
break;
}
if (trys == DACCRSTAT_MAX_TRYS) {
ret = -EIO;
dev_err(component->dev,
"Coefficient write error (%d)\n", ret);
return ret;
}
ret = regmap_write(tscs454->regmap, r_addr, coeff_addr);
if (ret < 0) {
dev_err(component->dev,
"Failed to write dac ram address (%d)\n", ret);
return ret;
}
ret = regmap_bulk_write(tscs454->regmap, r_wr,
&coeff_ram[coeff_addr * COEFF_SIZE],
COEFF_SIZE);
if (ret < 0) {
dev_err(component->dev,
"Failed to write dac ram (%d)\n", ret);
return ret;
}
}
return 0;
}
static int coeff_ram_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
unsigned int coeff_cnt = params->max / COEFF_SIZE;
u8 *coeff_ram;
struct mutex *coeff_ram_lock;
bool *coeff_ram_synced;
unsigned int r_stat;
unsigned int r_addr;
unsigned int r_wr;
unsigned int val;
int ret;
if (strstr(kcontrol->id.name, "DAC")) {
coeff_ram = tscs454->dac_ram.cache;
coeff_ram_lock = &tscs454->dac_ram.lock;
coeff_ram_synced = &tscs454->dac_ram.synced;
r_stat = R_DACCRS;
r_addr = R_DACCRADD;
r_wr = R_DACCRWDL;
} else if (strstr(kcontrol->id.name, "Speaker")) {
coeff_ram = tscs454->spk_ram.cache;
coeff_ram_lock = &tscs454->spk_ram.lock;
coeff_ram_synced = &tscs454->spk_ram.synced;
r_stat = R_SPKCRS;
r_addr = R_SPKCRADD;
r_wr = R_SPKCRWDL;
} else if (strstr(kcontrol->id.name, "Sub")) {
coeff_ram = tscs454->sub_ram.cache;
coeff_ram_lock = &tscs454->sub_ram.lock;
coeff_ram_synced = &tscs454->sub_ram.synced;
r_stat = R_SUBCRS;
r_addr = R_SUBCRADD;
r_wr = R_SUBCRWDL;
} else {
return -EINVAL;
}
mutex_lock(coeff_ram_lock);
*coeff_ram_synced = false;
memcpy(&coeff_ram[ctl->addr * COEFF_SIZE],
ucontrol->value.bytes.data, params->max);
mutex_lock(&tscs454->pll1.lock);
mutex_lock(&tscs454->pll2.lock);
val = snd_soc_component_read(component, R_PLLSTAT);
if (val) { /* PLLs locked */
ret = write_coeff_ram(component, coeff_ram,
r_stat, r_addr, r_wr,
ctl->addr, coeff_cnt);
if (ret < 0) {
dev_err(component->dev,
"Failed to flush coeff ram cache (%d)\n", ret);
goto exit;
}
*coeff_ram_synced = true;
}
ret = 0;
exit:
mutex_unlock(&tscs454->pll2.lock);
mutex_unlock(&tscs454->pll1.lock);
mutex_unlock(coeff_ram_lock);
return ret;
}
static inline int coeff_ram_sync(struct snd_soc_component *component,
struct tscs454 *tscs454)
{
int ret;
mutex_lock(&tscs454->dac_ram.lock);
if (!tscs454->dac_ram.synced) {
ret = write_coeff_ram(component, tscs454->dac_ram.cache,
R_DACCRS, R_DACCRADD, R_DACCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->dac_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->dac_ram.lock);
mutex_lock(&tscs454->spk_ram.lock);
if (!tscs454->spk_ram.synced) {
ret = write_coeff_ram(component, tscs454->spk_ram.cache,
R_SPKCRS, R_SPKCRADD, R_SPKCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->spk_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->spk_ram.lock);
mutex_lock(&tscs454->sub_ram.lock);
if (!tscs454->sub_ram.synced) {
ret = write_coeff_ram(component, tscs454->sub_ram.cache,
R_SUBCRS, R_SUBCRADD, R_SUBCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->sub_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->sub_ram.lock);
return 0;
}
#define PLL_REG_SETTINGS_COUNT 11
struct pll_ctl {
int freq_in;
struct reg_setting settings[PLL_REG_SETTINGS_COUNT];
};
#define PLL_CTL(f, t, c1, r1, o1, f1l, f1h, c2, r2, o2, f2l, f2h) \
{ \
.freq_in = f, \
.settings = { \
{R_PLL1CTL, c1}, \
{R_PLL1RDIV, r1}, \
{R_PLL1ODIV, o1}, \
{R_PLL1FDIVL, f1l}, \
{R_PLL1FDIVH, f1h}, \
{R_PLL2CTL, c2}, \
{R_PLL2RDIV, r2}, \
{R_PLL2ODIV, o2}, \
{R_PLL2FDIVL, f2l}, \
{R_PLL2FDIVH, f2h}, \
{R_TIMEBASE, t}, \
}, \
}
static const struct pll_ctl pll_ctls[] = {
PLL_CTL(1411200, 0x05,
0xB9, 0x07, 0x02, 0xC3, 0x04,
0x5A, 0x02, 0x03, 0xE0, 0x01),
PLL_CTL(1536000, 0x05,
0x5A, 0x02, 0x03, 0xE0, 0x01,
0x5A, 0x02, 0x03, 0xB9, 0x01),
PLL_CTL(2822400, 0x0A,
0x63, 0x07, 0x04, 0xC3, 0x04,
0x62, 0x07, 0x03, 0x48, 0x03),
PLL_CTL(3072000, 0x0B,
0x62, 0x07, 0x03, 0x48, 0x03,
0x5A, 0x04, 0x03, 0xB9, 0x01),
PLL_CTL(5644800, 0x15,
0x63, 0x0E, 0x04, 0xC3, 0x04,
0x5A, 0x08, 0x03, 0xE0, 0x01),
PLL_CTL(6144000, 0x17,
0x5A, 0x08, 0x03, 0xE0, 0x01,
0x5A, 0x08, 0x03, 0xB9, 0x01),
PLL_CTL(12000000, 0x2E,
0x5B, 0x19, 0x03, 0x00, 0x03,
0x6A, 0x19, 0x05, 0x98, 0x04),
PLL_CTL(19200000, 0x4A,
0x53, 0x14, 0x03, 0x80, 0x01,
0x5A, 0x19, 0x03, 0xB9, 0x01),
PLL_CTL(22000000, 0x55,
0x6A, 0x37, 0x05, 0x00, 0x06,
0x62, 0x26, 0x03, 0x49, 0x02),
PLL_CTL(22579200, 0x57,
0x62, 0x31, 0x03, 0x20, 0x03,
0x53, 0x1D, 0x03, 0xB3, 0x01),
PLL_CTL(24000000, 0x5D,
0x53, 0x19, 0x03, 0x80, 0x01,
0x5B, 0x19, 0x05, 0x4C, 0x02),
PLL_CTL(24576000, 0x5F,
0x53, 0x1D, 0x03, 0xB3, 0x01,
0x62, 0x40, 0x03, 0x72, 0x03),
PLL_CTL(27000000, 0x68,
0x62, 0x4B, 0x03, 0x00, 0x04,
0x6A, 0x7D, 0x03, 0x20, 0x06),
PLL_CTL(36000000, 0x8C,
0x5B, 0x4B, 0x03, 0x00, 0x03,
0x6A, 0x7D, 0x03, 0x98, 0x04),
PLL_CTL(11289600, 0x2B,
0x6A, 0x31, 0x03, 0x40, 0x06,
0x5A, 0x12, 0x03, 0x1C, 0x02),
PLL_CTL(26000000, 0x65,
0x63, 0x41, 0x05, 0x00, 0x06,
0x5A, 0x26, 0x03, 0xEF, 0x01),
PLL_CTL(12288000, 0x2F,
0x5A, 0x12, 0x03, 0x1C, 0x02,
0x62, 0x20, 0x03, 0x72, 0x03),
PLL_CTL(40000000, 0x9B,
0xA2, 0x7D, 0x03, 0x80, 0x04,
0x63, 0x7D, 0x05, 0xE4, 0x06),
PLL_CTL(512000, 0x01,
0x62, 0x01, 0x03, 0xD0, 0x02,
0x5B, 0x01, 0x04, 0x72, 0x03),
PLL_CTL(705600, 0x02,
0x62, 0x02, 0x03, 0x15, 0x04,
0x62, 0x01, 0x04, 0x80, 0x02),
PLL_CTL(1024000, 0x03,
0x62, 0x02, 0x03, 0xD0, 0x02,
0x5B, 0x02, 0x04, 0x72, 0x03),
PLL_CTL(2048000, 0x07,
0x62, 0x04, 0x03, 0xD0, 0x02,
0x5B, 0x04, 0x04, 0x72, 0x03),
PLL_CTL(2400000, 0x08,
0x62, 0x05, 0x03, 0x00, 0x03,
0x63, 0x05, 0x05, 0x98, 0x04),
};
static inline const struct pll_ctl *get_pll_ctl(unsigned long freq_in)
{
int i;
struct pll_ctl const *pll_ctl = NULL;
for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i)
if (pll_ctls[i].freq_in == freq_in) {
pll_ctl = &pll_ctls[i];
break;
}
return pll_ctl;
}
enum {
PLL_INPUT_XTAL = 0,
PLL_INPUT_MCLK1,
PLL_INPUT_MCLK2,
PLL_INPUT_BCLK,
};
static int set_sysclk(struct snd_soc_component *component)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct pll_ctl const *pll_ctl;
unsigned long freq;
int i;
int ret;
if (tscs454->sysclk_src_id < PLL_INPUT_BCLK)
freq = clk_get_rate(tscs454->sysclk);
else
freq = tscs454->bclk_freq;
pll_ctl = get_pll_ctl(freq);
if (!pll_ctl) {
ret = -EINVAL;
dev_err(component->dev,
"Invalid PLL input %lu (%d)\n", freq, ret);
return ret;
}
for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) {
ret = snd_soc_component_write(component,
pll_ctl->settings[i].addr,
pll_ctl->settings[i].val);
if (ret < 0) {
dev_err(component->dev,
"Failed to set pll setting (%d)\n",
ret);
return ret;
}
}
return 0;
}
static inline void reserve_pll(struct pll *pll)
{
mutex_lock(&pll->lock);
pll->users++;
mutex_unlock(&pll->lock);
}
static inline void free_pll(struct pll *pll)
{
mutex_lock(&pll->lock);
pll->users--;
mutex_unlock(&pll->lock);
}
static int pll_connected(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(source->dapm);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
int users;
if (strstr(source->name, "PLL 1")) {
mutex_lock(&tscs454->pll1.lock);
users = tscs454->pll1.users;
mutex_unlock(&tscs454->pll1.lock);
dev_dbg(component->dev, "%s(): PLL 1 users = %d\n", __func__,
users);
} else {
mutex_lock(&tscs454->pll2.lock);
users = tscs454->pll2.users;
mutex_unlock(&tscs454->pll2.lock);
dev_dbg(component->dev, "%s(): PLL 2 users = %d\n", __func__,
users);
}
return users;
}
/*
* PLL must be enabled after power up and must be disabled before power down
* for proper clock switching.
*/
static int pll_power_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
bool enable;
bool pll1;
unsigned int msk;
unsigned int val;
int ret;
if (strstr(w->name, "PLL 1"))
pll1 = true;
else
pll1 = false;
msk = pll1 ? FM_PLLCTL_PLL1CLKEN : FM_PLLCTL_PLL2CLKEN;
if (event == SND_SOC_DAPM_POST_PMU)
enable = true;
else
enable = false;
if (enable)
val = pll1 ? FV_PLL1CLKEN_ENABLE : FV_PLL2CLKEN_ENABLE;
else
val = pll1 ? FV_PLL1CLKEN_DISABLE : FV_PLL2CLKEN_DISABLE;
ret = snd_soc_component_update_bits(component, R_PLLCTL, msk, val);
if (ret < 0) {
dev_err(component->dev, "Failed to %s PLL %d (%d)\n",
enable ? "enable" : "disable",
pll1 ? 1 : 2,
ret);
return ret;
}
if (enable) {
msleep(20); // Wait for lock
ret = coeff_ram_sync(component, tscs454);
if (ret < 0) {
dev_err(component->dev,
"Failed to sync coeff ram (%d)\n", ret);
return ret;
}
}
return 0;
}
static inline int aif_set_master(struct snd_soc_component *component,
unsigned int aif_id, bool master)
{
unsigned int reg;
unsigned int mask;
unsigned int val;
int ret;
switch (aif_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -ENODEV;
dev_err(component->dev, "Unknown DAI %d (%d)\n", aif_id, ret);
return ret;
}
mask = FM_I2SPCTL_PORTMS;
val = master ? FV_PORTMS_MASTER : FV_PORTMS_SLAVE;
ret = snd_soc_component_update_bits(component, reg, mask, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set DAI %d to %s (%d)\n",
aif_id, master ? "master" : "slave", ret);
return ret;
}
return 0;
}
static inline
int aif_prepare(struct snd_soc_component *component, struct aif *aif)
{
int ret;
ret = aif_set_master(component, aif->id, aif->master);
if (ret < 0)
return ret;
return 0;
}
static inline int aif_free(struct snd_soc_component *component,
struct aif *aif, bool playback)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
mutex_lock(&tscs454->aifs_status_lock);
dev_dbg(component->dev, "%s(): aif %d\n", __func__, aif->id);
set_aif_status_inactive(&tscs454->aifs_status, aif->id, playback);
dev_dbg(component->dev, "Set aif %d inactive. Streams status is 0x%x\n",
aif->id, tscs454->aifs_status.streams);
if (!aif_active(&tscs454->aifs_status, aif->id)) {
/* Do config in slave mode */
aif_set_master(component, aif->id, false);
dev_dbg(component->dev, "Freeing pll %d from aif %d\n",
aif->pll->id, aif->id);
free_pll(aif->pll);
}
if (!aifs_active(&tscs454->aifs_status)) {
dev_dbg(component->dev, "Freeing pll %d from ir\n",
tscs454->internal_rate.pll->id);
free_pll(tscs454->internal_rate.pll);
}
mutex_unlock(&tscs454->aifs_status_lock);
return 0;
}
/* R_PLLCTL PG 0 ADDR 0x15 */
static char const * const bclk_sel_txt[] = {
"BCLK 1", "BCLK 2", "BCLK 3"};
static struct soc_enum const bclk_sel_enum =
SOC_ENUM_SINGLE(R_PLLCTL, FB_PLLCTL_BCLKSEL,
ARRAY_SIZE(bclk_sel_txt), bclk_sel_txt);
/* R_ISRC PG 0 ADDR 0x16 */
static char const * const isrc_br_txt[] = {
"44.1kHz", "48kHz"};
static struct soc_enum const isrc_br_enum =
SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBR,
ARRAY_SIZE(isrc_br_txt), isrc_br_txt);
static char const * const isrc_bm_txt[] = {
"0.25x", "0.5x", "1.0x", "2.0x"};
static struct soc_enum const isrc_bm_enum =
SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBM,
ARRAY_SIZE(isrc_bm_txt), isrc_bm_txt);
/* R_SCLKCTL PG 0 ADDR 0x18 */
static char const * const modular_rate_txt[] = {
"Reserved", "Half", "Full", "Auto",};
static struct soc_enum const adc_modular_rate_enum =
SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_ASDM,
ARRAY_SIZE(modular_rate_txt), modular_rate_txt);
static struct soc_enum const dac_modular_rate_enum =
SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_DSDM,
ARRAY_SIZE(modular_rate_txt), modular_rate_txt);
/* R_I2SIDCTL PG 0 ADDR 0x38 */
static char const * const data_ctrl_txt[] = {
"L/R", "L/L", "R/R", "R/L"};
static struct soc_enum const data_in_ctrl_enums[] = {
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI1DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI2DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI3DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
};
/* R_I2SODCTL PG 0 ADDR 0x39 */
static struct soc_enum const data_out_ctrl_enums[] = {
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO1DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO2DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO3DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
};
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
static char const * const asrc_mux_txt[] = {
"None", "DAI 1", "DAI 2", "DAI 3"};
static struct soc_enum const asrc_in_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_ASRCIMUX,
ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt);
static char const * const dai_mux_txt[] = {
"CH 0_1", "CH 2_3", "CH 4_5", "ADC/DMic 1",
"DMic 2", "ClassD", "DAC", "Sub"};
static struct soc_enum const dai2_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S2MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai2_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 2 Mux", dai2_mux_enum);
static struct soc_enum const dai1_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S1MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai1_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 1 Mux", dai1_mux_enum);
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
static struct soc_enum const asrc_out_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_ASRCOMUX,
ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt);
static struct soc_enum const dac_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_DACMUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dac_mux_dapm_enum =
SOC_DAPM_ENUM("DAC Mux", dac_mux_enum);
static struct soc_enum const dai3_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_I2S3MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai3_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 3 Mux", dai3_mux_enum);
/* R_AUDIOMUX3 PG 0 ADDR 0x3C */
static char const * const sub_mux_txt[] = {
"CH 0", "CH 1", "CH 0 + 1",
"CH 2", "CH 3", "CH 2 + 3",
"CH 4", "CH 5", "CH 4 + 5",
"ADC/DMic 1 Left", "ADC/DMic 1 Right",
"ADC/DMic 1 Left Plus Right",
"DMic 2 Left", "DMic 2 Right", "DMic 2 Left Plus Right",
"ClassD Left", "ClassD Right", "ClassD Left Plus Right"};
static struct soc_enum const sub_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_SUBMUX,
ARRAY_SIZE(sub_mux_txt), sub_mux_txt);
static struct snd_kcontrol_new const sub_mux_dapm_enum =
SOC_DAPM_ENUM("Sub Mux", sub_mux_enum);
static struct soc_enum const classd_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_CLSSDMUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const classd_mux_dapm_enum =
SOC_DAPM_ENUM("ClassD Mux", classd_mux_enum);
/* R_HSDCTL1 PG 1 ADDR 0x01 */
static char const * const jack_type_txt[] = {
"3 Terminal", "4 Terminal"};
static struct soc_enum const hp_jack_type_enum =
SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HPJKTYPE,
ARRAY_SIZE(jack_type_txt), jack_type_txt);
static char const * const hs_det_pol_txt[] = {
"Rising", "Falling"};
static struct soc_enum const hs_det_pol_enum =
SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HSDETPOL,
ARRAY_SIZE(hs_det_pol_txt), hs_det_pol_txt);
/* R_HSDCTL1 PG 1 ADDR 0x02 */
static char const * const hs_mic_bias_force_txt[] = {
"Off", "Ring", "Sleeve"};
static struct soc_enum const hs_mic_bias_force_enum =
SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FMICBIAS1,
ARRAY_SIZE(hs_mic_bias_force_txt),
hs_mic_bias_force_txt);
static char const * const plug_type_txt[] = {
"OMTP", "CTIA", "Reserved", "Headphone"};
static struct soc_enum const plug_type_force_enum =
SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FPLUGTYPE,
ARRAY_SIZE(plug_type_txt), plug_type_txt);
/* R_CH0AIC PG 1 ADDR 0x06 */
static char const * const in_bst_mux_txt[] = {
"Input 1", "Input 2", "Input 3", "D2S"};
static struct soc_enum const in_bst_mux_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_INSELL,
ARRAY_SIZE(in_bst_mux_txt),
in_bst_mux_txt);
static struct snd_kcontrol_new const in_bst_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("Input Boost Channel 0 Enum",
in_bst_mux_ch0_enum);
static DECLARE_TLV_DB_SCALE(in_bst_vol_tlv_arr, 0, 1000, 0);
static char const * const adc_mux_txt[] = {
"Input 1 Boost Bypass", "Input 2 Boost Bypass",
"Input 3 Boost Bypass", "Input Boost"};
static struct soc_enum const adc_mux_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_LADCIN,
ARRAY_SIZE(adc_mux_txt), adc_mux_txt);
static struct snd_kcontrol_new const adc_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("ADC Channel 0 Enum", adc_mux_ch0_enum);
static char const * const in_proc_mux_txt[] = {
"ADC", "DMic"};
static struct soc_enum const in_proc_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_IPCH0S,
ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt);
static struct snd_kcontrol_new const in_proc_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("Input Processor Channel 0 Enum",
in_proc_ch0_enum);
/* R_CH1AIC PG 1 ADDR 0x07 */
static struct soc_enum const in_bst_mux_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_INSELR,
ARRAY_SIZE(in_bst_mux_txt),
in_bst_mux_txt);
static struct snd_kcontrol_new const in_bst_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("Input Boost Channel 1 Enum",
in_bst_mux_ch1_enum);
static struct soc_enum const adc_mux_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_RADCIN,
ARRAY_SIZE(adc_mux_txt), adc_mux_txt);
static struct snd_kcontrol_new const adc_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("ADC Channel 1 Enum", adc_mux_ch1_enum);
static struct soc_enum const in_proc_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_IPCH1S,
ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt);
static struct snd_kcontrol_new const in_proc_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("Input Processor Channel 1 Enum",
in_proc_ch1_enum);
/* R_ICTL0 PG 1 ADDR 0x0A */
static char const * const pol_txt[] = {
"Normal", "Invert"};
static struct soc_enum const in_pol_ch1_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN0POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_pol_ch0_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN1POL,
ARRAY_SIZE(pol_txt), pol_txt);
static char const * const in_proc_ch_sel_txt[] = {
"Normal", "Mono Mix to Channel 0",
"Mono Mix to Channel 1", "Add"};
static struct soc_enum const in_proc_ch01_sel_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_INPCH10SEL,
ARRAY_SIZE(in_proc_ch_sel_txt),
in_proc_ch_sel_txt);
/* R_ICTL1 PG 1 ADDR 0x0B */
static struct soc_enum const in_pol_ch3_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN2POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_pol_ch2_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN3POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_proc_ch23_sel_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_INPCH32SEL,
ARRAY_SIZE(in_proc_ch_sel_txt),
in_proc_ch_sel_txt);
/* R_MICBIAS PG 1 ADDR 0x0C */
static char const * const mic_bias_txt[] = {
"2.5V", "2.1V", "1.8V", "Vdd"};
static struct soc_enum const mic_bias_2_enum =
SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV2,
ARRAY_SIZE(mic_bias_txt), mic_bias_txt);
static struct soc_enum const mic_bias_1_enum =
SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV1,
ARRAY_SIZE(mic_bias_txt), mic_bias_txt);
/* R_PGACTL0 PG 1 ADDR 0x0D */
/* R_PGACTL1 PG 1 ADDR 0x0E */
/* R_PGACTL2 PG 1 ADDR 0x0F */
/* R_PGACTL3 PG 1 ADDR 0x10 */
static DECLARE_TLV_DB_SCALE(in_pga_vol_tlv_arr, -1725, 75, 0);
/* R_ICH0VOL PG1 ADDR 0x12 */
/* R_ICH1VOL PG1 ADDR 0x13 */
/* R_ICH2VOL PG1 ADDR 0x14 */
/* R_ICH3VOL PG1 ADDR 0x15 */
static DECLARE_TLV_DB_MINMAX(in_vol_tlv_arr, -7125, 2400);
/* R_ASRCILVOL PG1 ADDR 0x16 */
/* R_ASRCIRVOL PG1 ADDR 0x17 */
/* R_ASRCOLVOL PG1 ADDR 0x18 */
/* R_ASRCORVOL PG1 ADDR 0x19 */
static DECLARE_TLV_DB_MINMAX(asrc_vol_tlv_arr, -9562, 600);
/* R_ALCCTL0 PG1 ADDR 0x1D */
static char const * const alc_mode_txt[] = {
"ALC", "Limiter"};
static struct soc_enum const alc_mode_enum =
SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCMODE,
ARRAY_SIZE(alc_mode_txt), alc_mode_txt);
static char const * const alc_ref_text[] = {
"Channel 0", "Channel 1", "Channel 2", "Channel 3", "Peak"};
static struct soc_enum const alc_ref_enum =
SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCREF,
ARRAY_SIZE(alc_ref_text), alc_ref_text);
/* R_ALCCTL1 PG 1 ADDR 0x1E */
static DECLARE_TLV_DB_SCALE(alc_max_gain_tlv_arr, -1200, 600, 0);
static DECLARE_TLV_DB_SCALE(alc_target_tlv_arr, -2850, 150, 0);
/* R_ALCCTL2 PG 1 ADDR 0x1F */
static DECLARE_TLV_DB_SCALE(alc_min_gain_tlv_arr, -1725, 600, 0);
/* R_NGATE PG 1 ADDR 0x21 */
static DECLARE_TLV_DB_SCALE(ngth_tlv_arr, -7650, 150, 0);
static char const * const ngate_type_txt[] = {
"PGA Constant", "ADC Mute"};
static struct soc_enum const ngate_type_enum =
SOC_ENUM_SINGLE(R_NGATE, FB_NGATE_NGG,
ARRAY_SIZE(ngate_type_txt), ngate_type_txt);
/* R_DMICCTL PG 1 ADDR 0x22 */
static char const * const dmic_mono_sel_txt[] = {
"Stereo", "Mono"};
static struct soc_enum const dmic_mono_sel_enum =
SOC_ENUM_SINGLE(R_DMICCTL, FB_DMICCTL_DMONO,
ARRAY_SIZE(dmic_mono_sel_txt), dmic_mono_sel_txt);
/* R_DACCTL PG 2 ADDR 0x01 */
static struct soc_enum const dac_pol_r_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLR,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const dac_pol_l_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLL,
ARRAY_SIZE(pol_txt), pol_txt);
static char const * const dac_dith_txt[] = {
"Half", "Full", "Disabled", "Static"};
static struct soc_enum const dac_dith_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACDITH,
ARRAY_SIZE(dac_dith_txt), dac_dith_txt);
/* R_SPKCTL PG 2 ADDR 0x02 */
static struct soc_enum const spk_pol_r_enum =
SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLR,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const spk_pol_l_enum =
SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLL,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBCTL PG 2 ADDR 0x03 */
static struct soc_enum const sub_pol_enum =
SOC_ENUM_SINGLE(R_SUBCTL, FB_SUBCTL_SUBPOL,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_MVOLL PG 2 ADDR 0x08 */
/* R_MVOLR PG 2 ADDR 0x09 */
static DECLARE_TLV_DB_MINMAX(mvol_tlv_arr, -9562, 0);
/* R_HPVOLL PG 2 ADDR 0x0A */
/* R_HPVOLR PG 2 ADDR 0x0B */
static DECLARE_TLV_DB_SCALE(hp_vol_tlv_arr, -8850, 75, 0);
/* R_SPKVOLL PG 2 ADDR 0x0C */
/* R_SPKVOLR PG 2 ADDR 0x0D */
static DECLARE_TLV_DB_SCALE(spk_vol_tlv_arr, -7725, 75, 0);
/* R_SPKEQFILT PG 3 ADDR 0x01 */
static char const * const eq_txt[] = {
"Pre Scale",
"Pre Scale + EQ Band 0",
"Pre Scale + EQ Band 0 - 1",
"Pre Scale + EQ Band 0 - 2",
"Pre Scale + EQ Band 0 - 3",
"Pre Scale + EQ Band 0 - 4",
"Pre Scale + EQ Band 0 - 5",
};
static struct soc_enum const spk_eq_enums[] = {
SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_SPKMBCCTL PG 3 ADDR 0x0B */
static char const * const lvl_mode_txt[] = {
"Average", "Peak"};
static struct soc_enum const spk_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static char const * const win_sel_txt[] = {
"512", "64"};
static struct soc_enum const spk_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const spk_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const spk_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SPKMBCMUG1 PG 3 ADDR 0x0C */
static struct soc_enum const spk_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG1, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
static DECLARE_TLV_DB_MINMAX(mbc_mug_tlv_arr, -4650, 0);
/* R_SPKMBCTHR1 PG 3 ADDR 0x0D */
static DECLARE_TLV_DB_MINMAX(thr_tlv_arr, -9562, 0);
/* R_SPKMBCRAT1 PG 3 ADDR 0x0E */
static char const * const comp_rat_txt[] = {
"Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1",
"7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1",
"15:1", "16:1", "17:1", "18:1", "19:1", "20:1"};
static struct soc_enum const spk_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT1, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKMBCMUG2 PG 3 ADDR 0x13 */
static struct soc_enum const spk_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG2, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SPKMBCRAT2 PG 3 ADDR 0x15 */
static struct soc_enum const spk_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT2, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKMBCMUG3 PG 3 ADDR 0x1A */
static struct soc_enum const spk_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG3, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SPKMBCRAT3 PG 3 ADDR 0x1C */
static struct soc_enum const spk_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT3, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKCLECTL PG 3 ADDR 0x21 */
static struct soc_enum const spk_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SPKCLEMUG PG 3 ADDR 0x22 */
static DECLARE_TLV_DB_MINMAX(cle_mug_tlv_arr, 0, 4650);
/* R_SPKCOMPRAT PG 3 ADDR 0x24 */
static struct soc_enum const spk_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKCOMPRAT, FB_SPKCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKEXPTHR PG 3 ADDR 0x2F */
static char const * const exp_rat_txt[] = {
"Reserved", "Reserved", "1:2", "1:3",
"1:4", "1:5", "1:6", "1:7"};
static struct soc_enum const spk_exp_rat_enum =
SOC_ENUM_SINGLE(R_SPKEXPRAT, FB_SPKEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
/* R_DACEQFILT PG 4 ADDR 0x01 */
static struct soc_enum const dac_eq_enums[] = {
SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_DACMBCCTL PG 4 ADDR 0x0B */
static struct soc_enum const dac_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const dac_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const dac_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_DACMBCMUG1 PG 4 ADDR 0x0C */
static struct soc_enum const dac_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG1, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT1 PG 4 ADDR 0x0E */
static struct soc_enum const dac_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACMBCMUG2 PG 4 ADDR 0x13 */
static struct soc_enum const dac_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG2, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT2 PG 4 ADDR 0x15 */
static struct soc_enum const dac_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACMBCMUG3 PG 4 ADDR 0x1A */
static struct soc_enum const dac_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG3, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT3 PG 4 ADDR 0x1C */
static struct soc_enum const dac_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACCLECTL PG 4 ADDR 0x21 */
static struct soc_enum const dac_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_DACCOMPRAT PG 4 ADDR 0x24 */
static struct soc_enum const dac_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACCOMPRAT, FB_DACCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACEXPRAT PG 4 ADDR 0x30 */
static struct soc_enum const dac_exp_rat_enum =
SOC_ENUM_SINGLE(R_DACEXPRAT, FB_DACEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
/* R_SUBEQFILT PG 5 ADDR 0x01 */
static struct soc_enum const sub_eq_enums[] = {
SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_SUBMBCCTL PG 5 ADDR 0x0B */
static struct soc_enum const sub_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const sub_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const sub_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SUBMBCMUG1 PG 5 ADDR 0x0C */
static struct soc_enum const sub_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG1, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT1 PG 5 ADDR 0x0E */
static struct soc_enum const sub_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT1, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBMBCMUG2 PG 5 ADDR 0x13 */
static struct soc_enum const sub_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG2, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT2 PG 5 ADDR 0x15 */
static struct soc_enum const sub_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT2, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBMBCMUG3 PG 5 ADDR 0x1A */
static struct soc_enum const sub_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG3, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT3 PG 5 ADDR 0x1C */
static struct soc_enum const sub_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT3, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBCLECTL PG 5 ADDR 0x21 */
static struct soc_enum const sub_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SUBCOMPRAT PG 5 ADDR 0x24 */
static struct soc_enum const sub_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBCOMPRAT, FB_SUBCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBEXPRAT PG 5 ADDR 0x30 */
static struct soc_enum const sub_exp_rat_enum =
SOC_ENUM_SINGLE(R_SUBEXPRAT, FB_SUBEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
static int bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
/* CH 0_1 Input Mux */
static char const * const ch_0_1_mux_txt[] = {"DAI 1", "TDM 0_1"};
static struct soc_enum const ch_0_1_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_0_1_mux_txt), ch_0_1_mux_txt);
static struct snd_kcontrol_new const ch_0_1_mux_dapm_enum =
SOC_DAPM_ENUM("CH 0_1 Input Mux", ch_0_1_mux_enum);
/* CH 2_3 Input Mux */
static char const * const ch_2_3_mux_txt[] = {"DAI 2", "TDM 2_3"};
static struct soc_enum const ch_2_3_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_2_3_mux_txt), ch_2_3_mux_txt);
static struct snd_kcontrol_new const ch_2_3_mux_dapm_enum =
SOC_DAPM_ENUM("CH 2_3 Input Mux", ch_2_3_mux_enum);
/* CH 4_5 Input Mux */
static char const * const ch_4_5_mux_txt[] = {"DAI 3", "TDM 4_5"};
static struct soc_enum const ch_4_5_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_4_5_mux_txt), ch_4_5_mux_txt);
static struct snd_kcontrol_new const ch_4_5_mux_dapm_enum =
SOC_DAPM_ENUM("CH 4_5 Input Mux", ch_4_5_mux_enum);
#define COEFF_RAM_CTL(xname, xcount, xaddr) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = bytes_info_ext, \
.get = coeff_ram_get, .put = coeff_ram_put, \
.private_value = (unsigned long)&(struct coeff_ram_ctl) { \
.addr = xaddr, \
.bytes_ext = {.max = xcount, }, \
} \
}
static struct snd_kcontrol_new const tscs454_snd_controls[] = {
/* R_PLLCTL PG 0 ADDR 0x15 */
SOC_ENUM("PLL BCLK Input", bclk_sel_enum),
/* R_ISRC PG 0 ADDR 0x16 */
SOC_ENUM("Internal Rate", isrc_br_enum),
SOC_ENUM("Internal Rate Multiple", isrc_bm_enum),
/* R_SCLKCTL PG 0 ADDR 0x18 */
SOC_ENUM("ADC Modular Rate", adc_modular_rate_enum),
SOC_ENUM("DAC Modular Rate", dac_modular_rate_enum),
/* R_ASRC PG 0 ADDR 0x28 */
SOC_SINGLE("ASRC Out High Bandwidth Switch",
R_ASRC, FB_ASRC_ASRCOBW, 1, 0),
SOC_SINGLE("ASRC In High Bandwidth Switch",
R_ASRC, FB_ASRC_ASRCIBW, 1, 0),
/* R_I2SIDCTL PG 0 ADDR 0x38 */
SOC_ENUM("I2S 1 Data In Control", data_in_ctrl_enums[0]),
SOC_ENUM("I2S 2 Data In Control", data_in_ctrl_enums[1]),
SOC_ENUM("I2S 3 Data In Control", data_in_ctrl_enums[2]),
/* R_I2SODCTL PG 0 ADDR 0x39 */
SOC_ENUM("I2S 1 Data Out Control", data_out_ctrl_enums[0]),
SOC_ENUM("I2S 2 Data Out Control", data_out_ctrl_enums[1]),
SOC_ENUM("I2S 3 Data Out Control", data_out_ctrl_enums[2]),
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
SOC_ENUM("ASRC In", asrc_in_mux_enum),
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
SOC_ENUM("ASRC Out", asrc_out_mux_enum),
/* R_HSDCTL1 PG 1 ADDR 0x01 */
SOC_ENUM("Headphone Jack Type", hp_jack_type_enum),
SOC_ENUM("Headset Detection Polarity", hs_det_pol_enum),
SOC_SINGLE("Headphone Detection Switch",
R_HSDCTL1, FB_HSDCTL1_HPID_EN, 1, 0),
SOC_SINGLE("Headset OMTP/CTIA Switch",
R_HSDCTL1, FB_HSDCTL1_GBLHS_EN, 1, 0),
/* R_HSDCTL1 PG 1 ADDR 0x02 */
SOC_ENUM("Headset Mic Bias Force", hs_mic_bias_force_enum),
SOC_SINGLE("Manual Mic Bias Switch",
R_HSDCTL2, FB_HSDCTL2_MB1MODE, 1, 0),
SOC_SINGLE("Ring/Sleeve Auto Switch",
R_HSDCTL2, FB_HSDCTL2_SWMODE, 1, 0),
SOC_ENUM("Manual Mode Plug Type", plug_type_force_enum),
/* R_CH0AIC PG 1 ADDR 0x06 */
SOC_SINGLE_TLV("Input Boost Channel 0 Volume", R_CH0AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH1AIC PG 1 ADDR 0x07 */
SOC_SINGLE_TLV("Input Boost Channel 1 Volume", R_CH1AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH2AIC PG 1 ADDR 0x08 */
SOC_SINGLE_TLV("Input Boost Channel 2 Volume", R_CH2AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH3AIC PG 1 ADDR 0x09 */
SOC_SINGLE_TLV("Input Boost Channel 3 Volume", R_CH3AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_ICTL0 PG 1 ADDR 0x0A */
SOC_ENUM("Input Channel 1 Polarity", in_pol_ch1_enum),
SOC_ENUM("Input Channel 0 Polarity", in_pol_ch0_enum),
SOC_ENUM("Input Processor Channel 0/1 Operation",
in_proc_ch01_sel_enum),
SOC_SINGLE("Input Channel 1 Mute Switch",
R_ICTL0, FB_ICTL0_IN1MUTE, 1, 0),
SOC_SINGLE("Input Channel 0 Mute Switch",
R_ICTL0, FB_ICTL0_IN0MUTE, 1, 0),
SOC_SINGLE("Input Channel 1 HPF Disable Switch",
R_ICTL0, FB_ICTL0_IN1HP, 1, 0),
SOC_SINGLE("Input Channel 0 HPF Disable Switch",
R_ICTL0, FB_ICTL0_IN0HP, 1, 0),
/* R_ICTL1 PG 1 ADDR 0x0B */
SOC_ENUM("Input Channel 3 Polarity", in_pol_ch3_enum),
SOC_ENUM("Input Channel 2 Polarity", in_pol_ch2_enum),
SOC_ENUM("Input Processor Channel 2/3 Operation",
in_proc_ch23_sel_enum),
SOC_SINGLE("Input Channel 3 Mute Switch",
R_ICTL1, FB_ICTL1_IN3MUTE, 1, 0),
SOC_SINGLE("Input Channel 2 Mute Switch",
R_ICTL1, FB_ICTL1_IN2MUTE, 1, 0),
SOC_SINGLE("Input Channel 3 HPF Disable Switch",
R_ICTL1, FB_ICTL1_IN3HP, 1, 0),
SOC_SINGLE("Input Channel 2 HPF Disable Switch",
R_ICTL1, FB_ICTL1_IN2HP, 1, 0),
/* R_MICBIAS PG 1 ADDR 0x0C */
SOC_ENUM("Mic Bias 2 Voltage", mic_bias_2_enum),
SOC_ENUM("Mic Bias 1 Voltage", mic_bias_1_enum),
/* R_PGACTL0 PG 1 ADDR 0x0D */
SOC_SINGLE("Input Channel 0 PGA Mute Switch",
R_PGACTL0, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 0 PGA Volume", R_PGACTL0,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL1 PG 1 ADDR 0x0E */
SOC_SINGLE("Input Channel 1 PGA Mute Switch",
R_PGACTL1, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 1 PGA Volume", R_PGACTL1,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL2 PG 1 ADDR 0x0F */
SOC_SINGLE("Input Channel 2 PGA Mute Switch",
R_PGACTL2, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 2 PGA Volume", R_PGACTL2,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL3 PG 1 ADDR 0x10 */
SOC_SINGLE("Input Channel 3 PGA Mute Switch",
R_PGACTL3, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 3 PGA Volume", R_PGACTL3,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_ICH0VOL PG 1 ADDR 0x12 */
SOC_SINGLE_TLV("Input Channel 0 Volume", R_ICH0VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH1VOL PG 1 ADDR 0x13 */
SOC_SINGLE_TLV("Input Channel 1 Volume", R_ICH1VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH2VOL PG 1 ADDR 0x14 */
SOC_SINGLE_TLV("Input Channel 2 Volume", R_ICH2VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH3VOL PG 1 ADDR 0x15 */
SOC_SINGLE_TLV("Input Channel 3 Volume", R_ICH3VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ASRCILVOL PG 1 ADDR 0x16 */
SOC_SINGLE_TLV("ASRC Input Left Volume", R_ASRCILVOL,
FB_ASRCILVOL_ASRCILVOL, FM_ASRCILVOL_ASRCILVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCIRVOL PG 1 ADDR 0x17 */
SOC_SINGLE_TLV("ASRC Input Right Volume", R_ASRCIRVOL,
FB_ASRCIRVOL_ASRCIRVOL, FM_ASRCIRVOL_ASRCIRVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCOLVOL PG 1 ADDR 0x18 */
SOC_SINGLE_TLV("ASRC Output Left Volume", R_ASRCOLVOL,
FB_ASRCOLVOL_ASRCOLVOL, FM_ASRCOLVOL_ASRCOLVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCORVOL PG 1 ADDR 0x19 */
SOC_SINGLE_TLV("ASRC Output Right Volume", R_ASRCORVOL,
FB_ASRCORVOL_ASRCOLVOL, FM_ASRCORVOL_ASRCOLVOL,
0, asrc_vol_tlv_arr),
/* R_IVOLCTLU PG 1 ADDR 0x1C */
/* R_ALCCTL0 PG 1 ADDR 0x1D */
SOC_ENUM("ALC Mode", alc_mode_enum),
SOC_ENUM("ALC Reference", alc_ref_enum),
SOC_SINGLE("Input Channel 3 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN3, 1, 0),
SOC_SINGLE("Input Channel 2 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN2, 1, 0),
SOC_SINGLE("Input Channel 1 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN1, 1, 0),
SOC_SINGLE("Input Channel 0 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN0, 1, 0),
/* R_ALCCTL1 PG 1 ADDR 0x1E */
SOC_SINGLE_TLV("ALC Max Gain Volume", R_ALCCTL1,
FB_ALCCTL1_MAXGAIN, FM_ALCCTL1_MAXGAIN,
0, alc_max_gain_tlv_arr),
SOC_SINGLE_TLV("ALC Target Volume", R_ALCCTL1,
FB_ALCCTL1_ALCL, FM_ALCCTL1_ALCL,
0, alc_target_tlv_arr),
/* R_ALCCTL2 PG 1 ADDR 0x1F */
SOC_SINGLE("ALC Zero Cross Switch",
R_ALCCTL2, FB_ALCCTL2_ALCZC, 1, 0),
SOC_SINGLE_TLV("ALC Min Gain Volume", R_ALCCTL2,
FB_ALCCTL2_MINGAIN, FM_ALCCTL2_MINGAIN,
0, alc_min_gain_tlv_arr),
SOC_SINGLE_RANGE("ALC Hold", R_ALCCTL2,
FB_ALCCTL2_HLD, 0, FM_ALCCTL2_HLD, 0),
/* R_ALCCTL3 PG 1 ADDR 0x20 */
SOC_SINGLE_RANGE("ALC Decay", R_ALCCTL3,
FB_ALCCTL3_DCY, 0, FM_ALCCTL3_DCY, 0),
SOC_SINGLE_RANGE("ALC Attack", R_ALCCTL3,
FB_ALCCTL3_ATK, 0, FM_ALCCTL3_ATK, 0),
/* R_NGATE PG 1 ADDR 0x21 */
SOC_SINGLE_TLV("Noise Gate Threshold Volume", R_NGATE,
FB_NGATE_NGTH, FM_NGATE_NGTH, 0, ngth_tlv_arr),
SOC_ENUM("Noise Gate Type", ngate_type_enum),
SOC_SINGLE("Noise Gate Switch", R_NGATE, FB_NGATE_NGAT, 1, 0),
/* R_DMICCTL PG 1 ADDR 0x22 */
SOC_SINGLE("Digital Mic 2 Switch", R_DMICCTL, FB_DMICCTL_DMIC2EN, 1, 0),
SOC_SINGLE("Digital Mic 1 Switch", R_DMICCTL, FB_DMICCTL_DMIC1EN, 1, 0),
SOC_ENUM("Digital Mic Mono Select", dmic_mono_sel_enum),
/* R_DACCTL PG 2 ADDR 0x01 */
SOC_ENUM("DAC Polarity Left", dac_pol_r_enum),
SOC_ENUM("DAC Polarity Right", dac_pol_l_enum),
SOC_ENUM("DAC Dither", dac_dith_enum),
SOC_SINGLE("DAC Mute Switch", R_DACCTL, FB_DACCTL_DACMUTE, 1, 0),
SOC_SINGLE("DAC De-Emphasis Switch", R_DACCTL, FB_DACCTL_DACDEM, 1, 0),
/* R_SPKCTL PG 2 ADDR 0x02 */
SOC_ENUM("Speaker Polarity Right", spk_pol_r_enum),
SOC_ENUM("Speaker Polarity Left", spk_pol_l_enum),
SOC_SINGLE("Speaker Mute Switch", R_SPKCTL, FB_SPKCTL_SPKMUTE, 1, 0),
SOC_SINGLE("Speaker De-Emphasis Switch",
R_SPKCTL, FB_SPKCTL_SPKDEM, 1, 0),
/* R_SUBCTL PG 2 ADDR 0x03 */
SOC_ENUM("Sub Polarity", sub_pol_enum),
SOC_SINGLE("SUB Mute Switch", R_SUBCTL, FB_SUBCTL_SUBMUTE, 1, 0),
SOC_SINGLE("Sub De-Emphasis Switch", R_SUBCTL, FB_SUBCTL_SUBDEM, 1, 0),
/* R_DCCTL PG 2 ADDR 0x04 */
SOC_SINGLE("Sub DC Removal Switch", R_DCCTL, FB_DCCTL_SUBDCBYP, 1, 1),
SOC_SINGLE("DAC DC Removal Switch", R_DCCTL, FB_DCCTL_DACDCBYP, 1, 1),
SOC_SINGLE("Speaker DC Removal Switch",
R_DCCTL, FB_DCCTL_SPKDCBYP, 1, 1),
SOC_SINGLE("DC Removal Coefficient Switch", R_DCCTL, FB_DCCTL_DCCOEFSEL,
FM_DCCTL_DCCOEFSEL, 0),
/* R_OVOLCTLU PG 2 ADDR 0x06 */
SOC_SINGLE("Output Fade Switch", R_OVOLCTLU, FB_OVOLCTLU_OFADE, 1, 0),
/* R_MVOLL PG 2 ADDR 0x08 */
/* R_MVOLR PG 2 ADDR 0x09 */
SOC_DOUBLE_R_TLV("Master Volume", R_MVOLL, R_MVOLR,
FB_MVOLL_MVOL_L, FM_MVOLL_MVOL_L, 0, mvol_tlv_arr),
/* R_HPVOLL PG 2 ADDR 0x0A */
/* R_HPVOLR PG 2 ADDR 0x0B */
SOC_DOUBLE_R_TLV("Headphone Volume", R_HPVOLL, R_HPVOLR,
FB_HPVOLL_HPVOL_L, FM_HPVOLL_HPVOL_L, 0,
hp_vol_tlv_arr),
/* R_SPKVOLL PG 2 ADDR 0x0C */
/* R_SPKVOLR PG 2 ADDR 0x0D */
SOC_DOUBLE_R_TLV("Speaker Volume", R_SPKVOLL, R_SPKVOLR,
FB_SPKVOLL_SPKVOL_L, FM_SPKVOLL_SPKVOL_L, 0,
spk_vol_tlv_arr),
/* R_SUBVOL PG 2 ADDR 0x10 */
SOC_SINGLE_TLV("Sub Volume", R_SUBVOL,
FB_SUBVOL_SUBVOL, FM_SUBVOL_SUBVOL, 0, spk_vol_tlv_arr),
/* R_SPKEQFILT PG 3 ADDR 0x01 */
SOC_SINGLE("Speaker EQ 2 Switch",
R_SPKEQFILT, FB_SPKEQFILT_EQ2EN, 1, 0),
SOC_ENUM("Speaker EQ 2 Band", spk_eq_enums[0]),
SOC_SINGLE("Speaker EQ 1 Switch",
R_SPKEQFILT, FB_SPKEQFILT_EQ1EN, 1, 0),
SOC_ENUM("Speaker EQ 1 Band", spk_eq_enums[1]),
/* R_SPKMBCEN PG 3 ADDR 0x0A */
SOC_SINGLE("Speaker MBC 3 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("Speaker MBC 2 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("Speaker MBC 1 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN1, 1, 0),
/* R_SPKMBCCTL PG 3 ADDR 0x0B */
SOC_ENUM("Speaker MBC 3 Mode", spk_mbc3_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 3 Window", spk_mbc3_win_sel_enum),
SOC_ENUM("Speaker MBC 2 Mode", spk_mbc2_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 2 Window", spk_mbc2_win_sel_enum),
SOC_ENUM("Speaker MBC 1 Mode", spk_mbc1_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 1 Window", spk_mbc1_win_sel_enum),
/* R_SPKMBCMUG1 PG 3 ADDR 0x0C */
SOC_ENUM("Speaker MBC 1 Phase Polarity", spk_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC1 Make-Up Gain Volume", R_SPKMBCMUG1,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR1 PG 3 ADDR 0x0D */
SOC_SINGLE_TLV("Speaker MBC 1 Compressor Threshold Volume",
R_SPKMBCTHR1, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT1 PG 3 ADDR 0x0E */
SOC_ENUM("Speaker MBC 1 Compressor Ratio", spk_mbc1_comp_rat_enum),
/* R_SPKMBCATK1L PG 3 ADDR 0x0F */
/* R_SPKMBCATK1H PG 3 ADDR 0x10 */
SND_SOC_BYTES("Speaker MBC 1 Attack", R_SPKMBCATK1L, 2),
/* R_SPKMBCREL1L PG 3 ADDR 0x11 */
/* R_SPKMBCREL1H PG 3 ADDR 0x12 */
SND_SOC_BYTES("Speaker MBC 1 Release", R_SPKMBCREL1L, 2),
/* R_SPKMBCMUG2 PG 3 ADDR 0x13 */
SOC_ENUM("Speaker MBC 2 Phase Polarity", spk_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC2 Make-Up Gain Volume", R_SPKMBCMUG2,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR2 PG 3 ADDR 0x14 */
SOC_SINGLE_TLV("Speaker MBC 2 Compressor Threshold Volume",
R_SPKMBCTHR2, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT2 PG 3 ADDR 0x15 */
SOC_ENUM("Speaker MBC 2 Compressor Ratio", spk_mbc2_comp_rat_enum),
/* R_SPKMBCATK2L PG 3 ADDR 0x16 */
/* R_SPKMBCATK2H PG 3 ADDR 0x17 */
SND_SOC_BYTES("Speaker MBC 2 Attack", R_SPKMBCATK2L, 2),
/* R_SPKMBCREL2L PG 3 ADDR 0x18 */
/* R_SPKMBCREL2H PG 3 ADDR 0x19 */
SND_SOC_BYTES("Speaker MBC 2 Release", R_SPKMBCREL2L, 2),
/* R_SPKMBCMUG3 PG 3 ADDR 0x1A */
SOC_ENUM("Speaker MBC 3 Phase Polarity", spk_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC 3 Make-Up Gain Volume", R_SPKMBCMUG3,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR3 PG 3 ADDR 0x1B */
SOC_SINGLE_TLV("Speaker MBC 3 Threshold Volume", R_SPKMBCTHR3,
FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT3 PG 3 ADDR 0x1C */
SOC_ENUM("Speaker MBC 3 Compressor Ratio", spk_mbc3_comp_rat_enum),
/* R_SPKMBCATK3L PG 3 ADDR 0x1D */
/* R_SPKMBCATK3H PG 3 ADDR 0x1E */
SND_SOC_BYTES("Speaker MBC 3 Attack", R_SPKMBCATK3L, 3),
/* R_SPKMBCREL3L PG 3 ADDR 0x1F */
/* R_SPKMBCREL3H PG 3 ADDR 0x20 */
SND_SOC_BYTES("Speaker MBC 3 Release", R_SPKMBCREL3L, 3),
/* R_SPKCLECTL PG 3 ADDR 0x21 */
SOC_ENUM("Speaker CLE Level Mode", spk_cle_lvl_mode_enum),
SOC_ENUM("Speaker CLE Window", spk_cle_win_sel_enum),
SOC_SINGLE("Speaker CLE Expander Switch",
R_SPKCLECTL, FB_SPKCLECTL_EXPEN, 1, 0),
SOC_SINGLE("Speaker CLE Limiter Switch",
R_SPKCLECTL, FB_SPKCLECTL_LIMEN, 1, 0),
SOC_SINGLE("Speaker CLE Compressor Switch",
R_SPKCLECTL, FB_SPKCLECTL_COMPEN, 1, 0),
/* R_SPKCLEMUG PG 3 ADDR 0x22 */
SOC_SINGLE_TLV("Speaker CLE Make-Up Gain Volume", R_SPKCLEMUG,
FB_SPKCLEMUG_MUGAIN, FM_SPKCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_SPKCOMPTHR PG 3 ADDR 0x23 */
SOC_SINGLE_TLV("Speaker Compressor Threshold Volume", R_SPKCOMPTHR,
FB_SPKCOMPTHR_THRESH, FM_SPKCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKCOMPRAT PG 3 ADDR 0x24 */
SOC_ENUM("Speaker Compressor Ratio", spk_comp_rat_enum),
/* R_SPKCOMPATKL PG 3 ADDR 0x25 */
/* R_SPKCOMPATKH PG 3 ADDR 0x26 */
SND_SOC_BYTES("Speaker Compressor Attack", R_SPKCOMPATKL, 2),
/* R_SPKCOMPRELL PG 3 ADDR 0x27 */
/* R_SPKCOMPRELH PG 3 ADDR 0x28 */
SND_SOC_BYTES("Speaker Compressor Release", R_SPKCOMPRELL, 2),
/* R_SPKLIMTHR PG 3 ADDR 0x29 */
SOC_SINGLE_TLV("Speaker Limiter Threshold Volume", R_SPKLIMTHR,
FB_SPKLIMTHR_THRESH, FM_SPKLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKLIMTGT PG 3 ADDR 0x2A */
SOC_SINGLE_TLV("Speaker Limiter Target Volume", R_SPKLIMTGT,
FB_SPKLIMTGT_TARGET, FM_SPKLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_SPKLIMATKL PG 3 ADDR 0x2B */
/* R_SPKLIMATKH PG 3 ADDR 0x2C */
SND_SOC_BYTES("Speaker Limiter Attack", R_SPKLIMATKL, 2),
/* R_SPKLIMRELL PG 3 ADDR 0x2D */
/* R_SPKLIMRELR PG 3 ADDR 0x2E */
SND_SOC_BYTES("Speaker Limiter Release", R_SPKLIMRELL, 2),
/* R_SPKEXPTHR PG 3 ADDR 0x2F */
SOC_SINGLE_TLV("Speaker Expander Threshold Volume", R_SPKEXPTHR,
FB_SPKEXPTHR_THRESH, FM_SPKEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKEXPRAT PG 3 ADDR 0x30 */
SOC_ENUM("Speaker Expander Ratio", spk_exp_rat_enum),
/* R_SPKEXPATKL PG 3 ADDR 0x31 */
/* R_SPKEXPATKR PG 3 ADDR 0x32 */
SND_SOC_BYTES("Speaker Expander Attack", R_SPKEXPATKL, 2),
/* R_SPKEXPRELL PG 3 ADDR 0x33 */
/* R_SPKEXPRELR PG 3 ADDR 0x34 */
SND_SOC_BYTES("Speaker Expander Release", R_SPKEXPRELL, 2),
/* R_SPKFXCTL PG 3 ADDR 0x35 */
SOC_SINGLE("Speaker 3D Switch", R_SPKFXCTL, FB_SPKFXCTL_3DEN, 1, 0),
SOC_SINGLE("Speaker Treble Enhancement Switch",
R_SPKFXCTL, FB_SPKFXCTL_TEEN, 1, 0),
SOC_SINGLE("Speaker Treble NLF Switch",
R_SPKFXCTL, FB_SPKFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("Speaker Bass Enhancement Switch",
R_SPKFXCTL, FB_SPKFXCTL_BEEN, 1, 0),
SOC_SINGLE("Speaker Bass NLF Switch",
R_SPKFXCTL, FB_SPKFXCTL_BNLFBYP, 1, 1),
/* R_DACEQFILT PG 4 ADDR 0x01 */
SOC_SINGLE("DAC EQ 2 Switch",
R_DACEQFILT, FB_DACEQFILT_EQ2EN, 1, 0),
SOC_ENUM("DAC EQ 2 Band", dac_eq_enums[0]),
SOC_SINGLE("DAC EQ 1 Switch", R_DACEQFILT, FB_DACEQFILT_EQ1EN, 1, 0),
SOC_ENUM("DAC EQ 1 Band", dac_eq_enums[1]),
/* R_DACMBCEN PG 4 ADDR 0x0A */
SOC_SINGLE("DAC MBC 3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("DAC MBC 2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("DAC MBC 1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0),
/* R_DACMBCCTL PG 4 ADDR 0x0B */
SOC_ENUM("DAC MBC 3 Mode", dac_mbc3_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 3 Window", dac_mbc3_win_sel_enum),
SOC_ENUM("DAC MBC 2 Mode", dac_mbc2_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 2 Window", dac_mbc2_win_sel_enum),
SOC_ENUM("DAC MBC 1 Mode", dac_mbc1_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 1 Window", dac_mbc1_win_sel_enum),
/* R_DACMBCMUG1 PG 4 ADDR 0x0C */
SOC_ENUM("DAC MBC 1 Phase Polarity", dac_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 1 Make-Up Gain Volume", R_DACMBCMUG1,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR1 PG 4 ADDR 0x0D */
SOC_SINGLE_TLV("DAC MBC 1 Compressor Threshold Volume", R_DACMBCTHR1,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT1 PG 4 ADDR 0x0E */
SOC_ENUM("DAC MBC 1 Compressor Ratio", dac_mbc1_comp_rat_enum),
/* R_DACMBCATK1L PG 4 ADDR 0x0F */
/* R_DACMBCATK1H PG 4 ADDR 0x10 */
SND_SOC_BYTES("DAC MBC 1 Attack", R_DACMBCATK1L, 2),
/* R_DACMBCREL1L PG 4 ADDR 0x11 */
/* R_DACMBCREL1H PG 4 ADDR 0x12 */
SND_SOC_BYTES("DAC MBC 1 Release", R_DACMBCREL1L, 2),
/* R_DACMBCMUG2 PG 4 ADDR 0x13 */
SOC_ENUM("DAC MBC 2 Phase Polarity", dac_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 2 Make-Up Gain Volume", R_DACMBCMUG2,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR2 PG 4 ADDR 0x14 */
SOC_SINGLE_TLV("DAC MBC 2 Compressor Threshold Volume", R_DACMBCTHR2,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT2 PG 4 ADDR 0x15 */
SOC_ENUM("DAC MBC 2 Compressor Ratio", dac_mbc2_comp_rat_enum),
/* R_DACMBCATK2L PG 4 ADDR 0x16 */
/* R_DACMBCATK2H PG 4 ADDR 0x17 */
SND_SOC_BYTES("DAC MBC 2 Attack", R_DACMBCATK2L, 2),
/* R_DACMBCREL2L PG 4 ADDR 0x18 */
/* R_DACMBCREL2H PG 4 ADDR 0x19 */
SND_SOC_BYTES("DAC MBC 2 Release", R_DACMBCREL2L, 2),
/* R_DACMBCMUG3 PG 4 ADDR 0x1A */
SOC_ENUM("DAC MBC 3 Phase Polarity", dac_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 3 Make-Up Gain Volume", R_DACMBCMUG3,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR3 PG 4 ADDR 0x1B */
SOC_SINGLE_TLV("DAC MBC 3 Threshold Volume", R_DACMBCTHR3,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT3 PG 4 ADDR 0x1C */
SOC_ENUM("DAC MBC 3 Compressor Ratio", dac_mbc3_comp_rat_enum),
/* R_DACMBCATK3L PG 4 ADDR 0x1D */
/* R_DACMBCATK3H PG 4 ADDR 0x1E */
SND_SOC_BYTES("DAC MBC 3 Attack", R_DACMBCATK3L, 3),
/* R_DACMBCREL3L PG 4 ADDR 0x1F */
/* R_DACMBCREL3H PG 4 ADDR 0x20 */
SND_SOC_BYTES("DAC MBC 3 Release", R_DACMBCREL3L, 3),
/* R_DACCLECTL PG 4 ADDR 0x21 */
SOC_ENUM("DAC CLE Level Mode", dac_cle_lvl_mode_enum),
SOC_ENUM("DAC CLE Window", dac_cle_win_sel_enum),
SOC_SINGLE("DAC CLE Expander Switch",
R_DACCLECTL, FB_DACCLECTL_EXPEN, 1, 0),
SOC_SINGLE("DAC CLE Limiter Switch",
R_DACCLECTL, FB_DACCLECTL_LIMEN, 1, 0),
SOC_SINGLE("DAC CLE Compressor Switch",
R_DACCLECTL, FB_DACCLECTL_COMPEN, 1, 0),
/* R_DACCLEMUG PG 4 ADDR 0x22 */
SOC_SINGLE_TLV("DAC CLE Make-Up Gain Volume", R_DACCLEMUG,
FB_DACCLEMUG_MUGAIN, FM_DACCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_DACCOMPTHR PG 4 ADDR 0x23 */
SOC_SINGLE_TLV("DAC Compressor Threshold Volume", R_DACCOMPTHR,
FB_DACCOMPTHR_THRESH, FM_DACCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_DACCOMPRAT PG 4 ADDR 0x24 */
SOC_ENUM("DAC Compressor Ratio", dac_comp_rat_enum),
/* R_DACCOMPATKL PG 4 ADDR 0x25 */
/* R_DACCOMPATKH PG 4 ADDR 0x26 */
SND_SOC_BYTES("DAC Compressor Attack", R_DACCOMPATKL, 2),
/* R_DACCOMPRELL PG 4 ADDR 0x27 */
/* R_DACCOMPRELH PG 4 ADDR 0x28 */
SND_SOC_BYTES("DAC Compressor Release", R_DACCOMPRELL, 2),
/* R_DACLIMTHR PG 4 ADDR 0x29 */
SOC_SINGLE_TLV("DAC Limiter Threshold Volume", R_DACLIMTHR,
FB_DACLIMTHR_THRESH, FM_DACLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_DACLIMTGT PG 4 ADDR 0x2A */
SOC_SINGLE_TLV("DAC Limiter Target Volume", R_DACLIMTGT,
FB_DACLIMTGT_TARGET, FM_DACLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_DACLIMATKL PG 4 ADDR 0x2B */
/* R_DACLIMATKH PG 4 ADDR 0x2C */
SND_SOC_BYTES("DAC Limiter Attack", R_DACLIMATKL, 2),
/* R_DACLIMRELL PG 4 ADDR 0x2D */
/* R_DACLIMRELR PG 4 ADDR 0x2E */
SND_SOC_BYTES("DAC Limiter Release", R_DACLIMRELL, 2),
/* R_DACEXPTHR PG 4 ADDR 0x2F */
SOC_SINGLE_TLV("DAC Expander Threshold Volume", R_DACEXPTHR,
FB_DACEXPTHR_THRESH, FM_DACEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_DACEXPRAT PG 4 ADDR 0x30 */
SOC_ENUM("DAC Expander Ratio", dac_exp_rat_enum),
/* R_DACEXPATKL PG 4 ADDR 0x31 */
/* R_DACEXPATKR PG 4 ADDR 0x32 */
SND_SOC_BYTES("DAC Expander Attack", R_DACEXPATKL, 2),
/* R_DACEXPRELL PG 4 ADDR 0x33 */
/* R_DACEXPRELR PG 4 ADDR 0x34 */
SND_SOC_BYTES("DAC Expander Release", R_DACEXPRELL, 2),
/* R_DACFXCTL PG 4 ADDR 0x35 */
SOC_SINGLE("DAC 3D Switch", R_DACFXCTL, FB_DACFXCTL_3DEN, 1, 0),
SOC_SINGLE("DAC Treble Enhancement Switch",
R_DACFXCTL, FB_DACFXCTL_TEEN, 1, 0),
SOC_SINGLE("DAC Treble NLF Switch",
R_DACFXCTL, FB_DACFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("DAC Bass Enhancement Switch",
R_DACFXCTL, FB_DACFXCTL_BEEN, 1, 0),
SOC_SINGLE("DAC Bass NLF Switch",
R_DACFXCTL, FB_DACFXCTL_BNLFBYP, 1, 1),
/* R_SUBEQFILT PG 5 ADDR 0x01 */
SOC_SINGLE("Sub EQ 2 Switch",
R_SUBEQFILT, FB_SUBEQFILT_EQ2EN, 1, 0),
SOC_ENUM("Sub EQ 2 Band", sub_eq_enums[0]),
SOC_SINGLE("Sub EQ 1 Switch", R_SUBEQFILT, FB_SUBEQFILT_EQ1EN, 1, 0),
SOC_ENUM("Sub EQ 1 Band", sub_eq_enums[1]),
/* R_SUBMBCEN PG 5 ADDR 0x0A */
SOC_SINGLE("Sub MBC 3 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("Sub MBC 2 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("Sub MBC 1 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN1, 1, 0),
/* R_SUBMBCCTL PG 5 ADDR 0x0B */
SOC_ENUM("Sub MBC 3 Mode", sub_mbc3_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 3 Window", sub_mbc3_win_sel_enum),
SOC_ENUM("Sub MBC 2 Mode", sub_mbc2_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 2 Window", sub_mbc2_win_sel_enum),
SOC_ENUM("Sub MBC 1 Mode", sub_mbc1_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 1 Window", sub_mbc1_win_sel_enum),
/* R_SUBMBCMUG1 PG 5 ADDR 0x0C */
SOC_ENUM("Sub MBC 1 Phase Polarity", sub_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 1 Make-Up Gain Volume", R_SUBMBCMUG1,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR1 PG 5 ADDR 0x0D */
SOC_SINGLE_TLV("Sub MBC 1 Compressor Threshold Volume", R_SUBMBCTHR1,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT1 PG 5 ADDR 0x0E */
SOC_ENUM("Sub MBC 1 Compressor Ratio", sub_mbc1_comp_rat_enum),
/* R_SUBMBCATK1L PG 5 ADDR 0x0F */
/* R_SUBMBCATK1H PG 5 ADDR 0x10 */
SND_SOC_BYTES("Sub MBC 1 Attack", R_SUBMBCATK1L, 2),
/* R_SUBMBCREL1L PG 5 ADDR 0x11 */
/* R_SUBMBCREL1H PG 5 ADDR 0x12 */
SND_SOC_BYTES("Sub MBC 1 Release", R_SUBMBCREL1L, 2),
/* R_SUBMBCMUG2 PG 5 ADDR 0x13 */
SOC_ENUM("Sub MBC 2 Phase Polarity", sub_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 2 Make-Up Gain Volume", R_SUBMBCMUG2,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR2 PG 5 ADDR 0x14 */
SOC_SINGLE_TLV("Sub MBC 2 Compressor Threshold Volume", R_SUBMBCTHR2,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT2 PG 5 ADDR 0x15 */
SOC_ENUM("Sub MBC 2 Compressor Ratio", sub_mbc2_comp_rat_enum),
/* R_SUBMBCATK2L PG 5 ADDR 0x16 */
/* R_SUBMBCATK2H PG 5 ADDR 0x17 */
SND_SOC_BYTES("Sub MBC 2 Attack", R_SUBMBCATK2L, 2),
/* R_SUBMBCREL2L PG 5 ADDR 0x18 */
/* R_SUBMBCREL2H PG 5 ADDR 0x19 */
SND_SOC_BYTES("Sub MBC 2 Release", R_SUBMBCREL2L, 2),
/* R_SUBMBCMUG3 PG 5 ADDR 0x1A */
SOC_ENUM("Sub MBC 3 Phase Polarity", sub_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 3 Make-Up Gain Volume", R_SUBMBCMUG3,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR3 PG 5 ADDR 0x1B */
SOC_SINGLE_TLV("Sub MBC 3 Threshold Volume", R_SUBMBCTHR3,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT3 PG 5 ADDR 0x1C */
SOC_ENUM("Sub MBC 3 Compressor Ratio", sub_mbc3_comp_rat_enum),
/* R_SUBMBCATK3L PG 5 ADDR 0x1D */
/* R_SUBMBCATK3H PG 5 ADDR 0x1E */
SND_SOC_BYTES("Sub MBC 3 Attack", R_SUBMBCATK3L, 3),
/* R_SUBMBCREL3L PG 5 ADDR 0x1F */
/* R_SUBMBCREL3H PG 5 ADDR 0x20 */
SND_SOC_BYTES("Sub MBC 3 Release", R_SUBMBCREL3L, 3),
/* R_SUBCLECTL PG 5 ADDR 0x21 */
SOC_ENUM("Sub CLE Level Mode", sub_cle_lvl_mode_enum),
SOC_ENUM("Sub CLE Window", sub_cle_win_sel_enum),
SOC_SINGLE("Sub CLE Expander Switch",
R_SUBCLECTL, FB_SUBCLECTL_EXPEN, 1, 0),
SOC_SINGLE("Sub CLE Limiter Switch",
R_SUBCLECTL, FB_SUBCLECTL_LIMEN, 1, 0),
SOC_SINGLE("Sub CLE Compressor Switch",
R_SUBCLECTL, FB_SUBCLECTL_COMPEN, 1, 0),
/* R_SUBCLEMUG PG 5 ADDR 0x22 */
SOC_SINGLE_TLV("Sub CLE Make-Up Gain Volume", R_SUBCLEMUG,
FB_SUBCLEMUG_MUGAIN, FM_SUBCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_SUBCOMPTHR PG 5 ADDR 0x23 */
SOC_SINGLE_TLV("Sub Compressor Threshold Volume", R_SUBCOMPTHR,
FB_SUBCOMPTHR_THRESH, FM_SUBCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBCOMPRAT PG 5 ADDR 0x24 */
SOC_ENUM("Sub Compressor Ratio", sub_comp_rat_enum),
/* R_SUBCOMPATKL PG 5 ADDR 0x25 */
/* R_SUBCOMPATKH PG 5 ADDR 0x26 */
SND_SOC_BYTES("Sub Compressor Attack", R_SUBCOMPATKL, 2),
/* R_SUBCOMPRELL PG 5 ADDR 0x27 */
/* R_SUBCOMPRELH PG 5 ADDR 0x28 */
SND_SOC_BYTES("Sub Compressor Release", R_SUBCOMPRELL, 2),
/* R_SUBLIMTHR PG 5 ADDR 0x29 */
SOC_SINGLE_TLV("Sub Limiter Threshold Volume", R_SUBLIMTHR,
FB_SUBLIMTHR_THRESH, FM_SUBLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBLIMTGT PG 5 ADDR 0x2A */
SOC_SINGLE_TLV("Sub Limiter Target Volume", R_SUBLIMTGT,
FB_SUBLIMTGT_TARGET, FM_SUBLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_SUBLIMATKL PG 5 ADDR 0x2B */
/* R_SUBLIMATKH PG 5 ADDR 0x2C */
SND_SOC_BYTES("Sub Limiter Attack", R_SUBLIMATKL, 2),
/* R_SUBLIMRELL PG 5 ADDR 0x2D */
/* R_SUBLIMRELR PG 5 ADDR 0x2E */
SND_SOC_BYTES("Sub Limiter Release", R_SUBLIMRELL, 2),
/* R_SUBEXPTHR PG 5 ADDR 0x2F */
SOC_SINGLE_TLV("Sub Expander Threshold Volume", R_SUBEXPTHR,
FB_SUBEXPTHR_THRESH, FM_SUBEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBEXPRAT PG 5 ADDR 0x30 */
SOC_ENUM("Sub Expander Ratio", sub_exp_rat_enum),
/* R_SUBEXPATKL PG 5 ADDR 0x31 */
/* R_SUBEXPATKR PG 5 ADDR 0x32 */
SND_SOC_BYTES("Sub Expander Attack", R_SUBEXPATKL, 2),
/* R_SUBEXPRELL PG 5 ADDR 0x33 */
/* R_SUBEXPRELR PG 5 ADDR 0x34 */
SND_SOC_BYTES("Sub Expander Release", R_SUBEXPRELL, 2),
/* R_SUBFXCTL PG 5 ADDR 0x35 */
SOC_SINGLE("Sub Treble Enhancement Switch",
R_SUBFXCTL, FB_SUBFXCTL_TEEN, 1, 0),
SOC_SINGLE("Sub Treble NLF Switch",
R_SUBFXCTL, FB_SUBFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("Sub Bass Enhancement Switch",
R_SUBFXCTL, FB_SUBFXCTL_BEEN, 1, 0),
SOC_SINGLE("Sub Bass NLF Switch",
R_SUBFXCTL, FB_SUBFXCTL_BNLFBYP, 1, 1),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("DAC Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("DAC Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("DAC Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("DAC Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("DAC Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("DAC Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("DAC Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("DAC Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("DAC Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("DAC Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("DAC Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("DAC Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("DAC Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("DAC Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("DAC Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("DAC Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("DAC Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("DAC Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("DAC 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("DAC 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("DAC MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("DAC MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("DAC MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("DAC MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("DAC MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("DAC MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("Speaker Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("Speaker Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("Speaker Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("Speaker Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("Speaker Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("Speaker Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("Speaker Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("Speaker Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("Speaker Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("Speaker Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("Speaker Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("Speaker Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("Speaker Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("Speaker Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("Speaker 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("Speaker 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("Speaker MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("Speaker MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("Speaker MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("Speaker MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("Speaker MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("Speaker MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("Sub Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("Sub Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("Sub Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("Sub Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("Sub Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("Sub Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("Sub Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("Sub Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("Sub Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("Sub Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("Sub Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("Sub Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("Sub Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("Sub Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("Sub Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("Sub Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("Sub Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("Sub Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("Sub 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("Sub 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("Sub MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("Sub MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("Sub MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("Sub MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("Sub MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("Sub MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
};
static struct snd_soc_dapm_widget const tscs454_dapm_widgets[] = {
/* R_PLLCTL PG 0 ADDR 0x15 */
SND_SOC_DAPM_SUPPLY("PLL 1 Power", R_PLLCTL, FB_PLLCTL_PU_PLL1, 0,
pll_power_event,
SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("PLL 2 Power", R_PLLCTL, FB_PLLCTL_PU_PLL2, 0,
pll_power_event,
SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
/* R_I2SPINC0 PG 0 ADDR 0x22 */
SND_SOC_DAPM_AIF_OUT("DAI 3 Out", "DAI 3 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO3TRI, 1),
SND_SOC_DAPM_AIF_OUT("DAI 2 Out", "DAI 2 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO2TRI, 1),
SND_SOC_DAPM_AIF_OUT("DAI 1 Out", "DAI 1 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO1TRI, 1),
/* R_PWRM0 PG 0 ADDR 0x33 */
SND_SOC_DAPM_ADC("Input Processor Channel 3", NULL,
R_PWRM0, FB_PWRM0_INPROC3PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 2", NULL,
R_PWRM0, FB_PWRM0_INPROC2PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 1", NULL,
R_PWRM0, FB_PWRM0_INPROC1PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 0", NULL,
R_PWRM0, FB_PWRM0_INPROC0PU, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias 2",
R_PWRM0, FB_PWRM0_MICB2PU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias 1", R_PWRM0,
FB_PWRM0_MICB1PU, 0, NULL, 0),
/* R_PWRM1 PG 0 ADDR 0x34 */
SND_SOC_DAPM_SUPPLY("Sub Power", R_PWRM1, FB_PWRM1_SUBPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Headphone Left Power",
R_PWRM1, FB_PWRM1_HPLPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Headphone Right Power",
R_PWRM1, FB_PWRM1_HPRPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Speaker Left Power",
R_PWRM1, FB_PWRM1_SPKLPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Speaker Right Power",
R_PWRM1, FB_PWRM1_SPKRPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Differential Input 2 Power",
R_PWRM1, FB_PWRM1_D2S2PU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Differential Input 1 Power",
R_PWRM1, FB_PWRM1_D2S1PU, 0, NULL, 0),
/* R_PWRM2 PG 0 ADDR 0x35 */
SND_SOC_DAPM_SUPPLY("DAI 3 Out Power",
R_PWRM2, FB_PWRM2_I2S3OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 2 Out Power",
R_PWRM2, FB_PWRM2_I2S2OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 1 Out Power",
R_PWRM2, FB_PWRM2_I2S1OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 3 In Power",
R_PWRM2, FB_PWRM2_I2S3IPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 2 In Power",
R_PWRM2, FB_PWRM2_I2S2IPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 1 In Power",
R_PWRM2, FB_PWRM2_I2S1IPU, 0, NULL, 0),
/* R_PWRM3 PG 0 ADDR 0x36 */
SND_SOC_DAPM_SUPPLY("Line Out Left Power",
R_PWRM3, FB_PWRM3_LLINEPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Line Out Right Power",
R_PWRM3, FB_PWRM3_RLINEPU, 0, NULL, 0),
/* R_PWRM4 PG 0 ADDR 0x37 */
SND_SOC_DAPM_DAC("Sub", NULL, R_PWRM4, FB_PWRM4_OPSUBPU, 0),
SND_SOC_DAPM_DAC("DAC Left", NULL, R_PWRM4, FB_PWRM4_OPDACLPU, 0),
SND_SOC_DAPM_DAC("DAC Right", NULL, R_PWRM4, FB_PWRM4_OPDACRPU, 0),
SND_SOC_DAPM_DAC("ClassD Left", NULL, R_PWRM4, FB_PWRM4_OPSPKLPU, 0),
SND_SOC_DAPM_DAC("ClassD Right", NULL, R_PWRM4, FB_PWRM4_OPSPKRPU, 0),
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
SND_SOC_DAPM_MUX("DAI 2 Out Mux", SND_SOC_NOPM, 0, 0,
&dai2_mux_dapm_enum),
SND_SOC_DAPM_MUX("DAI 1 Out Mux", SND_SOC_NOPM, 0, 0,
&dai1_mux_dapm_enum),
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
SND_SOC_DAPM_MUX("DAC Mux", SND_SOC_NOPM, 0, 0,
&dac_mux_dapm_enum),
SND_SOC_DAPM_MUX("DAI 3 Out Mux", SND_SOC_NOPM, 0, 0,
&dai3_mux_dapm_enum),
/* R_AUDIOMUX3 PG 0 ADDR 0x3C */
SND_SOC_DAPM_MUX("Sub Mux", SND_SOC_NOPM, 0, 0,
&sub_mux_dapm_enum),
SND_SOC_DAPM_MUX("Speaker Mux", SND_SOC_NOPM, 0, 0,
&classd_mux_dapm_enum),
/* R_HSDCTL1 PG 1 ADDR 0x01 */
SND_SOC_DAPM_SUPPLY("GHS Detect Power", R_HSDCTL1,
FB_HSDCTL1_CON_DET_PWD, 1, NULL, 0),
/* R_CH0AIC PG 1 ADDR 0x06 */
SND_SOC_DAPM_MUX("Input Boost Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&in_bst_mux_ch0_dapm_enum),
SND_SOC_DAPM_MUX("ADC Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&adc_mux_ch0_dapm_enum),
SND_SOC_DAPM_MUX("Input Processor Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&in_proc_mux_ch0_dapm_enum),
/* R_CH1AIC PG 1 ADDR 0x07 */
SND_SOC_DAPM_MUX("Input Boost Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&in_bst_mux_ch1_dapm_enum),
SND_SOC_DAPM_MUX("ADC Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&adc_mux_ch1_dapm_enum),
SND_SOC_DAPM_MUX("Input Processor Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&in_proc_mux_ch1_dapm_enum),
/* Virtual */
SND_SOC_DAPM_AIF_IN("DAI 3 In", "DAI 3 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("DAI 2 In", "DAI 2 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("DAI 1 In", "DAI 1 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SUPPLY("PLLs", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("Sub Out"),
SND_SOC_DAPM_OUTPUT("Headphone Left"),
SND_SOC_DAPM_OUTPUT("Headphone Right"),
SND_SOC_DAPM_OUTPUT("Speaker Left"),
SND_SOC_DAPM_OUTPUT("Speaker Right"),
SND_SOC_DAPM_OUTPUT("Line Out Left"),
SND_SOC_DAPM_OUTPUT("Line Out Right"),
SND_SOC_DAPM_INPUT("D2S 2"),
SND_SOC_DAPM_INPUT("D2S 1"),
SND_SOC_DAPM_INPUT("Line In 1 Left"),
SND_SOC_DAPM_INPUT("Line In 1 Right"),
SND_SOC_DAPM_INPUT("Line In 2 Left"),
SND_SOC_DAPM_INPUT("Line In 2 Right"),
SND_SOC_DAPM_INPUT("Line In 3 Left"),
SND_SOC_DAPM_INPUT("Line In 3 Right"),
SND_SOC_DAPM_INPUT("DMic 1"),
SND_SOC_DAPM_INPUT("DMic 2"),
SND_SOC_DAPM_MUX("CH 0_1 Mux", SND_SOC_NOPM, 0, 0,
&ch_0_1_mux_dapm_enum),
SND_SOC_DAPM_MUX("CH 2_3 Mux", SND_SOC_NOPM, 0, 0,
&ch_2_3_mux_dapm_enum),
SND_SOC_DAPM_MUX("CH 4_5 Mux", SND_SOC_NOPM, 0, 0,
&ch_4_5_mux_dapm_enum),
};
static struct snd_soc_dapm_route const tscs454_intercon[] = {
/* PLLs */
{"PLLs", NULL, "PLL 1 Power", pll_connected},
{"PLLs", NULL, "PLL 2 Power", pll_connected},
/* Inputs */
{"DAI 3 In", NULL, "DAI 3 In Power"},
{"DAI 2 In", NULL, "DAI 2 In Power"},
{"DAI 1 In", NULL, "DAI 1 In Power"},
/* Outputs */
{"DAI 3 Out", NULL, "DAI 3 Out Power"},
{"DAI 2 Out", NULL, "DAI 2 Out Power"},
{"DAI 1 Out", NULL, "DAI 1 Out Power"},
/* Ch Muxing */
{"CH 0_1 Mux", "DAI 1", "DAI 1 In"},
{"CH 0_1 Mux", "TDM 0_1", "DAI 1 In"},
{"CH 2_3 Mux", "DAI 2", "DAI 2 In"},
{"CH 2_3 Mux", "TDM 2_3", "DAI 1 In"},
{"CH 4_5 Mux", "DAI 3", "DAI 2 In"},
{"CH 4_5 Mux", "TDM 4_5", "DAI 1 In"},
/* In/Out Muxing */
{"DAI 1 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 1 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 1 Out Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAI 2 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 2 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 2 Out Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAI 3 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 3 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 3 Out Mux", "CH 4_5", "CH 4_5 Mux"},
/******************
* Playback Paths *
******************/
/* DAC Path */
{"DAC Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAC Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAC Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAC Left", NULL, "DAC Mux"},
{"DAC Right", NULL, "DAC Mux"},
{"DAC Left", NULL, "PLLs"},
{"DAC Right", NULL, "PLLs"},
{"Headphone Left", NULL, "Headphone Left Power"},
{"Headphone Right", NULL, "Headphone Right Power"},
{"Headphone Left", NULL, "DAC Left"},
{"Headphone Right", NULL, "DAC Right"},
/* Line Out */
{"Line Out Left", NULL, "Line Out Left Power"},
{"Line Out Right", NULL, "Line Out Right Power"},
{"Line Out Left", NULL, "DAC Left"},
{"Line Out Right", NULL, "DAC Right"},
/* ClassD Path */
{"Speaker Mux", "CH 4_5", "CH 4_5 Mux"},
{"Speaker Mux", "CH 2_3", "CH 2_3 Mux"},
{"Speaker Mux", "CH 0_1", "CH 0_1 Mux"},
{"ClassD Left", NULL, "Speaker Mux"},
{"ClassD Right", NULL, "Speaker Mux"},
{"ClassD Left", NULL, "PLLs"},
{"ClassD Right", NULL, "PLLs"},
{"Speaker Left", NULL, "Speaker Left Power"},
{"Speaker Right", NULL, "Speaker Right Power"},
{"Speaker Left", NULL, "ClassD Left"},
{"Speaker Right", NULL, "ClassD Right"},
/* Sub Path */
{"Sub Mux", "CH 4", "CH 4_5 Mux"},
{"Sub Mux", "CH 5", "CH 4_5 Mux"},
{"Sub Mux", "CH 4 + 5", "CH 4_5 Mux"},
{"Sub Mux", "CH 2", "CH 2_3 Mux"},
{"Sub Mux", "CH 3", "CH 2_3 Mux"},
{"Sub Mux", "CH 2 + 3", "CH 2_3 Mux"},
{"Sub Mux", "CH 0", "CH 0_1 Mux"},
{"Sub Mux", "CH 1", "CH 0_1 Mux"},
{"Sub Mux", "CH 0 + 1", "CH 0_1 Mux"},
{"Sub Mux", "ADC/DMic 1 Left", "Input Processor Channel 0"},
{"Sub Mux", "ADC/DMic 1 Right", "Input Processor Channel 1"},
{"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 0"},
{"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 1"},
{"Sub Mux", "DMic 2 Left", "DMic 2"},
{"Sub Mux", "DMic 2 Right", "DMic 2"},
{"Sub Mux", "DMic 2 Left Plus Right", "DMic 2"},
{"Sub Mux", "ClassD Left", "ClassD Left"},
{"Sub Mux", "ClassD Right", "ClassD Right"},
{"Sub Mux", "ClassD Left Plus Right", "ClassD Left"},
{"Sub Mux", "ClassD Left Plus Right", "ClassD Right"},
{"Sub", NULL, "Sub Mux"},
{"Sub", NULL, "PLLs"},
{"Sub Out", NULL, "Sub Power"},
{"Sub Out", NULL, "Sub"},
/*****************
* Capture Paths *
*****************/
{"Input Boost Channel 0 Mux", "Input 3", "Line In 3 Left"},
{"Input Boost Channel 0 Mux", "Input 2", "Line In 2 Left"},
{"Input Boost Channel 0 Mux", "Input 1", "Line In 1 Left"},
{"Input Boost Channel 0 Mux", "D2S", "D2S 1"},
{"Input Boost Channel 1 Mux", "Input 3", "Line In 3 Right"},
{"Input Boost Channel 1 Mux", "Input 2", "Line In 2 Right"},
{"Input Boost Channel 1 Mux", "Input 1", "Line In 1 Right"},
{"Input Boost Channel 1 Mux", "D2S", "D2S 2"},
{"ADC Channel 0 Mux", "Input 3 Boost Bypass", "Line In 3 Left"},
{"ADC Channel 0 Mux", "Input 2 Boost Bypass", "Line In 2 Left"},
{"ADC Channel 0 Mux", "Input 1 Boost Bypass", "Line In 1 Left"},
{"ADC Channel 0 Mux", "Input Boost", "Input Boost Channel 0 Mux"},
{"ADC Channel 1 Mux", "Input 3 Boost Bypass", "Line In 3 Right"},
{"ADC Channel 1 Mux", "Input 2 Boost Bypass", "Line In 2 Right"},
{"ADC Channel 1 Mux", "Input 1 Boost Bypass", "Line In 1 Right"},
{"ADC Channel 1 Mux", "Input Boost", "Input Boost Channel 1 Mux"},
{"Input Processor Channel 0 Mux", "ADC", "ADC Channel 0 Mux"},
{"Input Processor Channel 0 Mux", "DMic", "DMic 1"},
{"Input Processor Channel 0", NULL, "PLLs"},
{"Input Processor Channel 0", NULL, "Input Processor Channel 0 Mux"},
{"Input Processor Channel 1 Mux", "ADC", "ADC Channel 1 Mux"},
{"Input Processor Channel 1 Mux", "DMic", "DMic 1"},
{"Input Processor Channel 1", NULL, "PLLs"},
{"Input Processor Channel 1", NULL, "Input Processor Channel 1 Mux"},
{"Input Processor Channel 2", NULL, "PLLs"},
{"Input Processor Channel 2", NULL, "DMic 2"},
{"Input Processor Channel 3", NULL, "PLLs"},
{"Input Processor Channel 3", NULL, "DMic 2"},
{"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 1 Out", NULL, "DAI 1 Out Mux"},
{"DAI 2 Out", NULL, "DAI 2 Out Mux"},
{"DAI 3 Out", NULL, "DAI 3 Out Mux"},
};
/* This is used when BCLK is sourcing the PLLs */
static int tscs454_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int bclk_dai;
dev_dbg(component->dev, "%s(): freq = %u\n", __func__, freq);
val = snd_soc_component_read(component, R_PLLCTL);
bclk_dai = (val & FM_PLLCTL_BCLKSEL) >> FB_PLLCTL_BCLKSEL;
if (bclk_dai != dai->id)
return 0;
tscs454->bclk_freq = freq;
return set_sysclk(component);
}
static int tscs454_set_bclk_ratio(struct snd_soc_dai *dai,
unsigned int ratio)
{
unsigned int mask;
int ret;
struct snd_soc_component *component = dai->component;
unsigned int val;
int shift;
dev_dbg(component->dev, "set_bclk_ratio() id = %d ratio = %u\n",
dai->id, ratio);
switch (dai->id) {
case TSCS454_DAI1_ID:
mask = FM_I2SCMC_BCMP1;
shift = FB_I2SCMC_BCMP1;
break;
case TSCS454_DAI2_ID:
mask = FM_I2SCMC_BCMP2;
shift = FB_I2SCMC_BCMP2;
break;
case TSCS454_DAI3_ID:
mask = FM_I2SCMC_BCMP3;
shift = FB_I2SCMC_BCMP3;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unknown audio interface (%d)\n", ret);
return ret;
}
switch (ratio) {
case 32:
val = I2SCMC_BCMP_32X;
break;
case 40:
val = I2SCMC_BCMP_40X;
break;
case 64:
val = I2SCMC_BCMP_64X;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported bclk ratio (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
R_I2SCMC, mask, val << shift);
if (ret < 0) {
dev_err(component->dev,
"Failed to set DAI BCLK ratio (%d)\n", ret);
return ret;
}
return 0;
}
static inline int set_aif_master_from_fmt(struct snd_soc_component *component,
struct aif *aif, unsigned int fmt)
{
int ret;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
aif->master = true;
break;
case SND_SOC_DAIFMT_CBS_CFS:
aif->master = false;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported format (%d)\n", ret);
return ret;
}
return 0;
}
static inline int set_aif_tdm_delay(struct snd_soc_component *component,
unsigned int dai_id, bool delay)
{
unsigned int reg;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_TDMCTL0;
break;
case TSCS454_DAI2_ID:
reg = R_PCMP2CTL0;
break;
case TSCS454_DAI3_ID:
reg = R_PCMP3CTL0;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_TDMCTL0_BDELAY, delay);
if (ret < 0) {
dev_err(component->dev, "Failed to setup tdm format (%d)\n",
ret);
return ret;
}
return 0;
}
static inline int set_aif_format_from_fmt(struct snd_soc_component *component,
unsigned int dai_id, unsigned int fmt)
{
unsigned int reg;
unsigned int val;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_RIGHT_J:
val = FV_FORMAT_RIGHT;
break;
case SND_SOC_DAIFMT_LEFT_J:
val = FV_FORMAT_LEFT;
break;
case SND_SOC_DAIFMT_I2S:
val = FV_FORMAT_I2S;
break;
case SND_SOC_DAIFMT_DSP_A:
ret = set_aif_tdm_delay(component, dai_id, true);
if (ret < 0)
return ret;
val = FV_FORMAT_TDM;
break;
case SND_SOC_DAIFMT_DSP_B:
ret = set_aif_tdm_delay(component, dai_id, false);
if (ret < 0)
return ret;
val = FV_FORMAT_TDM;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Format unsupported (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_I2SPCTL_FORMAT, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set DAI %d format (%d)\n",
dai_id + 1, ret);
return ret;
}
return 0;
}
static inline int
set_aif_clock_format_from_fmt(struct snd_soc_component *component,
unsigned int dai_id, unsigned int fmt)
{
unsigned int reg;
unsigned int val;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_NOT_INVERTED;
break;
case SND_SOC_DAIFMT_NB_IF:
val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_INVERTED;
break;
case SND_SOC_DAIFMT_IB_NF:
val = FV_BCLKP_INVERTED | FV_LRCLKP_NOT_INVERTED;
break;
case SND_SOC_DAIFMT_IB_IF:
val = FV_BCLKP_INVERTED | FV_LRCLKP_INVERTED;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Format unknown (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, reg,
FM_I2SPCTL_BCLKP | FM_I2SPCTL_LRCLKP, val);
if (ret < 0) {
dev_err(component->dev,
"Failed to set clock polarity for DAI%d (%d)\n",
dai_id + 1, ret);
return ret;
}
return 0;
}
static int tscs454_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
int ret;
ret = set_aif_master_from_fmt(component, aif, fmt);
if (ret < 0)
return ret;
ret = set_aif_format_from_fmt(component, dai->id, fmt);
if (ret < 0)
return ret;
ret = set_aif_clock_format_from_fmt(component, dai->id, fmt);
if (ret < 0)
return ret;
return 0;
}
static int tscs454_dai1_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots,
int slot_width)
{
struct snd_soc_component *component = dai->component;
unsigned int val;
int ret;
if (!slots)
return 0;
if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) {
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret);
return ret;
}
switch (slots) {
case 2:
val = FV_TDMSO_2 | FV_TDMSI_2;
break;
case 4:
val = FV_TDMSO_4 | FV_TDMSI_4;
break;
case 6:
val = FV_TDMSO_6 | FV_TDMSI_6;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid number of slots (%d)\n", ret);
return ret;
}
switch (slot_width) {
case 16:
val = val | FV_TDMDSS_16;
break;
case 24:
val = val | FV_TDMDSS_24;
break;
case 32:
val = val | FV_TDMDSS_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret);
return ret;
}
ret = snd_soc_component_write(component, R_TDMCTL1, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set slots (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs454_dai23_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots,
int slot_width)
{
struct snd_soc_component *component = dai->component;
unsigned int reg;
unsigned int val;
int ret;
if (!slots)
return 0;
if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) {
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret);
return ret;
}
switch (dai->id) {
case TSCS454_DAI2_ID:
reg = R_PCMP2CTL1;
break;
case TSCS454_DAI3_ID:
reg = R_PCMP3CTL1;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unrecognized interface %d (%d)\n",
dai->id, ret);
return ret;
}
switch (slots) {
case 1:
val = FV_PCMSOP_1 | FV_PCMSIP_1;
break;
case 2:
val = FV_PCMSOP_2 | FV_PCMSIP_2;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid number of slots (%d)\n", ret);
return ret;
}
switch (slot_width) {
case 16:
val = val | FV_PCMDSSP_16;
break;
case 24:
val = val | FV_PCMDSSP_24;
break;
case 32:
val = val | FV_PCMDSSP_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret);
return ret;
}
ret = snd_soc_component_write(component, reg, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set slots (%d)\n", ret);
return ret;
}
return 0;
}
static int set_aif_fs(struct snd_soc_component *component,
unsigned int id,
unsigned int rate)
{
unsigned int reg;
unsigned int br;
unsigned int bm;
int ret;
switch (rate) {
case 8000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_0PT25;
break;
case 16000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_0PT5;
break;
case 24000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_0PT5;
break;
case 32000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_1;
break;
case 48000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_1;
break;
case 96000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_2;
break;
case 11025:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_0PT25;
break;
case 22050:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_0PT5;
break;
case 44100:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_1;
break;
case 88200:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_2;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported sample rate (%d)\n", ret);
return ret;
}
switch (id) {
case TSCS454_DAI1_ID:
reg = R_I2S1MRATE;
break;
case TSCS454_DAI2_ID:
reg = R_I2S2MRATE;
break;
case TSCS454_DAI3_ID:
reg = R_I2S3MRATE;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "DAI ID not recognized (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, reg,
FM_I2SMRATE_I2SMBR | FM_I2SMRATE_I2SMBM, br|bm);
if (ret < 0) {
dev_err(component->dev,
"Failed to update register (%d)\n", ret);
return ret;
}
return 0;
}
static int set_aif_sample_format(struct snd_soc_component *component,
snd_pcm_format_t format,
int aif_id)
{
unsigned int reg;
unsigned int width;
int ret;
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
width = FV_WL_16;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
width = FV_WL_20;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
width = FV_WL_24;
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S32_LE:
width = FV_WL_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported format width (%d)\n", ret);
return ret;
}
switch (aif_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "AIF ID not recognized (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_I2SPCTL_WL, width);
if (ret < 0) {
dev_err(component->dev,
"Failed to set sample width (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs454_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int fs = params_rate(params);
struct aif *aif = &tscs454->aifs[dai->id];
unsigned int val;
int ret;
mutex_lock(&tscs454->aifs_status_lock);
dev_dbg(component->dev, "%s(): aif %d fs = %u\n", __func__,
aif->id, fs);
if (!aif_active(&tscs454->aifs_status, aif->id)) {
if (PLL_44_1K_RATE % fs)
aif->pll = &tscs454->pll1;
else
aif->pll = &tscs454->pll2;
dev_dbg(component->dev, "Reserving pll %d for aif %d\n",
aif->pll->id, aif->id);
reserve_pll(aif->pll);
}
if (!aifs_active(&tscs454->aifs_status)) { /* First active aif */
val = snd_soc_component_read(component, R_ISRC);
if ((val & FM_ISRC_IBR) == FV_IBR_48)
tscs454->internal_rate.pll = &tscs454->pll1;
else
tscs454->internal_rate.pll = &tscs454->pll2;
dev_dbg(component->dev, "Reserving pll %d for ir\n",
tscs454->internal_rate.pll->id);
reserve_pll(tscs454->internal_rate.pll);
}
ret = set_aif_fs(component, aif->id, fs);
if (ret < 0) {
dev_err(component->dev, "Failed to set aif fs (%d)\n", ret);
goto exit;
}
ret = set_aif_sample_format(component, params_format(params), aif->id);
if (ret < 0) {
dev_err(component->dev,
"Failed to set aif sample format (%d)\n", ret);
goto exit;
}
set_aif_status_active(&tscs454->aifs_status, aif->id,
substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
dev_dbg(component->dev, "Set aif %d active. Streams status is 0x%x\n",
aif->id, tscs454->aifs_status.streams);
ret = 0;
exit:
mutex_unlock(&tscs454->aifs_status_lock);
return ret;
}
static int tscs454_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
return aif_free(component, aif,
substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
}
static int tscs454_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
int ret;
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
ret = aif_prepare(component, aif);
if (ret < 0)
return ret;
return 0;
}
static struct snd_soc_dai_ops const tscs454_dai1_ops = {
.set_sysclk = tscs454_set_sysclk,
.set_bclk_ratio = tscs454_set_bclk_ratio,
.set_fmt = tscs454_set_dai_fmt,
.set_tdm_slot = tscs454_dai1_set_tdm_slot,
.hw_params = tscs454_hw_params,
.hw_free = tscs454_hw_free,
.prepare = tscs454_prepare,
};
static struct snd_soc_dai_ops const tscs454_dai23_ops = {
.set_sysclk = tscs454_set_sysclk,
.set_bclk_ratio = tscs454_set_bclk_ratio,
.set_fmt = tscs454_set_dai_fmt,
.set_tdm_slot = tscs454_dai23_set_tdm_slot,
.hw_params = tscs454_hw_params,
.hw_free = tscs454_hw_free,
.prepare = tscs454_prepare,
};
static int tscs454_probe(struct snd_soc_component *component)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int ret = 0;
switch (tscs454->sysclk_src_id) {
case PLL_INPUT_XTAL:
val = FV_PLLISEL_XTAL;
break;
case PLL_INPUT_MCLK1:
val = FV_PLLISEL_MCLK1;
break;
case PLL_INPUT_MCLK2:
val = FV_PLLISEL_MCLK2;
break;
case PLL_INPUT_BCLK:
val = FV_PLLISEL_BCLK;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid sysclk src id (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, R_PLLCTL,
FM_PLLCTL_PLLISEL, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set PLL input (%d)\n", ret);
return ret;
}
if (tscs454->sysclk_src_id < PLL_INPUT_BCLK)
ret = set_sysclk(component);
return ret;
}
static const struct snd_soc_component_driver soc_component_dev_tscs454 = {
.probe = tscs454_probe,
.dapm_widgets = tscs454_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tscs454_dapm_widgets),
.dapm_routes = tscs454_intercon,
.num_dapm_routes = ARRAY_SIZE(tscs454_intercon),
.controls = tscs454_snd_controls,
.num_controls = ARRAY_SIZE(tscs454_snd_controls),
};
#define TSCS454_RATES SNDRV_PCM_RATE_8000_96000
#define TSCS454_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE \
| SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver tscs454_dais[] = {
{
.name = "tscs454-dai1",
.id = TSCS454_DAI1_ID,
.playback = {
.stream_name = "DAI 1 Playback",
.channels_min = 1,
.channels_max = 6,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 1 Capture",
.channels_min = 1,
.channels_max = 6,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai1_ops,
.symmetric_rates = 1,
.symmetric_channels = 1,
.symmetric_samplebits = 1,
},
{
.name = "tscs454-dai2",
.id = TSCS454_DAI2_ID,
.playback = {
.stream_name = "DAI 2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai23_ops,
.symmetric_rates = 1,
.symmetric_channels = 1,
.symmetric_samplebits = 1,
},
{
.name = "tscs454-dai3",
.id = TSCS454_DAI3_ID,
.playback = {
.stream_name = "DAI 3 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 3 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai23_ops,
.symmetric_rates = 1,
.symmetric_channels = 1,
.symmetric_samplebits = 1,
},
};
static char const * const src_names[] = {
"xtal", "mclk1", "mclk2", "bclk"};
static int tscs454_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct tscs454 *tscs454;
int src;
int ret;
tscs454 = devm_kzalloc(&i2c->dev, sizeof(*tscs454), GFP_KERNEL);
if (!tscs454)
return -ENOMEM;
ret = tscs454_data_init(tscs454, i2c);
if (ret < 0)
return ret;
i2c_set_clientdata(i2c, tscs454);
for (src = PLL_INPUT_XTAL; src < PLL_INPUT_BCLK; src++) {
tscs454->sysclk = devm_clk_get(&i2c->dev, src_names[src]);
if (!IS_ERR(tscs454->sysclk)) {
break;
} else if (PTR_ERR(tscs454->sysclk) != -ENOENT) {
ret = PTR_ERR(tscs454->sysclk);
dev_err(&i2c->dev, "Failed to get sysclk (%d)\n", ret);
return ret;
}
}
dev_dbg(&i2c->dev, "PLL input is %s\n", src_names[src]);
tscs454->sysclk_src_id = src;
ret = regmap_write(tscs454->regmap,
R_RESET, FV_RESET_PWR_ON_DEFAULTS);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to reset the component (%d)\n", ret);
return ret;
}
regcache_mark_dirty(tscs454->regmap);
ret = regmap_register_patch(tscs454->regmap, tscs454_patch,
ARRAY_SIZE(tscs454_patch));
if (ret < 0) {
dev_err(&i2c->dev, "Failed to apply patch (%d)\n", ret);
return ret;
}
/* Sync pg sel reg with cache */
regmap_write(tscs454->regmap, R_PAGESEL, 0x00);
ret = devm_snd_soc_register_component(&i2c->dev, &soc_component_dev_tscs454,
tscs454_dais, ARRAY_SIZE(tscs454_dais));
if (ret) {
dev_err(&i2c->dev, "Failed to register component (%d)\n", ret);
return ret;
}
return 0;
}
static const struct i2c_device_id tscs454_i2c_id[] = {
{ "tscs454", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tscs454_i2c_id);
static const struct of_device_id tscs454_of_match[] = {
{ .compatible = "tempo,tscs454", },
{ }
};
MODULE_DEVICE_TABLE(of, tscs454_of_match);
static struct i2c_driver tscs454_i2c_driver = {
.driver = {
.name = "tscs454",
.of_match_table = tscs454_of_match,
},
.probe = tscs454_i2c_probe,
.id_table = tscs454_i2c_id,
};
module_i2c_driver(tscs454_i2c_driver);
MODULE_AUTHOR("Tempo Semiconductor <steven.eckhoff.opensource@gmail.com");
MODULE_DESCRIPTION("ASoC TSCS454 driver");
MODULE_LICENSE("GPL v2");