linux/drivers/gpu/drm/i915/i915_scheduler.c
Matthew Brost ee242ca704 drm/i915/guc: Implement GuC priority management
Implement a simple static mapping algorithm of the i915 priority levels
(int, -1k to 1k exposed to user) to the 4 GuC levels. Mapping is as
follows:

i915 level < 0          -> GuC low level     (3)
i915 level == 0         -> GuC normal level  (2)
i915 level < INT_MAX    -> GuC high level    (1)
i915 level == INT_MAX   -> GuC highest level (0)

We believe this mapping should cover the UMD use cases (3 distinct user
levels + 1 kernel level).

In addition to static mapping, a simple counter system is attached to
each context tracking the number of requests inflight on the context at
each level. This is needed as the GuC levels are per context while in
the i915 levels are per request.

v2:
 (Daniele)
  - Add BUILD_BUG_ON to enforce ordering of priority levels
  - Add missing lockdep to guc_prio_fini
  - Check for return before setting context registered flag
  - Map DISPLAY priority or higher to highest guc prio
  - Update comment for guc_prio

Signed-off-by: Matthew Brost <matthew.brost@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210727002348.97202-33-matthew.brost@intel.com
2021-07-27 17:32:27 -07:00

521 lines
14 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/mutex.h>
#include "i915_drv.h"
#include "i915_globals.h"
#include "i915_request.h"
#include "i915_scheduler.h"
static struct i915_global_scheduler {
struct i915_global base;
struct kmem_cache *slab_dependencies;
struct kmem_cache *slab_priorities;
} global;
static DEFINE_SPINLOCK(schedule_lock);
static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
return container_of(node, const struct i915_request, sched);
}
static inline bool node_started(const struct i915_sched_node *node)
{
return i915_request_started(node_to_request(node));
}
static inline bool node_signaled(const struct i915_sched_node *node)
{
return i915_request_completed(node_to_request(node));
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static void assert_priolists(struct i915_sched_engine * const sched_engine)
{
struct rb_node *rb;
long last_prio;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
GEM_BUG_ON(rb_first_cached(&sched_engine->queue) !=
rb_first(&sched_engine->queue.rb_root));
last_prio = INT_MAX;
for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
const struct i915_priolist *p = to_priolist(rb);
GEM_BUG_ON(p->priority > last_prio);
last_prio = p->priority;
}
}
struct list_head *
i915_sched_lookup_priolist(struct i915_sched_engine *sched_engine, int prio)
{
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
lockdep_assert_held(&sched_engine->lock);
assert_priolists(sched_engine);
if (unlikely(sched_engine->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &sched_engine->queue.rb_root.rb_node;
while (*parent) {
rb = *parent;
p = to_priolist(rb);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
return &p->requests;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &sched_engine->default_priolist;
} else {
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
sched_engine->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
INIT_LIST_HEAD(&p->requests);
rb_link_node(&p->node, rb, parent);
rb_insert_color_cached(&p->node, &sched_engine->queue, first);
return &p->requests;
}
void __i915_priolist_free(struct i915_priolist *p)
{
kmem_cache_free(global.slab_priorities, p);
}
struct sched_cache {
struct list_head *priolist;
};
static struct i915_sched_engine *
lock_sched_engine(struct i915_sched_node *node,
struct i915_sched_engine *locked,
struct sched_cache *cache)
{
const struct i915_request *rq = node_to_request(node);
struct i915_sched_engine *sched_engine;
GEM_BUG_ON(!locked);
/*
* Virtual engines complicate acquiring the engine timeline lock,
* as their rq->engine pointer is not stable until under that
* engine lock. The simple ploy we use is to take the lock then
* check that the rq still belongs to the newly locked engine.
*/
while (locked != (sched_engine = READ_ONCE(rq->engine)->sched_engine)) {
spin_unlock(&locked->lock);
memset(cache, 0, sizeof(*cache));
spin_lock(&sched_engine->lock);
locked = sched_engine;
}
GEM_BUG_ON(locked != sched_engine);
return locked;
}
static void __i915_schedule(struct i915_sched_node *node,
const struct i915_sched_attr *attr)
{
const int prio = max(attr->priority, node->attr.priority);
struct i915_sched_engine *sched_engine;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
struct sched_cache cache;
LIST_HEAD(dfs);
/* Needed in order to use the temporary link inside i915_dependency */
lockdep_assert_held(&schedule_lock);
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
if (node_signaled(node))
return;
stack.signaler = node;
list_add(&stack.dfs_link, &dfs);
/*
* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_sched_node *node, prio) {
* list_for_each_entry(dep, &node->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* queue_request(node);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry(dep, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
/* If we are already flying, we know we have no signalers */
if (node_started(node))
continue;
/*
* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &node->signalers_list, signal_link) {
GEM_BUG_ON(p == dep); /* no cycles! */
if (node_signaled(p->signaler))
continue;
if (prio > READ_ONCE(p->signaler->attr.priority))
list_move_tail(&p->dfs_link, &dfs);
}
}
/*
* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (node->attr.priority == I915_PRIORITY_INVALID) {
GEM_BUG_ON(!list_empty(&node->link));
node->attr = *attr;
if (stack.dfs_link.next == stack.dfs_link.prev)
return;
__list_del_entry(&stack.dfs_link);
}
memset(&cache, 0, sizeof(cache));
sched_engine = node_to_request(node)->engine->sched_engine;
spin_lock(&sched_engine->lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
sched_engine = lock_sched_engine(node, sched_engine, &cache);
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
struct i915_request *from = container_of(dep->signaler,
struct i915_request,
sched);
INIT_LIST_HEAD(&dep->dfs_link);
node = dep->signaler;
sched_engine = lock_sched_engine(node, sched_engine, &cache);
lockdep_assert_held(&sched_engine->lock);
/* Recheck after acquiring the engine->timeline.lock */
if (prio <= node->attr.priority || node_signaled(node))
continue;
GEM_BUG_ON(node_to_request(node)->engine->sched_engine !=
sched_engine);
/* Must be called before changing the nodes priority */
if (sched_engine->bump_inflight_request_prio)
sched_engine->bump_inflight_request_prio(from, prio);
WRITE_ONCE(node->attr.priority, prio);
/*
* Once the request is ready, it will be placed into the
* priority lists and then onto the HW runlist. Before the
* request is ready, it does not contribute to our preemption
* decisions and we can safely ignore it, as it will, and
* any preemption required, be dealt with upon submission.
* See engine->submit_request()
*/
if (list_empty(&node->link))
continue;
if (i915_request_in_priority_queue(node_to_request(node))) {
if (!cache.priolist)
cache.priolist =
i915_sched_lookup_priolist(sched_engine,
prio);
list_move_tail(&node->link, cache.priolist);
}
/* Defer (tasklet) submission until after all of our updates. */
if (sched_engine->kick_backend)
sched_engine->kick_backend(node_to_request(node), prio);
}
spin_unlock(&sched_engine->lock);
}
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
spin_lock_irq(&schedule_lock);
__i915_schedule(&rq->sched, attr);
spin_unlock_irq(&schedule_lock);
}
void i915_sched_node_init(struct i915_sched_node *node)
{
INIT_LIST_HEAD(&node->signalers_list);
INIT_LIST_HEAD(&node->waiters_list);
INIT_LIST_HEAD(&node->link);
i915_sched_node_reinit(node);
}
void i915_sched_node_reinit(struct i915_sched_node *node)
{
node->attr.priority = I915_PRIORITY_INVALID;
node->semaphores = 0;
node->flags = 0;
GEM_BUG_ON(!list_empty(&node->signalers_list));
GEM_BUG_ON(!list_empty(&node->waiters_list));
GEM_BUG_ON(!list_empty(&node->link));
}
static struct i915_dependency *
i915_dependency_alloc(void)
{
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
}
static void
i915_dependency_free(struct i915_dependency *dep)
{
kmem_cache_free(global.slab_dependencies, dep);
}
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags)
{
bool ret = false;
spin_lock_irq(&schedule_lock);
if (!node_signaled(signal)) {
INIT_LIST_HEAD(&dep->dfs_link);
dep->signaler = signal;
dep->waiter = node;
dep->flags = flags;
/* All set, now publish. Beware the lockless walkers. */
list_add_rcu(&dep->signal_link, &node->signalers_list);
list_add_rcu(&dep->wait_link, &signal->waiters_list);
/* Propagate the chains */
node->flags |= signal->flags;
ret = true;
}
spin_unlock_irq(&schedule_lock);
return ret;
}
int i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
unsigned long flags)
{
struct i915_dependency *dep;
dep = i915_dependency_alloc();
if (!dep)
return -ENOMEM;
if (!__i915_sched_node_add_dependency(node, signal, dep,
flags | I915_DEPENDENCY_ALLOC))
i915_dependency_free(dep);
return 0;
}
void i915_sched_node_fini(struct i915_sched_node *node)
{
struct i915_dependency *dep, *tmp;
spin_lock_irq(&schedule_lock);
/*
* Everyone we depended upon (the fences we wait to be signaled)
* should retire before us and remove themselves from our list.
* However, retirement is run independently on each timeline and
* so we may be called out-of-order.
*/
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del_rcu(&dep->wait_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
INIT_LIST_HEAD(&node->signalers_list);
/* Remove ourselves from everyone who depends upon us */
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
GEM_BUG_ON(dep->signaler != node);
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del_rcu(&dep->signal_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
INIT_LIST_HEAD(&node->waiters_list);
spin_unlock_irq(&schedule_lock);
}
void i915_request_show_with_schedule(struct drm_printer *m,
const struct i915_request *rq,
const char *prefix,
int indent)
{
struct i915_dependency *dep;
i915_request_show(m, rq, prefix, indent);
if (i915_request_completed(rq))
return;
rcu_read_lock();
for_each_signaler(dep, rq) {
const struct i915_request *signaler =
node_to_request(dep->signaler);
/* Dependencies along the same timeline are expected. */
if (signaler->timeline == rq->timeline)
continue;
if (__i915_request_is_complete(signaler))
continue;
i915_request_show(m, signaler, prefix, indent + 2);
}
rcu_read_unlock();
}
static void default_destroy(struct kref *kref)
{
struct i915_sched_engine *sched_engine =
container_of(kref, typeof(*sched_engine), ref);
tasklet_kill(&sched_engine->tasklet); /* flush the callback */
kfree(sched_engine);
}
static bool default_disabled(struct i915_sched_engine *sched_engine)
{
return false;
}
struct i915_sched_engine *
i915_sched_engine_create(unsigned int subclass)
{
struct i915_sched_engine *sched_engine;
sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL);
if (!sched_engine)
return NULL;
kref_init(&sched_engine->ref);
sched_engine->queue = RB_ROOT_CACHED;
sched_engine->queue_priority_hint = INT_MIN;
sched_engine->destroy = default_destroy;
sched_engine->disabled = default_disabled;
INIT_LIST_HEAD(&sched_engine->requests);
INIT_LIST_HEAD(&sched_engine->hold);
spin_lock_init(&sched_engine->lock);
lockdep_set_subclass(&sched_engine->lock, subclass);
/*
* Due to an interesting quirk in lockdep's internal debug tracking,
* after setting a subclass we must ensure the lock is used. Otherwise,
* nr_unused_locks is incremented once too often.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
local_irq_disable();
lock_map_acquire(&sched_engine->lock.dep_map);
lock_map_release(&sched_engine->lock.dep_map);
local_irq_enable();
#endif
return sched_engine;
}
static void i915_global_scheduler_exit(void)
{
kmem_cache_destroy(global.slab_dependencies);
kmem_cache_destroy(global.slab_priorities);
}
static struct i915_global_scheduler global = { {
.exit = i915_global_scheduler_exit,
} };
int __init i915_global_scheduler_init(void)
{
global.slab_dependencies = KMEM_CACHE(i915_dependency,
SLAB_HWCACHE_ALIGN |
SLAB_TYPESAFE_BY_RCU);
if (!global.slab_dependencies)
return -ENOMEM;
global.slab_priorities = KMEM_CACHE(i915_priolist, 0);
if (!global.slab_priorities)
goto err_priorities;
i915_global_register(&global.base);
return 0;
err_priorities:
kmem_cache_destroy(global.slab_priorities);
return -ENOMEM;
}