0c02183427
* Clean up vCPU targets, always returning generic v8 as the preferred target * Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) * FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. * Fix vPMU issues related to handling of PMUver. * Don't unnecessary align non-stack allocations in the EL2 VA space * Drop HCR_VIRT_EXCP_MASK, which was never used... * Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead * Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() * Remove prototypes without implementations RISC-V: * Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest * Added ONE_REG interface for SATP mode * Added ONE_REG interface to enable/disable multiple ISA extensions * Improved error codes returned by ONE_REG interfaces * Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V * Added get-reg-list selftest for KVM RISC-V s390: * PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. * Guest debug fixes (Ilya) x86: * Clean up KVM's handling of Intel architectural events * Intel bugfixes * Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs * Clean up LBR virtualization code * Fix a bug where KVM fails to set the target pCPU during an IRTE update * Fix fatal bugs in SEV-ES intrahost migration * Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) * Retry APIC map recalculation if a vCPU is added/enabled * Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM * Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code * Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID * Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU * Fix KVM's handling of !visible guest roots to avoid premature triple fault injection * Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process This last item had a silly one-character bug in the topic branch that was sent to me. Because it caused pretty bad selftest failures in some configurations, I decided to squash in the fix. So, while the exact commit ids haven't been in linux-next, the code has (from the kvm-x86 tree). Generic: * Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. * Drop unused function declarations Selftests: * Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs * Add support for printf() in guest code and covert all guest asserts to use printf-based reporting * Clean up the PMU event filter test and add new testcases * Include x86 selftests in the KVM x86 MAINTAINERS entry -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1 CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj 5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g== =W+4p -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Clean up vCPU targets, always returning generic v8 as the preferred target - Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) - FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. - Fix vPMU issues related to handling of PMUver. - Don't unnecessary align non-stack allocations in the EL2 VA space - Drop HCR_VIRT_EXCP_MASK, which was never used... - Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead - Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() - Remove prototypes without implementations RISC-V: - Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest - Added ONE_REG interface for SATP mode - Added ONE_REG interface to enable/disable multiple ISA extensions - Improved error codes returned by ONE_REG interfaces - Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V - Added get-reg-list selftest for KVM RISC-V s390: - PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. - Guest debug fixes (Ilya) x86: - Clean up KVM's handling of Intel architectural events - Intel bugfixes - Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) - Retry APIC map recalculation if a vCPU is added/enabled - Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM - Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code - Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID - Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU - Fix KVM's handling of !visible guest roots to avoid premature triple fault injection - Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process Generic: - Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. - Drop unused function declarations Selftests: - Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs - Add support for printf() in guest code and covert all guest asserts to use printf-based reporting - Clean up the PMU event filter test and add new testcases - Include x86 selftests in the KVM x86 MAINTAINERS entry" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits) KVM: x86/mmu: Include mmu.h in spte.h KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots KVM: x86/mmu: Disallow guest from using !visible slots for page tables KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page KVM: x86/mmu: Harden new PGD against roots without shadow pages KVM: x86/mmu: Add helper to convert root hpa to shadow page drm/i915/gvt: Drop final dependencies on KVM internal details KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers KVM: x86/mmu: Drop @slot param from exported/external page-track APIs KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled KVM: x86/mmu: Assert that correct locks are held for page write-tracking KVM: x86/mmu: Rename page-track APIs to reflect the new reality KVM: x86/mmu: Drop infrastructure for multiple page-track modes KVM: x86/mmu: Use page-track notifiers iff there are external users KVM: x86/mmu: Move KVM-only page-track declarations to internal header KVM: x86: Remove the unused page-track hook track_flush_slot() drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region() KVM: x86: Add a new page-track hook to handle memslot deletion drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot KVM: x86: Reject memslot MOVE operations if KVMGT is attached ...
8713 lines
247 KiB
C
8713 lines
247 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/highmem.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/objtool.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/smt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/entry-kvm.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/idtentry.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/vmx.h>
|
|
|
|
#include "capabilities.h"
|
|
#include "cpuid.h"
|
|
#include "hyperv.h"
|
|
#include "kvm_onhyperv.h"
|
|
#include "irq.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "nested.h"
|
|
#include "pmu.h"
|
|
#include "sgx.h"
|
|
#include "trace.h"
|
|
#include "vmcs.h"
|
|
#include "vmcs12.h"
|
|
#include "vmx.h"
|
|
#include "x86.h"
|
|
#include "smm.h"
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef MODULE
|
|
static const struct x86_cpu_id vmx_cpu_id[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
|
|
#endif
|
|
|
|
bool __read_mostly enable_vpid = 1;
|
|
module_param_named(vpid, enable_vpid, bool, 0444);
|
|
|
|
static bool __read_mostly enable_vnmi = 1;
|
|
module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
|
|
|
|
bool __read_mostly flexpriority_enabled = 1;
|
|
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_ept = 1;
|
|
module_param_named(ept, enable_ept, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_unrestricted_guest = 1;
|
|
module_param_named(unrestricted_guest,
|
|
enable_unrestricted_guest, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_ept_ad_bits = 1;
|
|
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
|
|
|
|
static bool __read_mostly emulate_invalid_guest_state = true;
|
|
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
|
|
|
|
static bool __read_mostly fasteoi = 1;
|
|
module_param(fasteoi, bool, S_IRUGO);
|
|
|
|
module_param(enable_apicv, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_ipiv = true;
|
|
module_param(enable_ipiv, bool, 0444);
|
|
|
|
/*
|
|
* If nested=1, nested virtualization is supported, i.e., guests may use
|
|
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
|
|
* use VMX instructions.
|
|
*/
|
|
static bool __read_mostly nested = 1;
|
|
module_param(nested, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_pml = 1;
|
|
module_param_named(pml, enable_pml, bool, S_IRUGO);
|
|
|
|
static bool __read_mostly error_on_inconsistent_vmcs_config = true;
|
|
module_param(error_on_inconsistent_vmcs_config, bool, 0444);
|
|
|
|
static bool __read_mostly dump_invalid_vmcs = 0;
|
|
module_param(dump_invalid_vmcs, bool, 0644);
|
|
|
|
#define MSR_BITMAP_MODE_X2APIC 1
|
|
#define MSR_BITMAP_MODE_X2APIC_APICV 2
|
|
|
|
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
|
|
|
|
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
|
|
static int __read_mostly cpu_preemption_timer_multi;
|
|
static bool __read_mostly enable_preemption_timer = 1;
|
|
#ifdef CONFIG_X86_64
|
|
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
|
|
#endif
|
|
|
|
extern bool __read_mostly allow_smaller_maxphyaddr;
|
|
module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
|
|
|
|
#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
|
|
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
|
|
#define KVM_VM_CR0_ALWAYS_ON \
|
|
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
|
|
|
|
#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
|
|
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
|
|
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
|
|
|
|
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
|
|
|
|
#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
|
|
RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
|
|
RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
|
|
RTIT_STATUS_BYTECNT))
|
|
|
|
/*
|
|
* List of MSRs that can be directly passed to the guest.
|
|
* In addition to these x2apic and PT MSRs are handled specially.
|
|
*/
|
|
static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
|
|
MSR_IA32_SPEC_CTRL,
|
|
MSR_IA32_PRED_CMD,
|
|
MSR_IA32_FLUSH_CMD,
|
|
MSR_IA32_TSC,
|
|
#ifdef CONFIG_X86_64
|
|
MSR_FS_BASE,
|
|
MSR_GS_BASE,
|
|
MSR_KERNEL_GS_BASE,
|
|
MSR_IA32_XFD,
|
|
MSR_IA32_XFD_ERR,
|
|
#endif
|
|
MSR_IA32_SYSENTER_CS,
|
|
MSR_IA32_SYSENTER_ESP,
|
|
MSR_IA32_SYSENTER_EIP,
|
|
MSR_CORE_C1_RES,
|
|
MSR_CORE_C3_RESIDENCY,
|
|
MSR_CORE_C6_RESIDENCY,
|
|
MSR_CORE_C7_RESIDENCY,
|
|
};
|
|
|
|
/*
|
|
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
|
|
* ple_gap: upper bound on the amount of time between two successive
|
|
* executions of PAUSE in a loop. Also indicate if ple enabled.
|
|
* According to test, this time is usually smaller than 128 cycles.
|
|
* ple_window: upper bound on the amount of time a guest is allowed to execute
|
|
* in a PAUSE loop. Tests indicate that most spinlocks are held for
|
|
* less than 2^12 cycles
|
|
* Time is measured based on a counter that runs at the same rate as the TSC,
|
|
* refer SDM volume 3b section 21.6.13 & 22.1.3.
|
|
*/
|
|
static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
|
|
module_param(ple_gap, uint, 0444);
|
|
|
|
static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
|
|
module_param(ple_window, uint, 0444);
|
|
|
|
/* Default doubles per-vcpu window every exit. */
|
|
static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
|
|
module_param(ple_window_grow, uint, 0444);
|
|
|
|
/* Default resets per-vcpu window every exit to ple_window. */
|
|
static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
|
|
module_param(ple_window_shrink, uint, 0444);
|
|
|
|
/* Default is to compute the maximum so we can never overflow. */
|
|
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
|
|
module_param(ple_window_max, uint, 0444);
|
|
|
|
/* Default is SYSTEM mode, 1 for host-guest mode */
|
|
int __read_mostly pt_mode = PT_MODE_SYSTEM;
|
|
module_param(pt_mode, int, S_IRUGO);
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
|
|
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
|
|
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
|
|
|
|
/* Storage for pre module init parameter parsing */
|
|
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
|
|
|
|
static const struct {
|
|
const char *option;
|
|
bool for_parse;
|
|
} vmentry_l1d_param[] = {
|
|
[VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
|
|
[VMENTER_L1D_FLUSH_NEVER] = {"never", true},
|
|
[VMENTER_L1D_FLUSH_COND] = {"cond", true},
|
|
[VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
|
|
[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
|
|
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
|
|
};
|
|
|
|
#define L1D_CACHE_ORDER 4
|
|
static void *vmx_l1d_flush_pages;
|
|
|
|
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
|
|
{
|
|
struct page *page;
|
|
unsigned int i;
|
|
|
|
if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
|
|
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
|
|
return 0;
|
|
}
|
|
|
|
if (!enable_ept) {
|
|
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
|
|
return 0;
|
|
}
|
|
|
|
if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
|
|
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
|
|
return 0;
|
|
}
|
|
|
|
/* If set to auto use the default l1tf mitigation method */
|
|
if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
|
|
switch (l1tf_mitigation) {
|
|
case L1TF_MITIGATION_OFF:
|
|
l1tf = VMENTER_L1D_FLUSH_NEVER;
|
|
break;
|
|
case L1TF_MITIGATION_FLUSH_NOWARN:
|
|
case L1TF_MITIGATION_FLUSH:
|
|
case L1TF_MITIGATION_FLUSH_NOSMT:
|
|
l1tf = VMENTER_L1D_FLUSH_COND;
|
|
break;
|
|
case L1TF_MITIGATION_FULL:
|
|
case L1TF_MITIGATION_FULL_FORCE:
|
|
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
|
|
break;
|
|
}
|
|
} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
|
|
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
|
|
}
|
|
|
|
if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
|
|
!boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
|
|
/*
|
|
* This allocation for vmx_l1d_flush_pages is not tied to a VM
|
|
* lifetime and so should not be charged to a memcg.
|
|
*/
|
|
page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
vmx_l1d_flush_pages = page_address(page);
|
|
|
|
/*
|
|
* Initialize each page with a different pattern in
|
|
* order to protect against KSM in the nested
|
|
* virtualization case.
|
|
*/
|
|
for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
|
|
memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
|
|
PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
l1tf_vmx_mitigation = l1tf;
|
|
|
|
if (l1tf != VMENTER_L1D_FLUSH_NEVER)
|
|
static_branch_enable(&vmx_l1d_should_flush);
|
|
else
|
|
static_branch_disable(&vmx_l1d_should_flush);
|
|
|
|
if (l1tf == VMENTER_L1D_FLUSH_COND)
|
|
static_branch_enable(&vmx_l1d_flush_cond);
|
|
else
|
|
static_branch_disable(&vmx_l1d_flush_cond);
|
|
return 0;
|
|
}
|
|
|
|
static int vmentry_l1d_flush_parse(const char *s)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (s) {
|
|
for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
|
|
if (vmentry_l1d_param[i].for_parse &&
|
|
sysfs_streq(s, vmentry_l1d_param[i].option))
|
|
return i;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
|
|
{
|
|
int l1tf, ret;
|
|
|
|
l1tf = vmentry_l1d_flush_parse(s);
|
|
if (l1tf < 0)
|
|
return l1tf;
|
|
|
|
if (!boot_cpu_has(X86_BUG_L1TF))
|
|
return 0;
|
|
|
|
/*
|
|
* Has vmx_init() run already? If not then this is the pre init
|
|
* parameter parsing. In that case just store the value and let
|
|
* vmx_init() do the proper setup after enable_ept has been
|
|
* established.
|
|
*/
|
|
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
|
|
vmentry_l1d_flush_param = l1tf;
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&vmx_l1d_flush_mutex);
|
|
ret = vmx_setup_l1d_flush(l1tf);
|
|
mutex_unlock(&vmx_l1d_flush_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
|
|
{
|
|
if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
|
|
return sysfs_emit(s, "???\n");
|
|
|
|
return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
|
|
}
|
|
|
|
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
|
|
{
|
|
u64 msr;
|
|
|
|
if (!vmx->disable_fb_clear)
|
|
return;
|
|
|
|
msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
|
|
msr |= FB_CLEAR_DIS;
|
|
native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
|
|
/* Cache the MSR value to avoid reading it later */
|
|
vmx->msr_ia32_mcu_opt_ctrl = msr;
|
|
}
|
|
|
|
static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
|
|
{
|
|
if (!vmx->disable_fb_clear)
|
|
return;
|
|
|
|
vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
|
|
native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
|
|
}
|
|
|
|
static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
|
|
{
|
|
vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
|
|
!boot_cpu_has_bug(X86_BUG_MDS) &&
|
|
!boot_cpu_has_bug(X86_BUG_TAA);
|
|
|
|
/*
|
|
* If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
|
|
* at VMEntry. Skip the MSR read/write when a guest has no use case to
|
|
* execute VERW.
|
|
*/
|
|
if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
|
|
((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
|
|
(vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
|
|
(vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
|
|
(vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
|
|
(vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
|
|
vmx->disable_fb_clear = false;
|
|
}
|
|
|
|
static const struct kernel_param_ops vmentry_l1d_flush_ops = {
|
|
.set = vmentry_l1d_flush_set,
|
|
.get = vmentry_l1d_flush_get,
|
|
};
|
|
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
|
|
|
|
static u32 vmx_segment_access_rights(struct kvm_segment *var);
|
|
|
|
void vmx_vmexit(void);
|
|
|
|
#define vmx_insn_failed(fmt...) \
|
|
do { \
|
|
WARN_ONCE(1, fmt); \
|
|
pr_warn_ratelimited(fmt); \
|
|
} while (0)
|
|
|
|
noinline void vmread_error(unsigned long field)
|
|
{
|
|
vmx_insn_failed("vmread failed: field=%lx\n", field);
|
|
}
|
|
|
|
#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
|
|
noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
|
|
{
|
|
if (fault) {
|
|
kvm_spurious_fault();
|
|
} else {
|
|
instrumentation_begin();
|
|
vmread_error(field);
|
|
instrumentation_end();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
noinline void vmwrite_error(unsigned long field, unsigned long value)
|
|
{
|
|
vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
|
|
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
}
|
|
|
|
noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
|
|
{
|
|
vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
|
|
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
}
|
|
|
|
noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
|
|
{
|
|
vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
|
|
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
}
|
|
|
|
noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
|
|
{
|
|
vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
|
|
ext, vpid, gva);
|
|
}
|
|
|
|
noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
|
|
{
|
|
vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
|
|
ext, eptp, gpa);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
|
|
DEFINE_PER_CPU(struct vmcs *, current_vmcs);
|
|
/*
|
|
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
|
|
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
|
|
*/
|
|
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
|
|
|
|
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
|
|
static DEFINE_SPINLOCK(vmx_vpid_lock);
|
|
|
|
struct vmcs_config vmcs_config __ro_after_init;
|
|
struct vmx_capability vmx_capability __ro_after_init;
|
|
|
|
#define VMX_SEGMENT_FIELD(seg) \
|
|
[VCPU_SREG_##seg] = { \
|
|
.selector = GUEST_##seg##_SELECTOR, \
|
|
.base = GUEST_##seg##_BASE, \
|
|
.limit = GUEST_##seg##_LIMIT, \
|
|
.ar_bytes = GUEST_##seg##_AR_BYTES, \
|
|
}
|
|
|
|
static const struct kvm_vmx_segment_field {
|
|
unsigned selector;
|
|
unsigned base;
|
|
unsigned limit;
|
|
unsigned ar_bytes;
|
|
} kvm_vmx_segment_fields[] = {
|
|
VMX_SEGMENT_FIELD(CS),
|
|
VMX_SEGMENT_FIELD(DS),
|
|
VMX_SEGMENT_FIELD(ES),
|
|
VMX_SEGMENT_FIELD(FS),
|
|
VMX_SEGMENT_FIELD(GS),
|
|
VMX_SEGMENT_FIELD(SS),
|
|
VMX_SEGMENT_FIELD(TR),
|
|
VMX_SEGMENT_FIELD(LDTR),
|
|
};
|
|
|
|
static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
|
|
{
|
|
vmx->segment_cache.bitmask = 0;
|
|
}
|
|
|
|
static unsigned long host_idt_base;
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
static struct kvm_x86_ops vmx_x86_ops __initdata;
|
|
|
|
static bool __read_mostly enlightened_vmcs = true;
|
|
module_param(enlightened_vmcs, bool, 0444);
|
|
|
|
static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct hv_enlightened_vmcs *evmcs;
|
|
struct hv_partition_assist_pg **p_hv_pa_pg =
|
|
&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
|
|
/*
|
|
* Synthetic VM-Exit is not enabled in current code and so All
|
|
* evmcs in singe VM shares same assist page.
|
|
*/
|
|
if (!*p_hv_pa_pg)
|
|
*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!*p_hv_pa_pg)
|
|
return -ENOMEM;
|
|
|
|
evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
|
|
|
|
evmcs->partition_assist_page =
|
|
__pa(*p_hv_pa_pg);
|
|
evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
|
|
evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init void hv_init_evmcs(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (!enlightened_vmcs)
|
|
return;
|
|
|
|
/*
|
|
* Enlightened VMCS usage should be recommended and the host needs
|
|
* to support eVMCS v1 or above.
|
|
*/
|
|
if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
|
|
(ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
|
|
KVM_EVMCS_VERSION) {
|
|
|
|
/* Check that we have assist pages on all online CPUs */
|
|
for_each_online_cpu(cpu) {
|
|
if (!hv_get_vp_assist_page(cpu)) {
|
|
enlightened_vmcs = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (enlightened_vmcs) {
|
|
pr_info("Using Hyper-V Enlightened VMCS\n");
|
|
static_branch_enable(&__kvm_is_using_evmcs);
|
|
}
|
|
|
|
if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
|
|
vmx_x86_ops.enable_l2_tlb_flush
|
|
= hv_enable_l2_tlb_flush;
|
|
|
|
} else {
|
|
enlightened_vmcs = false;
|
|
}
|
|
}
|
|
|
|
static void hv_reset_evmcs(void)
|
|
{
|
|
struct hv_vp_assist_page *vp_ap;
|
|
|
|
if (!kvm_is_using_evmcs())
|
|
return;
|
|
|
|
/*
|
|
* KVM should enable eVMCS if and only if all CPUs have a VP assist
|
|
* page, and should reject CPU onlining if eVMCS is enabled the CPU
|
|
* doesn't have a VP assist page allocated.
|
|
*/
|
|
vp_ap = hv_get_vp_assist_page(smp_processor_id());
|
|
if (WARN_ON_ONCE(!vp_ap))
|
|
return;
|
|
|
|
/*
|
|
* Reset everything to support using non-enlightened VMCS access later
|
|
* (e.g. when we reload the module with enlightened_vmcs=0)
|
|
*/
|
|
vp_ap->nested_control.features.directhypercall = 0;
|
|
vp_ap->current_nested_vmcs = 0;
|
|
vp_ap->enlighten_vmentry = 0;
|
|
}
|
|
|
|
#else /* IS_ENABLED(CONFIG_HYPERV) */
|
|
static void hv_init_evmcs(void) {}
|
|
static void hv_reset_evmcs(void) {}
|
|
#endif /* IS_ENABLED(CONFIG_HYPERV) */
|
|
|
|
/*
|
|
* Comment's format: document - errata name - stepping - processor name.
|
|
* Refer from
|
|
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
|
|
*/
|
|
static u32 vmx_preemption_cpu_tfms[] = {
|
|
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
|
|
0x000206E6,
|
|
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
|
|
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
|
|
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
|
|
0x00020652,
|
|
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
|
|
0x00020655,
|
|
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
|
|
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
|
|
/*
|
|
* 320767.pdf - AAP86 - B1 -
|
|
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
|
|
*/
|
|
0x000106E5,
|
|
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
|
|
0x000106A0,
|
|
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
|
|
0x000106A1,
|
|
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
|
|
0x000106A4,
|
|
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
|
|
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
|
|
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
|
|
0x000106A5,
|
|
/* Xeon E3-1220 V2 */
|
|
0x000306A8,
|
|
};
|
|
|
|
static inline bool cpu_has_broken_vmx_preemption_timer(void)
|
|
{
|
|
u32 eax = cpuid_eax(0x00000001), i;
|
|
|
|
/* Clear the reserved bits */
|
|
eax &= ~(0x3U << 14 | 0xfU << 28);
|
|
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
|
|
if (eax == vmx_preemption_cpu_tfms[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
|
|
{
|
|
return flexpriority_enabled && lapic_in_kernel(vcpu);
|
|
}
|
|
|
|
static int possible_passthrough_msr_slot(u32 msr)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
|
|
if (vmx_possible_passthrough_msrs[i] == msr)
|
|
return i;
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static bool is_valid_passthrough_msr(u32 msr)
|
|
{
|
|
bool r;
|
|
|
|
switch (msr) {
|
|
case 0x800 ... 0x8ff:
|
|
/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
|
|
return true;
|
|
case MSR_IA32_RTIT_STATUS:
|
|
case MSR_IA32_RTIT_OUTPUT_BASE:
|
|
case MSR_IA32_RTIT_OUTPUT_MASK:
|
|
case MSR_IA32_RTIT_CR3_MATCH:
|
|
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
|
|
/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
|
|
case MSR_LBR_SELECT:
|
|
case MSR_LBR_TOS:
|
|
case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
|
|
case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
|
|
case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
|
|
case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
|
|
case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
|
|
/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
|
|
return true;
|
|
}
|
|
|
|
r = possible_passthrough_msr_slot(msr) != -ENOENT;
|
|
|
|
WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
|
|
|
|
return r;
|
|
}
|
|
|
|
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
int i;
|
|
|
|
i = kvm_find_user_return_msr(msr);
|
|
if (i >= 0)
|
|
return &vmx->guest_uret_msrs[i];
|
|
return NULL;
|
|
}
|
|
|
|
static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
|
|
struct vmx_uret_msr *msr, u64 data)
|
|
{
|
|
unsigned int slot = msr - vmx->guest_uret_msrs;
|
|
int ret = 0;
|
|
|
|
if (msr->load_into_hardware) {
|
|
preempt_disable();
|
|
ret = kvm_set_user_return_msr(slot, data, msr->mask);
|
|
preempt_enable();
|
|
}
|
|
if (!ret)
|
|
msr->data = data;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
|
|
*
|
|
* Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
|
|
* atomically track post-VMXON state, e.g. this may be called in NMI context.
|
|
* Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
|
|
* faults are guaranteed to be due to the !post-VMXON check unless the CPU is
|
|
* magically in RM, VM86, compat mode, or at CPL>0.
|
|
*/
|
|
static int kvm_cpu_vmxoff(void)
|
|
{
|
|
asm_volatile_goto("1: vmxoff\n\t"
|
|
_ASM_EXTABLE(1b, %l[fault])
|
|
::: "cc", "memory" : fault);
|
|
|
|
cr4_clear_bits(X86_CR4_VMXE);
|
|
return 0;
|
|
|
|
fault:
|
|
cr4_clear_bits(X86_CR4_VMXE);
|
|
return -EIO;
|
|
}
|
|
|
|
static void vmx_emergency_disable(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct loaded_vmcs *v;
|
|
|
|
kvm_rebooting = true;
|
|
|
|
/*
|
|
* Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
|
|
* set in task context. If this races with VMX is disabled by an NMI,
|
|
* VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
|
|
* kvm_rebooting set.
|
|
*/
|
|
if (!(__read_cr4() & X86_CR4_VMXE))
|
|
return;
|
|
|
|
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
|
|
loaded_vmcss_on_cpu_link)
|
|
vmcs_clear(v->vmcs);
|
|
|
|
kvm_cpu_vmxoff();
|
|
}
|
|
|
|
static void __loaded_vmcs_clear(void *arg)
|
|
{
|
|
struct loaded_vmcs *loaded_vmcs = arg;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (loaded_vmcs->cpu != cpu)
|
|
return; /* vcpu migration can race with cpu offline */
|
|
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
|
|
per_cpu(current_vmcs, cpu) = NULL;
|
|
|
|
vmcs_clear(loaded_vmcs->vmcs);
|
|
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
|
|
vmcs_clear(loaded_vmcs->shadow_vmcs);
|
|
|
|
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
|
|
|
|
/*
|
|
* Ensure all writes to loaded_vmcs, including deleting it from its
|
|
* current percpu list, complete before setting loaded_vmcs->cpu to
|
|
* -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
|
|
* and add loaded_vmcs to its percpu list before it's deleted from this
|
|
* cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
|
|
*/
|
|
smp_wmb();
|
|
|
|
loaded_vmcs->cpu = -1;
|
|
loaded_vmcs->launched = 0;
|
|
}
|
|
|
|
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
|
|
{
|
|
int cpu = loaded_vmcs->cpu;
|
|
|
|
if (cpu != -1)
|
|
smp_call_function_single(cpu,
|
|
__loaded_vmcs_clear, loaded_vmcs, 1);
|
|
}
|
|
|
|
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
|
|
unsigned field)
|
|
{
|
|
bool ret;
|
|
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
|
|
|
|
if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
|
|
kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
|
|
vmx->segment_cache.bitmask = 0;
|
|
}
|
|
ret = vmx->segment_cache.bitmask & mask;
|
|
vmx->segment_cache.bitmask |= mask;
|
|
return ret;
|
|
}
|
|
|
|
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
|
|
{
|
|
u16 *p = &vmx->segment_cache.seg[seg].selector;
|
|
|
|
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
|
|
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
|
|
return *p;
|
|
}
|
|
|
|
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
|
|
{
|
|
ulong *p = &vmx->segment_cache.seg[seg].base;
|
|
|
|
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
|
|
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
|
|
return *p;
|
|
}
|
|
|
|
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
|
|
{
|
|
u32 *p = &vmx->segment_cache.seg[seg].limit;
|
|
|
|
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
|
|
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
|
|
return *p;
|
|
}
|
|
|
|
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
|
|
{
|
|
u32 *p = &vmx->segment_cache.seg[seg].ar;
|
|
|
|
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
|
|
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
|
|
return *p;
|
|
}
|
|
|
|
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eb;
|
|
|
|
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
|
|
(1u << DB_VECTOR) | (1u << AC_VECTOR);
|
|
/*
|
|
* Guest access to VMware backdoor ports could legitimately
|
|
* trigger #GP because of TSS I/O permission bitmap.
|
|
* We intercept those #GP and allow access to them anyway
|
|
* as VMware does.
|
|
*/
|
|
if (enable_vmware_backdoor)
|
|
eb |= (1u << GP_VECTOR);
|
|
if ((vcpu->guest_debug &
|
|
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
|
|
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
|
|
eb |= 1u << BP_VECTOR;
|
|
if (to_vmx(vcpu)->rmode.vm86_active)
|
|
eb = ~0;
|
|
if (!vmx_need_pf_intercept(vcpu))
|
|
eb &= ~(1u << PF_VECTOR);
|
|
|
|
/* When we are running a nested L2 guest and L1 specified for it a
|
|
* certain exception bitmap, we must trap the same exceptions and pass
|
|
* them to L1. When running L2, we will only handle the exceptions
|
|
* specified above if L1 did not want them.
|
|
*/
|
|
if (is_guest_mode(vcpu))
|
|
eb |= get_vmcs12(vcpu)->exception_bitmap;
|
|
else {
|
|
int mask = 0, match = 0;
|
|
|
|
if (enable_ept && (eb & (1u << PF_VECTOR))) {
|
|
/*
|
|
* If EPT is enabled, #PF is currently only intercepted
|
|
* if MAXPHYADDR is smaller on the guest than on the
|
|
* host. In that case we only care about present,
|
|
* non-reserved faults. For vmcs02, however, PFEC_MASK
|
|
* and PFEC_MATCH are set in prepare_vmcs02_rare.
|
|
*/
|
|
mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
|
|
match = PFERR_PRESENT_MASK;
|
|
}
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
|
|
}
|
|
|
|
/*
|
|
* Disabling xfd interception indicates that dynamic xfeatures
|
|
* might be used in the guest. Always trap #NM in this case
|
|
* to save guest xfd_err timely.
|
|
*/
|
|
if (vcpu->arch.xfd_no_write_intercept)
|
|
eb |= (1u << NM_VECTOR);
|
|
|
|
vmcs_write32(EXCEPTION_BITMAP, eb);
|
|
}
|
|
|
|
/*
|
|
* Check if MSR is intercepted for currently loaded MSR bitmap.
|
|
*/
|
|
static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
|
|
return true;
|
|
|
|
return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
|
|
}
|
|
|
|
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
|
|
{
|
|
unsigned int flags = 0;
|
|
|
|
if (vmx->loaded_vmcs->launched)
|
|
flags |= VMX_RUN_VMRESUME;
|
|
|
|
/*
|
|
* If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
|
|
* to change it directly without causing a vmexit. In that case read
|
|
* it after vmexit and store it in vmx->spec_ctrl.
|
|
*/
|
|
if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
|
|
flags |= VMX_RUN_SAVE_SPEC_CTRL;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
|
|
unsigned long entry, unsigned long exit)
|
|
{
|
|
vm_entry_controls_clearbit(vmx, entry);
|
|
vm_exit_controls_clearbit(vmx, exit);
|
|
}
|
|
|
|
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < m->nr; ++i) {
|
|
if (m->val[i].index == msr)
|
|
return i;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
|
|
{
|
|
int i;
|
|
struct msr_autoload *m = &vmx->msr_autoload;
|
|
|
|
switch (msr) {
|
|
case MSR_EFER:
|
|
if (cpu_has_load_ia32_efer()) {
|
|
clear_atomic_switch_msr_special(vmx,
|
|
VM_ENTRY_LOAD_IA32_EFER,
|
|
VM_EXIT_LOAD_IA32_EFER);
|
|
return;
|
|
}
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
if (cpu_has_load_perf_global_ctrl()) {
|
|
clear_atomic_switch_msr_special(vmx,
|
|
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
|
|
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
|
|
if (i < 0)
|
|
goto skip_guest;
|
|
--m->guest.nr;
|
|
m->guest.val[i] = m->guest.val[m->guest.nr];
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
|
|
|
|
skip_guest:
|
|
i = vmx_find_loadstore_msr_slot(&m->host, msr);
|
|
if (i < 0)
|
|
return;
|
|
|
|
--m->host.nr;
|
|
m->host.val[i] = m->host.val[m->host.nr];
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
|
|
}
|
|
|
|
static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
|
|
unsigned long entry, unsigned long exit,
|
|
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
|
|
u64 guest_val, u64 host_val)
|
|
{
|
|
vmcs_write64(guest_val_vmcs, guest_val);
|
|
if (host_val_vmcs != HOST_IA32_EFER)
|
|
vmcs_write64(host_val_vmcs, host_val);
|
|
vm_entry_controls_setbit(vmx, entry);
|
|
vm_exit_controls_setbit(vmx, exit);
|
|
}
|
|
|
|
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
|
|
u64 guest_val, u64 host_val, bool entry_only)
|
|
{
|
|
int i, j = 0;
|
|
struct msr_autoload *m = &vmx->msr_autoload;
|
|
|
|
switch (msr) {
|
|
case MSR_EFER:
|
|
if (cpu_has_load_ia32_efer()) {
|
|
add_atomic_switch_msr_special(vmx,
|
|
VM_ENTRY_LOAD_IA32_EFER,
|
|
VM_EXIT_LOAD_IA32_EFER,
|
|
GUEST_IA32_EFER,
|
|
HOST_IA32_EFER,
|
|
guest_val, host_val);
|
|
return;
|
|
}
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
if (cpu_has_load_perf_global_ctrl()) {
|
|
add_atomic_switch_msr_special(vmx,
|
|
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
|
|
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
|
|
GUEST_IA32_PERF_GLOBAL_CTRL,
|
|
HOST_IA32_PERF_GLOBAL_CTRL,
|
|
guest_val, host_val);
|
|
return;
|
|
}
|
|
break;
|
|
case MSR_IA32_PEBS_ENABLE:
|
|
/* PEBS needs a quiescent period after being disabled (to write
|
|
* a record). Disabling PEBS through VMX MSR swapping doesn't
|
|
* provide that period, so a CPU could write host's record into
|
|
* guest's memory.
|
|
*/
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
|
|
}
|
|
|
|
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
|
|
if (!entry_only)
|
|
j = vmx_find_loadstore_msr_slot(&m->host, msr);
|
|
|
|
if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
|
|
(j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
|
|
printk_once(KERN_WARNING "Not enough msr switch entries. "
|
|
"Can't add msr %x\n", msr);
|
|
return;
|
|
}
|
|
if (i < 0) {
|
|
i = m->guest.nr++;
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
|
|
}
|
|
m->guest.val[i].index = msr;
|
|
m->guest.val[i].value = guest_val;
|
|
|
|
if (entry_only)
|
|
return;
|
|
|
|
if (j < 0) {
|
|
j = m->host.nr++;
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
|
|
}
|
|
m->host.val[j].index = msr;
|
|
m->host.val[j].value = host_val;
|
|
}
|
|
|
|
static bool update_transition_efer(struct vcpu_vmx *vmx)
|
|
{
|
|
u64 guest_efer = vmx->vcpu.arch.efer;
|
|
u64 ignore_bits = 0;
|
|
int i;
|
|
|
|
/* Shadow paging assumes NX to be available. */
|
|
if (!enable_ept)
|
|
guest_efer |= EFER_NX;
|
|
|
|
/*
|
|
* LMA and LME handled by hardware; SCE meaningless outside long mode.
|
|
*/
|
|
ignore_bits |= EFER_SCE;
|
|
#ifdef CONFIG_X86_64
|
|
ignore_bits |= EFER_LMA | EFER_LME;
|
|
/* SCE is meaningful only in long mode on Intel */
|
|
if (guest_efer & EFER_LMA)
|
|
ignore_bits &= ~(u64)EFER_SCE;
|
|
#endif
|
|
|
|
/*
|
|
* On EPT, we can't emulate NX, so we must switch EFER atomically.
|
|
* On CPUs that support "load IA32_EFER", always switch EFER
|
|
* atomically, since it's faster than switching it manually.
|
|
*/
|
|
if (cpu_has_load_ia32_efer() ||
|
|
(enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
|
|
if (!(guest_efer & EFER_LMA))
|
|
guest_efer &= ~EFER_LME;
|
|
if (guest_efer != host_efer)
|
|
add_atomic_switch_msr(vmx, MSR_EFER,
|
|
guest_efer, host_efer, false);
|
|
else
|
|
clear_atomic_switch_msr(vmx, MSR_EFER);
|
|
return false;
|
|
}
|
|
|
|
i = kvm_find_user_return_msr(MSR_EFER);
|
|
if (i < 0)
|
|
return false;
|
|
|
|
clear_atomic_switch_msr(vmx, MSR_EFER);
|
|
|
|
guest_efer &= ~ignore_bits;
|
|
guest_efer |= host_efer & ignore_bits;
|
|
|
|
vmx->guest_uret_msrs[i].data = guest_efer;
|
|
vmx->guest_uret_msrs[i].mask = ~ignore_bits;
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* On 32-bit kernels, VM exits still load the FS and GS bases from the
|
|
* VMCS rather than the segment table. KVM uses this helper to figure
|
|
* out the current bases to poke them into the VMCS before entry.
|
|
*/
|
|
static unsigned long segment_base(u16 selector)
|
|
{
|
|
struct desc_struct *table;
|
|
unsigned long v;
|
|
|
|
if (!(selector & ~SEGMENT_RPL_MASK))
|
|
return 0;
|
|
|
|
table = get_current_gdt_ro();
|
|
|
|
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
|
|
u16 ldt_selector = kvm_read_ldt();
|
|
|
|
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
|
|
return 0;
|
|
|
|
table = (struct desc_struct *)segment_base(ldt_selector);
|
|
}
|
|
v = get_desc_base(&table[selector >> 3]);
|
|
return v;
|
|
}
|
|
#endif
|
|
|
|
static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
|
|
{
|
|
return vmx_pt_mode_is_host_guest() &&
|
|
!(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
|
|
}
|
|
|
|
static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
|
|
{
|
|
/* The base must be 128-byte aligned and a legal physical address. */
|
|
return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
|
|
}
|
|
|
|
static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
|
|
{
|
|
u32 i;
|
|
|
|
wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
|
|
wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
|
|
wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
|
|
wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
|
|
for (i = 0; i < addr_range; i++) {
|
|
wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
|
|
wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
|
|
}
|
|
}
|
|
|
|
static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
|
|
{
|
|
u32 i;
|
|
|
|
rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
|
|
rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
|
|
rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
|
|
rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
|
|
for (i = 0; i < addr_range; i++) {
|
|
rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
|
|
rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
|
|
}
|
|
}
|
|
|
|
static void pt_guest_enter(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx_pt_mode_is_system())
|
|
return;
|
|
|
|
/*
|
|
* GUEST_IA32_RTIT_CTL is already set in the VMCS.
|
|
* Save host state before VM entry.
|
|
*/
|
|
rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
|
|
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
|
|
wrmsrl(MSR_IA32_RTIT_CTL, 0);
|
|
pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
|
|
pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
|
|
}
|
|
}
|
|
|
|
static void pt_guest_exit(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx_pt_mode_is_system())
|
|
return;
|
|
|
|
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
|
|
pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
|
|
pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
|
|
}
|
|
|
|
/*
|
|
* KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
|
|
* i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
|
|
*/
|
|
if (vmx->pt_desc.host.ctl)
|
|
wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
|
|
}
|
|
|
|
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
|
|
unsigned long fs_base, unsigned long gs_base)
|
|
{
|
|
if (unlikely(fs_sel != host->fs_sel)) {
|
|
if (!(fs_sel & 7))
|
|
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
|
|
else
|
|
vmcs_write16(HOST_FS_SELECTOR, 0);
|
|
host->fs_sel = fs_sel;
|
|
}
|
|
if (unlikely(gs_sel != host->gs_sel)) {
|
|
if (!(gs_sel & 7))
|
|
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
|
|
else
|
|
vmcs_write16(HOST_GS_SELECTOR, 0);
|
|
host->gs_sel = gs_sel;
|
|
}
|
|
if (unlikely(fs_base != host->fs_base)) {
|
|
vmcs_writel(HOST_FS_BASE, fs_base);
|
|
host->fs_base = fs_base;
|
|
}
|
|
if (unlikely(gs_base != host->gs_base)) {
|
|
vmcs_writel(HOST_GS_BASE, gs_base);
|
|
host->gs_base = gs_base;
|
|
}
|
|
}
|
|
|
|
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmcs_host_state *host_state;
|
|
#ifdef CONFIG_X86_64
|
|
int cpu = raw_smp_processor_id();
|
|
#endif
|
|
unsigned long fs_base, gs_base;
|
|
u16 fs_sel, gs_sel;
|
|
int i;
|
|
|
|
vmx->req_immediate_exit = false;
|
|
|
|
/*
|
|
* Note that guest MSRs to be saved/restored can also be changed
|
|
* when guest state is loaded. This happens when guest transitions
|
|
* to/from long-mode by setting MSR_EFER.LMA.
|
|
*/
|
|
if (!vmx->guest_uret_msrs_loaded) {
|
|
vmx->guest_uret_msrs_loaded = true;
|
|
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
|
|
if (!vmx->guest_uret_msrs[i].load_into_hardware)
|
|
continue;
|
|
|
|
kvm_set_user_return_msr(i,
|
|
vmx->guest_uret_msrs[i].data,
|
|
vmx->guest_uret_msrs[i].mask);
|
|
}
|
|
}
|
|
|
|
if (vmx->nested.need_vmcs12_to_shadow_sync)
|
|
nested_sync_vmcs12_to_shadow(vcpu);
|
|
|
|
if (vmx->guest_state_loaded)
|
|
return;
|
|
|
|
host_state = &vmx->loaded_vmcs->host_state;
|
|
|
|
/*
|
|
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
|
|
* allow segment selectors with cpl > 0 or ti == 1.
|
|
*/
|
|
host_state->ldt_sel = kvm_read_ldt();
|
|
|
|
#ifdef CONFIG_X86_64
|
|
savesegment(ds, host_state->ds_sel);
|
|
savesegment(es, host_state->es_sel);
|
|
|
|
gs_base = cpu_kernelmode_gs_base(cpu);
|
|
if (likely(is_64bit_mm(current->mm))) {
|
|
current_save_fsgs();
|
|
fs_sel = current->thread.fsindex;
|
|
gs_sel = current->thread.gsindex;
|
|
fs_base = current->thread.fsbase;
|
|
vmx->msr_host_kernel_gs_base = current->thread.gsbase;
|
|
} else {
|
|
savesegment(fs, fs_sel);
|
|
savesegment(gs, gs_sel);
|
|
fs_base = read_msr(MSR_FS_BASE);
|
|
vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
|
|
}
|
|
|
|
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
|
|
#else
|
|
savesegment(fs, fs_sel);
|
|
savesegment(gs, gs_sel);
|
|
fs_base = segment_base(fs_sel);
|
|
gs_base = segment_base(gs_sel);
|
|
#endif
|
|
|
|
vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
|
|
vmx->guest_state_loaded = true;
|
|
}
|
|
|
|
static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
|
|
{
|
|
struct vmcs_host_state *host_state;
|
|
|
|
if (!vmx->guest_state_loaded)
|
|
return;
|
|
|
|
host_state = &vmx->loaded_vmcs->host_state;
|
|
|
|
++vmx->vcpu.stat.host_state_reload;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
|
|
#endif
|
|
if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
|
|
kvm_load_ldt(host_state->ldt_sel);
|
|
#ifdef CONFIG_X86_64
|
|
load_gs_index(host_state->gs_sel);
|
|
#else
|
|
loadsegment(gs, host_state->gs_sel);
|
|
#endif
|
|
}
|
|
if (host_state->fs_sel & 7)
|
|
loadsegment(fs, host_state->fs_sel);
|
|
#ifdef CONFIG_X86_64
|
|
if (unlikely(host_state->ds_sel | host_state->es_sel)) {
|
|
loadsegment(ds, host_state->ds_sel);
|
|
loadsegment(es, host_state->es_sel);
|
|
}
|
|
#endif
|
|
invalidate_tss_limit();
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
|
|
#endif
|
|
load_fixmap_gdt(raw_smp_processor_id());
|
|
vmx->guest_state_loaded = false;
|
|
vmx->guest_uret_msrs_loaded = false;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
|
|
{
|
|
preempt_disable();
|
|
if (vmx->guest_state_loaded)
|
|
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
|
|
preempt_enable();
|
|
return vmx->msr_guest_kernel_gs_base;
|
|
}
|
|
|
|
static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
|
|
{
|
|
preempt_disable();
|
|
if (vmx->guest_state_loaded)
|
|
wrmsrl(MSR_KERNEL_GS_BASE, data);
|
|
preempt_enable();
|
|
vmx->msr_guest_kernel_gs_base = data;
|
|
}
|
|
#endif
|
|
|
|
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
|
|
struct loaded_vmcs *buddy)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
|
|
struct vmcs *prev;
|
|
|
|
if (!already_loaded) {
|
|
loaded_vmcs_clear(vmx->loaded_vmcs);
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
|
|
* this cpu's percpu list, otherwise it may not yet be deleted
|
|
* from its previous cpu's percpu list. Pairs with the
|
|
* smb_wmb() in __loaded_vmcs_clear().
|
|
*/
|
|
smp_rmb();
|
|
|
|
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
|
|
&per_cpu(loaded_vmcss_on_cpu, cpu));
|
|
local_irq_enable();
|
|
}
|
|
|
|
prev = per_cpu(current_vmcs, cpu);
|
|
if (prev != vmx->loaded_vmcs->vmcs) {
|
|
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
|
|
vmcs_load(vmx->loaded_vmcs->vmcs);
|
|
|
|
/*
|
|
* No indirect branch prediction barrier needed when switching
|
|
* the active VMCS within a vCPU, unless IBRS is advertised to
|
|
* the vCPU. To minimize the number of IBPBs executed, KVM
|
|
* performs IBPB on nested VM-Exit (a single nested transition
|
|
* may switch the active VMCS multiple times).
|
|
*/
|
|
if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
|
|
indirect_branch_prediction_barrier();
|
|
}
|
|
|
|
if (!already_loaded) {
|
|
void *gdt = get_current_gdt_ro();
|
|
|
|
/*
|
|
* Flush all EPTP/VPID contexts, the new pCPU may have stale
|
|
* TLB entries from its previous association with the vCPU.
|
|
*/
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
|
|
|
|
/*
|
|
* Linux uses per-cpu TSS and GDT, so set these when switching
|
|
* processors. See 22.2.4.
|
|
*/
|
|
vmcs_writel(HOST_TR_BASE,
|
|
(unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
|
|
|
|
if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
|
|
/* 22.2.3 */
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP,
|
|
(unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
}
|
|
|
|
vmx->loaded_vmcs->cpu = cpu;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
|
|
* vcpu mutex is already taken.
|
|
*/
|
|
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
|
|
|
|
vmx_vcpu_pi_load(vcpu, cpu);
|
|
|
|
vmx->host_debugctlmsr = get_debugctlmsr();
|
|
}
|
|
|
|
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_vcpu_pi_put(vcpu);
|
|
|
|
vmx_prepare_switch_to_host(to_vmx(vcpu));
|
|
}
|
|
|
|
bool vmx_emulation_required(struct kvm_vcpu *vcpu)
|
|
{
|
|
return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
|
|
}
|
|
|
|
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long rflags, save_rflags;
|
|
|
|
if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
|
|
rflags = vmcs_readl(GUEST_RFLAGS);
|
|
if (vmx->rmode.vm86_active) {
|
|
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
|
|
save_rflags = vmx->rmode.save_rflags;
|
|
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
|
|
}
|
|
vmx->rflags = rflags;
|
|
}
|
|
return vmx->rflags;
|
|
}
|
|
|
|
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long old_rflags;
|
|
|
|
/*
|
|
* Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
|
|
* is an unrestricted guest in order to mark L2 as needing emulation
|
|
* if L1 runs L2 as a restricted guest.
|
|
*/
|
|
if (is_unrestricted_guest(vcpu)) {
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
|
|
vmx->rflags = rflags;
|
|
vmcs_writel(GUEST_RFLAGS, rflags);
|
|
return;
|
|
}
|
|
|
|
old_rflags = vmx_get_rflags(vcpu);
|
|
vmx->rflags = rflags;
|
|
if (vmx->rmode.vm86_active) {
|
|
vmx->rmode.save_rflags = rflags;
|
|
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
}
|
|
vmcs_writel(GUEST_RFLAGS, rflags);
|
|
|
|
if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
|
|
vmx->emulation_required = vmx_emulation_required(vcpu);
|
|
}
|
|
|
|
static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
|
|
}
|
|
|
|
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
int ret = 0;
|
|
|
|
if (interruptibility & GUEST_INTR_STATE_STI)
|
|
ret |= KVM_X86_SHADOW_INT_STI;
|
|
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
|
|
ret |= KVM_X86_SHADOW_INT_MOV_SS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
u32 interruptibility = interruptibility_old;
|
|
|
|
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
|
|
|
|
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
|
|
interruptibility |= GUEST_INTR_STATE_MOV_SS;
|
|
else if (mask & KVM_X86_SHADOW_INT_STI)
|
|
interruptibility |= GUEST_INTR_STATE_STI;
|
|
|
|
if ((interruptibility != interruptibility_old))
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
|
|
}
|
|
|
|
static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long value;
|
|
|
|
/*
|
|
* Any MSR write that attempts to change bits marked reserved will
|
|
* case a #GP fault.
|
|
*/
|
|
if (data & vmx->pt_desc.ctl_bitmask)
|
|
return 1;
|
|
|
|
/*
|
|
* Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
|
|
* result in a #GP unless the same write also clears TraceEn.
|
|
*/
|
|
if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
|
|
((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
|
|
return 1;
|
|
|
|
/*
|
|
* WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
|
|
* and FabricEn would cause #GP, if
|
|
* CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
|
|
*/
|
|
if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
|
|
!(data & RTIT_CTL_FABRIC_EN) &&
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_single_range_output))
|
|
return 1;
|
|
|
|
/*
|
|
* MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
|
|
* utilize encodings marked reserved will cause a #GP fault.
|
|
*/
|
|
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
|
|
!test_bit((data & RTIT_CTL_MTC_RANGE) >>
|
|
RTIT_CTL_MTC_RANGE_OFFSET, &value))
|
|
return 1;
|
|
value = intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_cycle_thresholds);
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
|
|
!test_bit((data & RTIT_CTL_CYC_THRESH) >>
|
|
RTIT_CTL_CYC_THRESH_OFFSET, &value))
|
|
return 1;
|
|
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
|
|
!test_bit((data & RTIT_CTL_PSB_FREQ) >>
|
|
RTIT_CTL_PSB_FREQ_OFFSET, &value))
|
|
return 1;
|
|
|
|
/*
|
|
* If ADDRx_CFG is reserved or the encodings is >2 will
|
|
* cause a #GP fault.
|
|
*/
|
|
value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
|
|
if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
|
|
return 1;
|
|
value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
|
|
if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
|
|
return 1;
|
|
value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
|
|
if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
|
|
return 1;
|
|
value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
|
|
if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
|
|
void *insn, int insn_len)
|
|
{
|
|
/*
|
|
* Emulation of instructions in SGX enclaves is impossible as RIP does
|
|
* not point at the failing instruction, and even if it did, the code
|
|
* stream is inaccessible. Inject #UD instead of exiting to userspace
|
|
* so that guest userspace can't DoS the guest simply by triggering
|
|
* emulation (enclaves are CPL3 only).
|
|
*/
|
|
if (to_vmx(vcpu)->exit_reason.enclave_mode) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
|
|
unsigned long rip, orig_rip;
|
|
u32 instr_len;
|
|
|
|
/*
|
|
* Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
|
|
* undefined behavior: Intel's SDM doesn't mandate the VMCS field be
|
|
* set when EPT misconfig occurs. In practice, real hardware updates
|
|
* VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
|
|
* (namely Hyper-V) don't set it due to it being undefined behavior,
|
|
* i.e. we end up advancing IP with some random value.
|
|
*/
|
|
if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
|
|
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
|
|
instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
|
|
/*
|
|
* Emulating an enclave's instructions isn't supported as KVM
|
|
* cannot access the enclave's memory or its true RIP, e.g. the
|
|
* vmcs.GUEST_RIP points at the exit point of the enclave, not
|
|
* the RIP that actually triggered the VM-Exit. But, because
|
|
* most instructions that cause VM-Exit will #UD in an enclave,
|
|
* most instruction-based VM-Exits simply do not occur.
|
|
*
|
|
* There are a few exceptions, notably the debug instructions
|
|
* INT1ICEBRK and INT3, as they are allowed in debug enclaves
|
|
* and generate #DB/#BP as expected, which KVM might intercept.
|
|
* But again, the CPU does the dirty work and saves an instr
|
|
* length of zero so VMMs don't shoot themselves in the foot.
|
|
* WARN if KVM tries to skip a non-zero length instruction on
|
|
* a VM-Exit from an enclave.
|
|
*/
|
|
if (!instr_len)
|
|
goto rip_updated;
|
|
|
|
WARN_ONCE(exit_reason.enclave_mode,
|
|
"skipping instruction after SGX enclave VM-Exit");
|
|
|
|
orig_rip = kvm_rip_read(vcpu);
|
|
rip = orig_rip + instr_len;
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* We need to mask out the high 32 bits of RIP if not in 64-bit
|
|
* mode, but just finding out that we are in 64-bit mode is
|
|
* quite expensive. Only do it if there was a carry.
|
|
*/
|
|
if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
|
|
rip = (u32)rip;
|
|
#endif
|
|
kvm_rip_write(vcpu, rip);
|
|
} else {
|
|
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
|
|
return 0;
|
|
}
|
|
|
|
rip_updated:
|
|
/* skipping an emulated instruction also counts */
|
|
vmx_set_interrupt_shadow(vcpu, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Recognizes a pending MTF VM-exit and records the nested state for later
|
|
* delivery.
|
|
*/
|
|
static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!is_guest_mode(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Per the SDM, MTF takes priority over debug-trap exceptions besides
|
|
* TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
|
|
* or ICEBP (in the emulator proper), and skipping of ICEBP after an
|
|
* intercepted #DB deliberately avoids single-step #DB and MTF updates
|
|
* as ICEBP is higher priority than both. As instruction emulation is
|
|
* completed at this point (i.e. KVM is at the instruction boundary),
|
|
* any #DB exception pending delivery must be a debug-trap of lower
|
|
* priority than MTF. Record the pending MTF state to be delivered in
|
|
* vmx_check_nested_events().
|
|
*/
|
|
if (nested_cpu_has_mtf(vmcs12) &&
|
|
(!vcpu->arch.exception.pending ||
|
|
vcpu->arch.exception.vector == DB_VECTOR) &&
|
|
(!vcpu->arch.exception_vmexit.pending ||
|
|
vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
|
|
vmx->nested.mtf_pending = true;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
} else {
|
|
vmx->nested.mtf_pending = false;
|
|
}
|
|
}
|
|
|
|
static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_update_emulated_instruction(vcpu);
|
|
return skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Ensure that we clear the HLT state in the VMCS. We don't need to
|
|
* explicitly skip the instruction because if the HLT state is set,
|
|
* then the instruction is already executing and RIP has already been
|
|
* advanced.
|
|
*/
|
|
if (kvm_hlt_in_guest(vcpu->kvm) &&
|
|
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
|
|
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
|
|
}
|
|
|
|
static void vmx_inject_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_queued_exception *ex = &vcpu->arch.exception;
|
|
u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
kvm_deliver_exception_payload(vcpu, ex);
|
|
|
|
if (ex->has_error_code) {
|
|
/*
|
|
* Despite the error code being architecturally defined as 32
|
|
* bits, and the VMCS field being 32 bits, Intel CPUs and thus
|
|
* VMX don't actually supporting setting bits 31:16. Hardware
|
|
* will (should) never provide a bogus error code, but AMD CPUs
|
|
* do generate error codes with bits 31:16 set, and so KVM's
|
|
* ABI lets userspace shove in arbitrary 32-bit values. Drop
|
|
* the upper bits to avoid VM-Fail, losing information that
|
|
* does't really exist is preferable to killing the VM.
|
|
*/
|
|
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
|
|
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
|
|
}
|
|
|
|
if (vmx->rmode.vm86_active) {
|
|
int inc_eip = 0;
|
|
if (kvm_exception_is_soft(ex->vector))
|
|
inc_eip = vcpu->arch.event_exit_inst_len;
|
|
kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
|
|
return;
|
|
}
|
|
|
|
WARN_ON_ONCE(vmx->emulation_required);
|
|
|
|
if (kvm_exception_is_soft(ex->vector)) {
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmx->vcpu.arch.event_exit_inst_len);
|
|
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
|
|
} else
|
|
intr_info |= INTR_TYPE_HARD_EXCEPTION;
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
|
|
|
|
vmx_clear_hlt(vcpu);
|
|
}
|
|
|
|
static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
|
|
bool load_into_hardware)
|
|
{
|
|
struct vmx_uret_msr *uret_msr;
|
|
|
|
uret_msr = vmx_find_uret_msr(vmx, msr);
|
|
if (!uret_msr)
|
|
return;
|
|
|
|
uret_msr->load_into_hardware = load_into_hardware;
|
|
}
|
|
|
|
/*
|
|
* Configuring user return MSRs to automatically save, load, and restore MSRs
|
|
* that need to be shoved into hardware when running the guest. Note, omitting
|
|
* an MSR here does _NOT_ mean it's not emulated, only that it will not be
|
|
* loaded into hardware when running the guest.
|
|
*/
|
|
static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
bool load_syscall_msrs;
|
|
|
|
/*
|
|
* The SYSCALL MSRs are only needed on long mode guests, and only
|
|
* when EFER.SCE is set.
|
|
*/
|
|
load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
|
|
(vmx->vcpu.arch.efer & EFER_SCE);
|
|
|
|
vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
|
|
vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
|
|
vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
|
|
#endif
|
|
vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
|
|
|
|
vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
|
|
guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
|
|
guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
|
|
|
|
/*
|
|
* hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
|
|
* kernel and old userspace. If those guests run on a tsx=off host, do
|
|
* allow guests to use TSX_CTRL, but don't change the value in hardware
|
|
* so that TSX remains always disabled.
|
|
*/
|
|
vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
|
|
|
|
/*
|
|
* The set of MSRs to load may have changed, reload MSRs before the
|
|
* next VM-Enter.
|
|
*/
|
|
vmx->guest_uret_msrs_loaded = false;
|
|
}
|
|
|
|
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
|
|
return vmcs12->tsc_offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
|
|
nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
|
|
return vmcs12->tsc_multiplier;
|
|
|
|
return kvm_caps.default_tsc_scaling_ratio;
|
|
}
|
|
|
|
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
|
|
}
|
|
|
|
static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
|
|
}
|
|
|
|
/*
|
|
* Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
|
|
* guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
|
|
* backwards compatibility even though KVM doesn't support emulating SMX. And
|
|
* because userspace set "VMX in SMX", the guest must also be allowed to set it,
|
|
* e.g. if the MSR is left unlocked and the guest does a RMW operation.
|
|
*/
|
|
#define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
|
|
FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
|
|
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
|
|
FEAT_CTL_SGX_LC_ENABLED | \
|
|
FEAT_CTL_SGX_ENABLED | \
|
|
FEAT_CTL_LMCE_ENABLED)
|
|
|
|
static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
|
|
struct msr_data *msr)
|
|
{
|
|
uint64_t valid_bits;
|
|
|
|
/*
|
|
* Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
|
|
* exposed to the guest.
|
|
*/
|
|
WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
|
|
~KVM_SUPPORTED_FEATURE_CONTROL);
|
|
|
|
if (!msr->host_initiated &&
|
|
(vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
|
|
return false;
|
|
|
|
if (msr->host_initiated)
|
|
valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
|
|
else
|
|
valid_bits = vmx->msr_ia32_feature_control_valid_bits;
|
|
|
|
return !(msr->data & ~valid_bits);
|
|
}
|
|
|
|
static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
|
|
{
|
|
switch (msr->index) {
|
|
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
|
|
if (!nested)
|
|
return 1;
|
|
return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
|
|
default:
|
|
return KVM_MSR_RET_INVALID;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmx_uret_msr *msr;
|
|
u32 index;
|
|
|
|
switch (msr_info->index) {
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_FS_BASE:
|
|
msr_info->data = vmcs_readl(GUEST_FS_BASE);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
msr_info->data = vmcs_readl(GUEST_GS_BASE);
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
|
|
break;
|
|
#endif
|
|
case MSR_EFER:
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
case MSR_IA32_TSX_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
|
|
return 1;
|
|
goto find_uret_msr;
|
|
case MSR_IA32_UMWAIT_CONTROL:
|
|
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
|
|
return 1;
|
|
|
|
msr_info->data = vmx->msr_ia32_umwait_control;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_has_spec_ctrl_msr(vcpu))
|
|
return 1;
|
|
|
|
msr_info->data = to_vmx(vcpu)->spec_ctrl;
|
|
break;
|
|
case MSR_IA32_SYSENTER_CS:
|
|
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
|
|
break;
|
|
case MSR_IA32_BNDCFGS:
|
|
if (!kvm_mpx_supported() ||
|
|
(!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
|
|
return 1;
|
|
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
|
|
break;
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
if (!msr_info->host_initiated &&
|
|
!(vmx->msr_ia32_feature_control &
|
|
FEAT_CTL_LMCE_ENABLED))
|
|
return 1;
|
|
msr_info->data = vcpu->arch.mcg_ext_ctl;
|
|
break;
|
|
case MSR_IA32_FEAT_CTL:
|
|
msr_info->data = vmx->msr_ia32_feature_control;
|
|
break;
|
|
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
|
|
return 1;
|
|
msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
|
|
[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
|
|
break;
|
|
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
|
|
if (!guest_can_use(vcpu, X86_FEATURE_VMX))
|
|
return 1;
|
|
if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
|
|
&msr_info->data))
|
|
return 1;
|
|
/*
|
|
* Enlightened VMCS v1 doesn't have certain VMCS fields but
|
|
* instead of just ignoring the features, different Hyper-V
|
|
* versions are either trying to use them and fail or do some
|
|
* sanity checking and refuse to boot. Filter all unsupported
|
|
* features out.
|
|
*/
|
|
if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
|
|
nested_evmcs_filter_control_msr(vcpu, msr_info->index,
|
|
&msr_info->data);
|
|
break;
|
|
case MSR_IA32_RTIT_CTL:
|
|
if (!vmx_pt_mode_is_host_guest())
|
|
return 1;
|
|
msr_info->data = vmx->pt_desc.guest.ctl;
|
|
break;
|
|
case MSR_IA32_RTIT_STATUS:
|
|
if (!vmx_pt_mode_is_host_guest())
|
|
return 1;
|
|
msr_info->data = vmx->pt_desc.guest.status;
|
|
break;
|
|
case MSR_IA32_RTIT_CR3_MATCH:
|
|
if (!vmx_pt_mode_is_host_guest() ||
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_cr3_filtering))
|
|
return 1;
|
|
msr_info->data = vmx->pt_desc.guest.cr3_match;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_BASE:
|
|
if (!vmx_pt_mode_is_host_guest() ||
|
|
(!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_topa_output) &&
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_single_range_output)))
|
|
return 1;
|
|
msr_info->data = vmx->pt_desc.guest.output_base;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_MASK:
|
|
if (!vmx_pt_mode_is_host_guest() ||
|
|
(!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_topa_output) &&
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_single_range_output)))
|
|
return 1;
|
|
msr_info->data = vmx->pt_desc.guest.output_mask;
|
|
break;
|
|
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
|
|
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
|
|
if (!vmx_pt_mode_is_host_guest() ||
|
|
(index >= 2 * vmx->pt_desc.num_address_ranges))
|
|
return 1;
|
|
if (index % 2)
|
|
msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
|
|
else
|
|
msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
|
|
break;
|
|
default:
|
|
find_uret_msr:
|
|
msr = vmx_find_uret_msr(vmx, msr_info->index);
|
|
if (msr) {
|
|
msr_info->data = msr->data;
|
|
break;
|
|
}
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
|
|
u64 data)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
|
|
return (u32)data;
|
|
#endif
|
|
return (unsigned long)data;
|
|
}
|
|
|
|
static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
|
|
{
|
|
u64 debugctl = 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
|
|
(host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
|
|
debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
|
|
|
|
if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
|
|
(host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
|
|
debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
|
|
return debugctl;
|
|
}
|
|
|
|
/*
|
|
* Writes msr value into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct vmx_uret_msr *msr;
|
|
int ret = 0;
|
|
u32 msr_index = msr_info->index;
|
|
u64 data = msr_info->data;
|
|
u32 index;
|
|
|
|
switch (msr_index) {
|
|
case MSR_EFER:
|
|
ret = kvm_set_msr_common(vcpu, msr_info);
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_FS_BASE:
|
|
vmx_segment_cache_clear(vmx);
|
|
vmcs_writel(GUEST_FS_BASE, data);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
vmx_segment_cache_clear(vmx);
|
|
vmcs_writel(GUEST_GS_BASE, data);
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
vmx_write_guest_kernel_gs_base(vmx, data);
|
|
break;
|
|
case MSR_IA32_XFD:
|
|
ret = kvm_set_msr_common(vcpu, msr_info);
|
|
/*
|
|
* Always intercepting WRMSR could incur non-negligible
|
|
* overhead given xfd might be changed frequently in
|
|
* guest context switch. Disable write interception
|
|
* upon the first write with a non-zero value (indicating
|
|
* potential usage on dynamic xfeatures). Also update
|
|
* exception bitmap to trap #NM for proper virtualization
|
|
* of guest xfd_err.
|
|
*/
|
|
if (!ret && data) {
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
|
|
MSR_TYPE_RW);
|
|
vcpu->arch.xfd_no_write_intercept = true;
|
|
vmx_update_exception_bitmap(vcpu);
|
|
}
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
if (is_guest_mode(vcpu))
|
|
get_vmcs12(vcpu)->guest_sysenter_cs = data;
|
|
vmcs_write32(GUEST_SYSENTER_CS, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
if (is_guest_mode(vcpu)) {
|
|
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
|
|
get_vmcs12(vcpu)->guest_sysenter_eip = data;
|
|
}
|
|
vmcs_writel(GUEST_SYSENTER_EIP, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
if (is_guest_mode(vcpu)) {
|
|
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
|
|
get_vmcs12(vcpu)->guest_sysenter_esp = data;
|
|
}
|
|
vmcs_writel(GUEST_SYSENTER_ESP, data);
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR: {
|
|
u64 invalid;
|
|
|
|
invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
|
|
if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
|
|
kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
|
|
data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
|
|
invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
|
|
}
|
|
|
|
if (invalid)
|
|
return 1;
|
|
|
|
if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
|
|
VM_EXIT_SAVE_DEBUG_CONTROLS)
|
|
get_vmcs12(vcpu)->guest_ia32_debugctl = data;
|
|
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, data);
|
|
if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
|
|
(data & DEBUGCTLMSR_LBR))
|
|
intel_pmu_create_guest_lbr_event(vcpu);
|
|
return 0;
|
|
}
|
|
case MSR_IA32_BNDCFGS:
|
|
if (!kvm_mpx_supported() ||
|
|
(!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
|
|
return 1;
|
|
if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
|
|
(data & MSR_IA32_BNDCFGS_RSVD))
|
|
return 1;
|
|
|
|
if (is_guest_mode(vcpu) &&
|
|
((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
|
|
(vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
|
|
get_vmcs12(vcpu)->guest_bndcfgs = data;
|
|
|
|
vmcs_write64(GUEST_BNDCFGS, data);
|
|
break;
|
|
case MSR_IA32_UMWAIT_CONTROL:
|
|
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
|
|
return 1;
|
|
|
|
/* The reserved bit 1 and non-32 bit [63:32] should be zero */
|
|
if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
|
|
return 1;
|
|
|
|
vmx->msr_ia32_umwait_control = data;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_has_spec_ctrl_msr(vcpu))
|
|
return 1;
|
|
|
|
if (kvm_spec_ctrl_test_value(data))
|
|
return 1;
|
|
|
|
vmx->spec_ctrl = data;
|
|
if (!data)
|
|
break;
|
|
|
|
/*
|
|
* For non-nested:
|
|
* When it's written (to non-zero) for the first time, pass
|
|
* it through.
|
|
*
|
|
* For nested:
|
|
* The handling of the MSR bitmap for L2 guests is done in
|
|
* nested_vmx_prepare_msr_bitmap. We should not touch the
|
|
* vmcs02.msr_bitmap here since it gets completely overwritten
|
|
* in the merging. We update the vmcs01 here for L1 as well
|
|
* since it will end up touching the MSR anyway now.
|
|
*/
|
|
vmx_disable_intercept_for_msr(vcpu,
|
|
MSR_IA32_SPEC_CTRL,
|
|
MSR_TYPE_RW);
|
|
break;
|
|
case MSR_IA32_TSX_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
|
|
return 1;
|
|
if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
|
|
return 1;
|
|
goto find_uret_msr;
|
|
case MSR_IA32_CR_PAT:
|
|
ret = kvm_set_msr_common(vcpu, msr_info);
|
|
if (ret)
|
|
break;
|
|
|
|
if (is_guest_mode(vcpu) &&
|
|
get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
|
|
get_vmcs12(vcpu)->guest_ia32_pat = data;
|
|
|
|
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
|
|
vmcs_write64(GUEST_IA32_PAT, data);
|
|
break;
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
if ((!msr_info->host_initiated &&
|
|
!(to_vmx(vcpu)->msr_ia32_feature_control &
|
|
FEAT_CTL_LMCE_ENABLED)) ||
|
|
(data & ~MCG_EXT_CTL_LMCE_EN))
|
|
return 1;
|
|
vcpu->arch.mcg_ext_ctl = data;
|
|
break;
|
|
case MSR_IA32_FEAT_CTL:
|
|
if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
|
|
return 1;
|
|
|
|
vmx->msr_ia32_feature_control = data;
|
|
if (msr_info->host_initiated && data == 0)
|
|
vmx_leave_nested(vcpu);
|
|
|
|
/* SGX may be enabled/disabled by guest's firmware */
|
|
vmx_write_encls_bitmap(vcpu, NULL);
|
|
break;
|
|
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
|
|
/*
|
|
* On real hardware, the LE hash MSRs are writable before
|
|
* the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
|
|
* at which point SGX related bits in IA32_FEATURE_CONTROL
|
|
* become writable.
|
|
*
|
|
* KVM does not emulate SGX activation for simplicity, so
|
|
* allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
|
|
* is unlocked. This is technically not architectural
|
|
* behavior, but it's close enough.
|
|
*/
|
|
if (!msr_info->host_initiated &&
|
|
(!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
|
|
((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
|
|
!(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
|
|
return 1;
|
|
vmx->msr_ia32_sgxlepubkeyhash
|
|
[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
|
|
break;
|
|
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
|
|
if (!msr_info->host_initiated)
|
|
return 1; /* they are read-only */
|
|
if (!guest_can_use(vcpu, X86_FEATURE_VMX))
|
|
return 1;
|
|
return vmx_set_vmx_msr(vcpu, msr_index, data);
|
|
case MSR_IA32_RTIT_CTL:
|
|
if (!vmx_pt_mode_is_host_guest() ||
|
|
vmx_rtit_ctl_check(vcpu, data) ||
|
|
vmx->nested.vmxon)
|
|
return 1;
|
|
vmcs_write64(GUEST_IA32_RTIT_CTL, data);
|
|
vmx->pt_desc.guest.ctl = data;
|
|
pt_update_intercept_for_msr(vcpu);
|
|
break;
|
|
case MSR_IA32_RTIT_STATUS:
|
|
if (!pt_can_write_msr(vmx))
|
|
return 1;
|
|
if (data & MSR_IA32_RTIT_STATUS_MASK)
|
|
return 1;
|
|
vmx->pt_desc.guest.status = data;
|
|
break;
|
|
case MSR_IA32_RTIT_CR3_MATCH:
|
|
if (!pt_can_write_msr(vmx))
|
|
return 1;
|
|
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_cr3_filtering))
|
|
return 1;
|
|
vmx->pt_desc.guest.cr3_match = data;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_BASE:
|
|
if (!pt_can_write_msr(vmx))
|
|
return 1;
|
|
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_topa_output) &&
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_single_range_output))
|
|
return 1;
|
|
if (!pt_output_base_valid(vcpu, data))
|
|
return 1;
|
|
vmx->pt_desc.guest.output_base = data;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_MASK:
|
|
if (!pt_can_write_msr(vmx))
|
|
return 1;
|
|
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_topa_output) &&
|
|
!intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_single_range_output))
|
|
return 1;
|
|
vmx->pt_desc.guest.output_mask = data;
|
|
break;
|
|
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
|
|
if (!pt_can_write_msr(vmx))
|
|
return 1;
|
|
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
|
|
if (index >= 2 * vmx->pt_desc.num_address_ranges)
|
|
return 1;
|
|
if (is_noncanonical_address(data, vcpu))
|
|
return 1;
|
|
if (index % 2)
|
|
vmx->pt_desc.guest.addr_b[index / 2] = data;
|
|
else
|
|
vmx->pt_desc.guest.addr_a[index / 2] = data;
|
|
break;
|
|
case MSR_IA32_PERF_CAPABILITIES:
|
|
if (data && !vcpu_to_pmu(vcpu)->version)
|
|
return 1;
|
|
if (data & PMU_CAP_LBR_FMT) {
|
|
if ((data & PMU_CAP_LBR_FMT) !=
|
|
(kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
|
|
return 1;
|
|
if (!cpuid_model_is_consistent(vcpu))
|
|
return 1;
|
|
}
|
|
if (data & PERF_CAP_PEBS_FORMAT) {
|
|
if ((data & PERF_CAP_PEBS_MASK) !=
|
|
(kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
|
|
return 1;
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
|
|
return 1;
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
|
|
return 1;
|
|
if (!cpuid_model_is_consistent(vcpu))
|
|
return 1;
|
|
}
|
|
ret = kvm_set_msr_common(vcpu, msr_info);
|
|
break;
|
|
|
|
default:
|
|
find_uret_msr:
|
|
msr = vmx_find_uret_msr(vmx, msr_index);
|
|
if (msr)
|
|
ret = vmx_set_guest_uret_msr(vmx, msr, data);
|
|
else
|
|
ret = kvm_set_msr_common(vcpu, msr_info);
|
|
}
|
|
|
|
/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
|
|
if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
|
|
vmx_update_fb_clear_dis(vcpu, vmx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
unsigned long guest_owned_bits;
|
|
|
|
kvm_register_mark_available(vcpu, reg);
|
|
|
|
switch (reg) {
|
|
case VCPU_REGS_RSP:
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
|
|
break;
|
|
case VCPU_REGS_RIP:
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
|
|
break;
|
|
case VCPU_EXREG_PDPTR:
|
|
if (enable_ept)
|
|
ept_save_pdptrs(vcpu);
|
|
break;
|
|
case VCPU_EXREG_CR0:
|
|
guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
|
|
|
|
vcpu->arch.cr0 &= ~guest_owned_bits;
|
|
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
|
|
break;
|
|
case VCPU_EXREG_CR3:
|
|
/*
|
|
* When intercepting CR3 loads, e.g. for shadowing paging, KVM's
|
|
* CR3 is loaded into hardware, not the guest's CR3.
|
|
*/
|
|
if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
|
|
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
|
|
break;
|
|
case VCPU_EXREG_CR4:
|
|
guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
|
|
|
|
vcpu->arch.cr4 &= ~guest_owned_bits;
|
|
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
|
|
break;
|
|
default:
|
|
KVM_BUG_ON(1, vcpu->kvm);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
|
|
* directly instead of going through cpu_has(), to ensure KVM is trapping
|
|
* ENCLS whenever it's supported in hardware. It does not matter whether
|
|
* the host OS supports or has enabled SGX.
|
|
*/
|
|
static bool cpu_has_sgx(void)
|
|
{
|
|
return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
|
|
}
|
|
|
|
/*
|
|
* Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
|
|
* can't be used due to errata where VM Exit may incorrectly clear
|
|
* IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
|
|
* MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
|
|
*/
|
|
static bool cpu_has_perf_global_ctrl_bug(void)
|
|
{
|
|
if (boot_cpu_data.x86 == 0x6) {
|
|
switch (boot_cpu_data.x86_model) {
|
|
case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
|
|
case INTEL_FAM6_NEHALEM: /* AAP115 */
|
|
case INTEL_FAM6_WESTMERE: /* AAT100 */
|
|
case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
|
|
case INTEL_FAM6_NEHALEM_EX: /* BA97 */
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 ctl = ctl_min | ctl_opt;
|
|
|
|
rdmsr(msr, vmx_msr_low, vmx_msr_high);
|
|
|
|
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
|
|
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
|
|
|
|
/* Ensure minimum (required) set of control bits are supported. */
|
|
if (ctl_min & ~ctl)
|
|
return -EIO;
|
|
|
|
*result = ctl;
|
|
return 0;
|
|
}
|
|
|
|
static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
|
|
{
|
|
u64 allowed;
|
|
|
|
rdmsrl(msr, allowed);
|
|
|
|
return ctl_opt & allowed;
|
|
}
|
|
|
|
static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
|
|
struct vmx_capability *vmx_cap)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 _pin_based_exec_control = 0;
|
|
u32 _cpu_based_exec_control = 0;
|
|
u32 _cpu_based_2nd_exec_control = 0;
|
|
u64 _cpu_based_3rd_exec_control = 0;
|
|
u32 _vmexit_control = 0;
|
|
u32 _vmentry_control = 0;
|
|
u64 misc_msr;
|
|
int i;
|
|
|
|
/*
|
|
* LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
|
|
* SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
|
|
* intercepts writes to PAT and EFER, i.e. never enables those controls.
|
|
*/
|
|
struct {
|
|
u32 entry_control;
|
|
u32 exit_control;
|
|
} const vmcs_entry_exit_pairs[] = {
|
|
{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
|
|
{ VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
|
|
{ VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
|
|
{ VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
|
|
{ VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
|
|
};
|
|
|
|
memset(vmcs_conf, 0, sizeof(*vmcs_conf));
|
|
|
|
if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
|
|
KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
|
|
MSR_IA32_VMX_PROCBASED_CTLS,
|
|
&_cpu_based_exec_control))
|
|
return -EIO;
|
|
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
|
|
if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
|
|
KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
|
|
MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
&_cpu_based_2nd_exec_control))
|
|
return -EIO;
|
|
}
|
|
#ifndef CONFIG_X86_64
|
|
if (!(_cpu_based_2nd_exec_control &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
|
|
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
#endif
|
|
|
|
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
|
|
_cpu_based_2nd_exec_control &= ~(
|
|
SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
|
|
|
|
rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
|
|
&vmx_cap->ept, &vmx_cap->vpid);
|
|
|
|
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
|
|
vmx_cap->ept) {
|
|
pr_warn_once("EPT CAP should not exist if not support "
|
|
"1-setting enable EPT VM-execution control\n");
|
|
|
|
if (error_on_inconsistent_vmcs_config)
|
|
return -EIO;
|
|
|
|
vmx_cap->ept = 0;
|
|
}
|
|
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
|
|
vmx_cap->vpid) {
|
|
pr_warn_once("VPID CAP should not exist if not support "
|
|
"1-setting enable VPID VM-execution control\n");
|
|
|
|
if (error_on_inconsistent_vmcs_config)
|
|
return -EIO;
|
|
|
|
vmx_cap->vpid = 0;
|
|
}
|
|
|
|
if (!cpu_has_sgx())
|
|
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
|
|
|
|
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
|
|
_cpu_based_3rd_exec_control =
|
|
adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
|
|
MSR_IA32_VMX_PROCBASED_CTLS3);
|
|
|
|
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
|
|
KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
|
|
MSR_IA32_VMX_EXIT_CTLS,
|
|
&_vmexit_control))
|
|
return -EIO;
|
|
|
|
if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
|
|
KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
|
|
MSR_IA32_VMX_PINBASED_CTLS,
|
|
&_pin_based_exec_control))
|
|
return -EIO;
|
|
|
|
if (cpu_has_broken_vmx_preemption_timer())
|
|
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
|
|
if (!(_cpu_based_2nd_exec_control &
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
|
|
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
|
|
|
|
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
|
|
KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
|
|
MSR_IA32_VMX_ENTRY_CTLS,
|
|
&_vmentry_control))
|
|
return -EIO;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
|
|
u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
|
|
u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
|
|
|
|
if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
|
|
continue;
|
|
|
|
pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
|
|
_vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
|
|
|
|
if (error_on_inconsistent_vmcs_config)
|
|
return -EIO;
|
|
|
|
_vmentry_control &= ~n_ctrl;
|
|
_vmexit_control &= ~x_ctrl;
|
|
}
|
|
|
|
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
|
|
|
|
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
|
|
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
|
|
return -EIO;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
|
|
if (vmx_msr_high & (1u<<16))
|
|
return -EIO;
|
|
#endif
|
|
|
|
/* Require Write-Back (WB) memory type for VMCS accesses. */
|
|
if (((vmx_msr_high >> 18) & 15) != 6)
|
|
return -EIO;
|
|
|
|
rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
|
|
|
|
vmcs_conf->size = vmx_msr_high & 0x1fff;
|
|
vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
|
|
|
|
vmcs_conf->revision_id = vmx_msr_low;
|
|
|
|
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
|
|
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
|
|
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
|
|
vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
|
|
vmcs_conf->vmexit_ctrl = _vmexit_control;
|
|
vmcs_conf->vmentry_ctrl = _vmentry_control;
|
|
vmcs_conf->misc = misc_msr;
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
if (enlightened_vmcs)
|
|
evmcs_sanitize_exec_ctrls(vmcs_conf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool __kvm_is_vmx_supported(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!(cpuid_ecx(1) & feature_bit(VMX))) {
|
|
pr_err("VMX not supported by CPU %d\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
|
|
!this_cpu_has(X86_FEATURE_VMX)) {
|
|
pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_is_vmx_supported(void)
|
|
{
|
|
bool supported;
|
|
|
|
migrate_disable();
|
|
supported = __kvm_is_vmx_supported();
|
|
migrate_enable();
|
|
|
|
return supported;
|
|
}
|
|
|
|
static int vmx_check_processor_compat(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct vmcs_config vmcs_conf;
|
|
struct vmx_capability vmx_cap;
|
|
|
|
if (!__kvm_is_vmx_supported())
|
|
return -EIO;
|
|
|
|
if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
|
|
pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
|
|
return -EIO;
|
|
}
|
|
if (nested)
|
|
nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
|
|
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
|
|
pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_cpu_vmxon(u64 vmxon_pointer)
|
|
{
|
|
u64 msr;
|
|
|
|
cr4_set_bits(X86_CR4_VMXE);
|
|
|
|
asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
|
|
_ASM_EXTABLE(1b, %l[fault])
|
|
: : [vmxon_pointer] "m"(vmxon_pointer)
|
|
: : fault);
|
|
return 0;
|
|
|
|
fault:
|
|
WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
|
|
rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
|
|
cr4_clear_bits(X86_CR4_VMXE);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
static int vmx_hardware_enable(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
|
|
int r;
|
|
|
|
if (cr4_read_shadow() & X86_CR4_VMXE)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* This can happen if we hot-added a CPU but failed to allocate
|
|
* VP assist page for it.
|
|
*/
|
|
if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
|
|
return -EFAULT;
|
|
|
|
intel_pt_handle_vmx(1);
|
|
|
|
r = kvm_cpu_vmxon(phys_addr);
|
|
if (r) {
|
|
intel_pt_handle_vmx(0);
|
|
return r;
|
|
}
|
|
|
|
if (enable_ept)
|
|
ept_sync_global();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmclear_local_loaded_vmcss(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct loaded_vmcs *v, *n;
|
|
|
|
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
|
|
loaded_vmcss_on_cpu_link)
|
|
__loaded_vmcs_clear(v);
|
|
}
|
|
|
|
static void vmx_hardware_disable(void)
|
|
{
|
|
vmclear_local_loaded_vmcss();
|
|
|
|
if (kvm_cpu_vmxoff())
|
|
kvm_spurious_fault();
|
|
|
|
hv_reset_evmcs();
|
|
|
|
intel_pt_handle_vmx(0);
|
|
}
|
|
|
|
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
struct page *pages;
|
|
struct vmcs *vmcs;
|
|
|
|
pages = __alloc_pages_node(node, flags, 0);
|
|
if (!pages)
|
|
return NULL;
|
|
vmcs = page_address(pages);
|
|
memset(vmcs, 0, vmcs_config.size);
|
|
|
|
/* KVM supports Enlightened VMCS v1 only */
|
|
if (kvm_is_using_evmcs())
|
|
vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
|
|
else
|
|
vmcs->hdr.revision_id = vmcs_config.revision_id;
|
|
|
|
if (shadow)
|
|
vmcs->hdr.shadow_vmcs = 1;
|
|
return vmcs;
|
|
}
|
|
|
|
void free_vmcs(struct vmcs *vmcs)
|
|
{
|
|
free_page((unsigned long)vmcs);
|
|
}
|
|
|
|
/*
|
|
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
|
|
*/
|
|
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
|
|
{
|
|
if (!loaded_vmcs->vmcs)
|
|
return;
|
|
loaded_vmcs_clear(loaded_vmcs);
|
|
free_vmcs(loaded_vmcs->vmcs);
|
|
loaded_vmcs->vmcs = NULL;
|
|
if (loaded_vmcs->msr_bitmap)
|
|
free_page((unsigned long)loaded_vmcs->msr_bitmap);
|
|
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
|
|
}
|
|
|
|
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
|
|
{
|
|
loaded_vmcs->vmcs = alloc_vmcs(false);
|
|
if (!loaded_vmcs->vmcs)
|
|
return -ENOMEM;
|
|
|
|
vmcs_clear(loaded_vmcs->vmcs);
|
|
|
|
loaded_vmcs->shadow_vmcs = NULL;
|
|
loaded_vmcs->hv_timer_soft_disabled = false;
|
|
loaded_vmcs->cpu = -1;
|
|
loaded_vmcs->launched = 0;
|
|
|
|
if (cpu_has_vmx_msr_bitmap()) {
|
|
loaded_vmcs->msr_bitmap = (unsigned long *)
|
|
__get_free_page(GFP_KERNEL_ACCOUNT);
|
|
if (!loaded_vmcs->msr_bitmap)
|
|
goto out_vmcs;
|
|
memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
|
|
}
|
|
|
|
memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
|
|
memset(&loaded_vmcs->controls_shadow, 0,
|
|
sizeof(struct vmcs_controls_shadow));
|
|
|
|
return 0;
|
|
|
|
out_vmcs:
|
|
free_loaded_vmcs(loaded_vmcs);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void free_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
free_vmcs(per_cpu(vmxarea, cpu));
|
|
per_cpu(vmxarea, cpu) = NULL;
|
|
}
|
|
}
|
|
|
|
static __init int alloc_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vmcs *vmcs;
|
|
|
|
vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
|
|
if (!vmcs) {
|
|
free_kvm_area();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* When eVMCS is enabled, alloc_vmcs_cpu() sets
|
|
* vmcs->revision_id to KVM_EVMCS_VERSION instead of
|
|
* revision_id reported by MSR_IA32_VMX_BASIC.
|
|
*
|
|
* However, even though not explicitly documented by
|
|
* TLFS, VMXArea passed as VMXON argument should
|
|
* still be marked with revision_id reported by
|
|
* physical CPU.
|
|
*/
|
|
if (kvm_is_using_evmcs())
|
|
vmcs->hdr.revision_id = vmcs_config.revision_id;
|
|
|
|
per_cpu(vmxarea, cpu) = vmcs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
|
|
struct kvm_segment *save)
|
|
{
|
|
if (!emulate_invalid_guest_state) {
|
|
/*
|
|
* CS and SS RPL should be equal during guest entry according
|
|
* to VMX spec, but in reality it is not always so. Since vcpu
|
|
* is in the middle of the transition from real mode to
|
|
* protected mode it is safe to assume that RPL 0 is a good
|
|
* default value.
|
|
*/
|
|
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
|
|
save->selector &= ~SEGMENT_RPL_MASK;
|
|
save->dpl = save->selector & SEGMENT_RPL_MASK;
|
|
save->s = 1;
|
|
}
|
|
__vmx_set_segment(vcpu, save, seg);
|
|
}
|
|
|
|
static void enter_pmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* Update real mode segment cache. It may be not up-to-date if segment
|
|
* register was written while vcpu was in a guest mode.
|
|
*/
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
|
|
|
|
vmx->rmode.vm86_active = 0;
|
|
|
|
__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
|
|
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
|
|
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
|
|
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
|
|
|
|
vmx_update_exception_bitmap(vcpu);
|
|
|
|
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
|
|
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
|
|
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
|
|
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
|
|
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
|
|
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
|
|
}
|
|
|
|
static void fix_rmode_seg(int seg, struct kvm_segment *save)
|
|
{
|
|
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
struct kvm_segment var = *save;
|
|
|
|
var.dpl = 0x3;
|
|
if (seg == VCPU_SREG_CS)
|
|
var.type = 0x3;
|
|
|
|
if (!emulate_invalid_guest_state) {
|
|
var.selector = var.base >> 4;
|
|
var.base = var.base & 0xffff0;
|
|
var.limit = 0xffff;
|
|
var.g = 0;
|
|
var.db = 0;
|
|
var.present = 1;
|
|
var.s = 1;
|
|
var.l = 0;
|
|
var.unusable = 0;
|
|
var.type = 0x3;
|
|
var.avl = 0;
|
|
if (save->base & 0xf)
|
|
pr_warn_once("segment base is not paragraph aligned "
|
|
"when entering protected mode (seg=%d)", seg);
|
|
}
|
|
|
|
vmcs_write16(sf->selector, var.selector);
|
|
vmcs_writel(sf->base, var.base);
|
|
vmcs_write32(sf->limit, var.limit);
|
|
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
|
|
}
|
|
|
|
static void enter_rmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
|
|
|
|
/*
|
|
* KVM should never use VM86 to virtualize Real Mode when L2 is active,
|
|
* as using VM86 is unnecessary if unrestricted guest is enabled, and
|
|
* if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
|
|
* should VM-Fail and KVM should reject userspace attempts to stuff
|
|
* CR0.PG=0 when L2 is active.
|
|
*/
|
|
WARN_ON_ONCE(is_guest_mode(vcpu));
|
|
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
|
|
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
|
|
|
|
vmx->rmode.vm86_active = 1;
|
|
|
|
vmx_segment_cache_clear(vmx);
|
|
|
|
vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
|
|
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
vmx->rmode.save_rflags = flags;
|
|
|
|
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
|
|
vmx_update_exception_bitmap(vcpu);
|
|
|
|
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
|
|
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
|
|
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
|
|
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
|
|
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
|
|
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
|
|
}
|
|
|
|
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/* Nothing to do if hardware doesn't support EFER. */
|
|
if (!vmx_find_uret_msr(vmx, MSR_EFER))
|
|
return 0;
|
|
|
|
vcpu->arch.efer = efer;
|
|
#ifdef CONFIG_X86_64
|
|
if (efer & EFER_LMA)
|
|
vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
|
|
else
|
|
vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
|
|
#else
|
|
if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
|
|
return 1;
|
|
#endif
|
|
|
|
vmx_setup_uret_msrs(vmx);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static void enter_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 guest_tr_ar;
|
|
|
|
vmx_segment_cache_clear(to_vmx(vcpu));
|
|
|
|
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
|
|
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
|
|
__func__);
|
|
vmcs_write32(GUEST_TR_AR_BYTES,
|
|
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
|
|
| VMX_AR_TYPE_BUSY_64_TSS);
|
|
}
|
|
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
|
|
}
|
|
|
|
static void exit_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* INVEPT must be issued when EPT is enabled, irrespective of VPID, as
|
|
* the CPU is not required to invalidate guest-physical mappings on
|
|
* VM-Entry, even if VPID is disabled. Guest-physical mappings are
|
|
* associated with the root EPT structure and not any particular VPID
|
|
* (INVVPID also isn't required to invalidate guest-physical mappings).
|
|
*/
|
|
if (enable_ept) {
|
|
ept_sync_global();
|
|
} else if (enable_vpid) {
|
|
if (cpu_has_vmx_invvpid_global()) {
|
|
vpid_sync_vcpu_global();
|
|
} else {
|
|
vpid_sync_vcpu_single(vmx->vpid);
|
|
vpid_sync_vcpu_single(vmx->nested.vpid02);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu))
|
|
return nested_get_vpid02(vcpu);
|
|
return to_vmx(vcpu)->vpid;
|
|
}
|
|
|
|
static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu *mmu = vcpu->arch.mmu;
|
|
u64 root_hpa = mmu->root.hpa;
|
|
|
|
/* No flush required if the current context is invalid. */
|
|
if (!VALID_PAGE(root_hpa))
|
|
return;
|
|
|
|
if (enable_ept)
|
|
ept_sync_context(construct_eptp(vcpu, root_hpa,
|
|
mmu->root_role.level));
|
|
else
|
|
vpid_sync_context(vmx_get_current_vpid(vcpu));
|
|
}
|
|
|
|
static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
|
|
{
|
|
/*
|
|
* vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
|
|
* vmx_flush_tlb_guest() for an explanation of why this is ok.
|
|
*/
|
|
vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
|
|
}
|
|
|
|
static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
|
|
* vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
|
|
* required to flush GVA->{G,H}PA mappings from the TLB if vpid is
|
|
* disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
|
|
* i.e. no explicit INVVPID is necessary.
|
|
*/
|
|
vpid_sync_context(vmx_get_current_vpid(vcpu));
|
|
}
|
|
|
|
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
|
|
|
|
if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
|
|
return;
|
|
|
|
if (is_pae_paging(vcpu)) {
|
|
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
|
|
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
|
|
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
|
|
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
|
|
}
|
|
}
|
|
|
|
void ept_save_pdptrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
|
|
|
|
if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
|
|
return;
|
|
|
|
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
|
|
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
|
|
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
|
|
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
|
|
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
|
|
}
|
|
|
|
#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
|
|
CPU_BASED_CR3_STORE_EXITING)
|
|
|
|
static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
if (is_guest_mode(vcpu))
|
|
return nested_guest_cr0_valid(vcpu, cr0);
|
|
|
|
if (to_vmx(vcpu)->nested.vmxon)
|
|
return nested_host_cr0_valid(vcpu, cr0);
|
|
|
|
return true;
|
|
}
|
|
|
|
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long hw_cr0, old_cr0_pg;
|
|
u32 tmp;
|
|
|
|
old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
|
|
|
|
hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
|
|
if (enable_unrestricted_guest)
|
|
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
|
|
else {
|
|
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
|
|
if (!enable_ept)
|
|
hw_cr0 |= X86_CR0_WP;
|
|
|
|
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
|
|
enter_pmode(vcpu);
|
|
|
|
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
|
|
enter_rmode(vcpu);
|
|
}
|
|
|
|
vmcs_writel(CR0_READ_SHADOW, cr0);
|
|
vmcs_writel(GUEST_CR0, hw_cr0);
|
|
vcpu->arch.cr0 = cr0;
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!old_cr0_pg && (cr0 & X86_CR0_PG))
|
|
enter_lmode(vcpu);
|
|
else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
|
|
exit_lmode(vcpu);
|
|
}
|
|
#endif
|
|
|
|
if (enable_ept && !enable_unrestricted_guest) {
|
|
/*
|
|
* Ensure KVM has an up-to-date snapshot of the guest's CR3. If
|
|
* the below code _enables_ CR3 exiting, vmx_cache_reg() will
|
|
* (correctly) stop reading vmcs.GUEST_CR3 because it thinks
|
|
* KVM's CR3 is installed.
|
|
*/
|
|
if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
|
|
vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
|
|
|
|
/*
|
|
* When running with EPT but not unrestricted guest, KVM must
|
|
* intercept CR3 accesses when paging is _disabled_. This is
|
|
* necessary because restricted guests can't actually run with
|
|
* paging disabled, and so KVM stuffs its own CR3 in order to
|
|
* run the guest when identity mapped page tables.
|
|
*
|
|
* Do _NOT_ check the old CR0.PG, e.g. to optimize away the
|
|
* update, it may be stale with respect to CR3 interception,
|
|
* e.g. after nested VM-Enter.
|
|
*
|
|
* Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
|
|
* stores to forward them to L1, even if KVM does not need to
|
|
* intercept them to preserve its identity mapped page tables.
|
|
*/
|
|
if (!(cr0 & X86_CR0_PG)) {
|
|
exec_controls_setbit(vmx, CR3_EXITING_BITS);
|
|
} else if (!is_guest_mode(vcpu)) {
|
|
exec_controls_clearbit(vmx, CR3_EXITING_BITS);
|
|
} else {
|
|
tmp = exec_controls_get(vmx);
|
|
tmp &= ~CR3_EXITING_BITS;
|
|
tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
|
|
exec_controls_set(vmx, tmp);
|
|
}
|
|
|
|
/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
|
|
if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
|
|
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
|
|
|
|
/*
|
|
* When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
|
|
* GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
|
|
*/
|
|
if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
|
|
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
|
|
}
|
|
|
|
/* depends on vcpu->arch.cr0 to be set to a new value */
|
|
vmx->emulation_required = vmx_emulation_required(vcpu);
|
|
}
|
|
|
|
static int vmx_get_max_ept_level(void)
|
|
{
|
|
if (cpu_has_vmx_ept_5levels())
|
|
return 5;
|
|
return 4;
|
|
}
|
|
|
|
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
|
|
{
|
|
u64 eptp = VMX_EPTP_MT_WB;
|
|
|
|
eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
|
|
|
|
if (enable_ept_ad_bits &&
|
|
(!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
|
|
eptp |= VMX_EPTP_AD_ENABLE_BIT;
|
|
eptp |= root_hpa;
|
|
|
|
return eptp;
|
|
}
|
|
|
|
static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
|
|
int root_level)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
bool update_guest_cr3 = true;
|
|
unsigned long guest_cr3;
|
|
u64 eptp;
|
|
|
|
if (enable_ept) {
|
|
eptp = construct_eptp(vcpu, root_hpa, root_level);
|
|
vmcs_write64(EPT_POINTER, eptp);
|
|
|
|
hv_track_root_tdp(vcpu, root_hpa);
|
|
|
|
if (!enable_unrestricted_guest && !is_paging(vcpu))
|
|
guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
|
|
else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
|
|
guest_cr3 = vcpu->arch.cr3;
|
|
else /* vmcs.GUEST_CR3 is already up-to-date. */
|
|
update_guest_cr3 = false;
|
|
vmx_ept_load_pdptrs(vcpu);
|
|
} else {
|
|
guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
|
|
}
|
|
|
|
if (update_guest_cr3)
|
|
vmcs_writel(GUEST_CR3, guest_cr3);
|
|
}
|
|
|
|
|
|
static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
/*
|
|
* We operate under the default treatment of SMM, so VMX cannot be
|
|
* enabled under SMM. Note, whether or not VMXE is allowed at all,
|
|
* i.e. is a reserved bit, is handled by common x86 code.
|
|
*/
|
|
if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
|
|
return false;
|
|
|
|
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long old_cr4 = kvm_read_cr4(vcpu);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long hw_cr4;
|
|
|
|
/*
|
|
* Pass through host's Machine Check Enable value to hw_cr4, which
|
|
* is in force while we are in guest mode. Do not let guests control
|
|
* this bit, even if host CR4.MCE == 0.
|
|
*/
|
|
hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
|
|
if (enable_unrestricted_guest)
|
|
hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
|
|
else if (vmx->rmode.vm86_active)
|
|
hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
|
|
else
|
|
hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
|
|
|
|
if (vmx_umip_emulated()) {
|
|
if (cr4 & X86_CR4_UMIP) {
|
|
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
|
|
hw_cr4 &= ~X86_CR4_UMIP;
|
|
} else if (!is_guest_mode(vcpu) ||
|
|
!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
|
|
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
|
|
}
|
|
}
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
|
|
|
|
if (!enable_unrestricted_guest) {
|
|
if (enable_ept) {
|
|
if (!is_paging(vcpu)) {
|
|
hw_cr4 &= ~X86_CR4_PAE;
|
|
hw_cr4 |= X86_CR4_PSE;
|
|
} else if (!(cr4 & X86_CR4_PAE)) {
|
|
hw_cr4 &= ~X86_CR4_PAE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
|
|
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
|
|
* to be manually disabled when guest switches to non-paging
|
|
* mode.
|
|
*
|
|
* If !enable_unrestricted_guest, the CPU is always running
|
|
* with CR0.PG=1 and CR4 needs to be modified.
|
|
* If enable_unrestricted_guest, the CPU automatically
|
|
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
|
|
*/
|
|
if (!is_paging(vcpu))
|
|
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
|
|
}
|
|
|
|
vmcs_writel(CR4_READ_SHADOW, cr4);
|
|
vmcs_writel(GUEST_CR4, hw_cr4);
|
|
|
|
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
|
|
kvm_update_cpuid_runtime(vcpu);
|
|
}
|
|
|
|
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 ar;
|
|
|
|
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
|
|
*var = vmx->rmode.segs[seg];
|
|
if (seg == VCPU_SREG_TR
|
|
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
|
|
return;
|
|
var->base = vmx_read_guest_seg_base(vmx, seg);
|
|
var->selector = vmx_read_guest_seg_selector(vmx, seg);
|
|
return;
|
|
}
|
|
var->base = vmx_read_guest_seg_base(vmx, seg);
|
|
var->limit = vmx_read_guest_seg_limit(vmx, seg);
|
|
var->selector = vmx_read_guest_seg_selector(vmx, seg);
|
|
ar = vmx_read_guest_seg_ar(vmx, seg);
|
|
var->unusable = (ar >> 16) & 1;
|
|
var->type = ar & 15;
|
|
var->s = (ar >> 4) & 1;
|
|
var->dpl = (ar >> 5) & 3;
|
|
/*
|
|
* Some userspaces do not preserve unusable property. Since usable
|
|
* segment has to be present according to VMX spec we can use present
|
|
* property to amend userspace bug by making unusable segment always
|
|
* nonpresent. vmx_segment_access_rights() already marks nonpresent
|
|
* segment as unusable.
|
|
*/
|
|
var->present = !var->unusable;
|
|
var->avl = (ar >> 12) & 1;
|
|
var->l = (ar >> 13) & 1;
|
|
var->db = (ar >> 14) & 1;
|
|
var->g = (ar >> 15) & 1;
|
|
}
|
|
|
|
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_segment s;
|
|
|
|
if (to_vmx(vcpu)->rmode.vm86_active) {
|
|
vmx_get_segment(vcpu, &s, seg);
|
|
return s.base;
|
|
}
|
|
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
|
|
}
|
|
|
|
int vmx_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (unlikely(vmx->rmode.vm86_active))
|
|
return 0;
|
|
else {
|
|
int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
|
|
return VMX_AR_DPL(ar);
|
|
}
|
|
}
|
|
|
|
static u32 vmx_segment_access_rights(struct kvm_segment *var)
|
|
{
|
|
u32 ar;
|
|
|
|
ar = var->type & 15;
|
|
ar |= (var->s & 1) << 4;
|
|
ar |= (var->dpl & 3) << 5;
|
|
ar |= (var->present & 1) << 7;
|
|
ar |= (var->avl & 1) << 12;
|
|
ar |= (var->l & 1) << 13;
|
|
ar |= (var->db & 1) << 14;
|
|
ar |= (var->g & 1) << 15;
|
|
ar |= (var->unusable || !var->present) << 16;
|
|
|
|
return ar;
|
|
}
|
|
|
|
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
vmx_segment_cache_clear(vmx);
|
|
|
|
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
|
|
vmx->rmode.segs[seg] = *var;
|
|
if (seg == VCPU_SREG_TR)
|
|
vmcs_write16(sf->selector, var->selector);
|
|
else if (var->s)
|
|
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
|
|
return;
|
|
}
|
|
|
|
vmcs_writel(sf->base, var->base);
|
|
vmcs_write32(sf->limit, var->limit);
|
|
vmcs_write16(sf->selector, var->selector);
|
|
|
|
/*
|
|
* Fix the "Accessed" bit in AR field of segment registers for older
|
|
* qemu binaries.
|
|
* IA32 arch specifies that at the time of processor reset the
|
|
* "Accessed" bit in the AR field of segment registers is 1. And qemu
|
|
* is setting it to 0 in the userland code. This causes invalid guest
|
|
* state vmexit when "unrestricted guest" mode is turned on.
|
|
* Fix for this setup issue in cpu_reset is being pushed in the qemu
|
|
* tree. Newer qemu binaries with that qemu fix would not need this
|
|
* kvm hack.
|
|
*/
|
|
if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
|
|
var->type |= 0x1; /* Accessed */
|
|
|
|
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
|
|
}
|
|
|
|
static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
|
|
{
|
|
__vmx_set_segment(vcpu, var, seg);
|
|
|
|
to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
|
|
}
|
|
|
|
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
|
|
|
|
*db = (ar >> 14) & 1;
|
|
*l = (ar >> 13) & 1;
|
|
}
|
|
|
|
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
|
|
dt->address = vmcs_readl(GUEST_IDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
|
|
vmcs_writel(GUEST_IDTR_BASE, dt->address);
|
|
}
|
|
|
|
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
|
|
dt->address = vmcs_readl(GUEST_GDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
|
|
vmcs_writel(GUEST_GDTR_BASE, dt->address);
|
|
}
|
|
|
|
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
u32 ar;
|
|
|
|
vmx_get_segment(vcpu, &var, seg);
|
|
var.dpl = 0x3;
|
|
if (seg == VCPU_SREG_CS)
|
|
var.type = 0x3;
|
|
ar = vmx_segment_access_rights(&var);
|
|
|
|
if (var.base != (var.selector << 4))
|
|
return false;
|
|
if (var.limit != 0xffff)
|
|
return false;
|
|
if (ar != 0xf3)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool code_segment_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment cs;
|
|
unsigned int cs_rpl;
|
|
|
|
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
|
|
|
|
if (cs.unusable)
|
|
return false;
|
|
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
|
|
return false;
|
|
if (!cs.s)
|
|
return false;
|
|
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
|
|
if (cs.dpl > cs_rpl)
|
|
return false;
|
|
} else {
|
|
if (cs.dpl != cs_rpl)
|
|
return false;
|
|
}
|
|
if (!cs.present)
|
|
return false;
|
|
|
|
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
|
|
return true;
|
|
}
|
|
|
|
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment ss;
|
|
unsigned int ss_rpl;
|
|
|
|
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
|
|
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
|
|
|
|
if (ss.unusable)
|
|
return true;
|
|
if (ss.type != 3 && ss.type != 7)
|
|
return false;
|
|
if (!ss.s)
|
|
return false;
|
|
if (ss.dpl != ss_rpl) /* DPL != RPL */
|
|
return false;
|
|
if (!ss.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
unsigned int rpl;
|
|
|
|
vmx_get_segment(vcpu, &var, seg);
|
|
rpl = var.selector & SEGMENT_RPL_MASK;
|
|
|
|
if (var.unusable)
|
|
return true;
|
|
if (!var.s)
|
|
return false;
|
|
if (!var.present)
|
|
return false;
|
|
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
|
|
if (var.dpl < rpl) /* DPL < RPL */
|
|
return false;
|
|
}
|
|
|
|
/* TODO: Add other members to kvm_segment_field to allow checking for other access
|
|
* rights flags
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
static bool tr_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment tr;
|
|
|
|
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
|
|
|
|
if (tr.unusable)
|
|
return false;
|
|
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
|
|
return false;
|
|
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
|
|
return false;
|
|
if (!tr.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ldtr_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment ldtr;
|
|
|
|
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
|
|
|
|
if (ldtr.unusable)
|
|
return true;
|
|
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
|
|
return false;
|
|
if (ldtr.type != 2)
|
|
return false;
|
|
if (!ldtr.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment cs, ss;
|
|
|
|
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
|
|
|
|
return ((cs.selector & SEGMENT_RPL_MASK) ==
|
|
(ss.selector & SEGMENT_RPL_MASK));
|
|
}
|
|
|
|
/*
|
|
* Check if guest state is valid. Returns true if valid, false if
|
|
* not.
|
|
* We assume that registers are always usable
|
|
*/
|
|
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* real mode guest state checks */
|
|
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
|
|
return false;
|
|
} else {
|
|
/* protected mode guest state checks */
|
|
if (!cs_ss_rpl_check(vcpu))
|
|
return false;
|
|
if (!code_segment_valid(vcpu))
|
|
return false;
|
|
if (!stack_segment_valid(vcpu))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
|
|
return false;
|
|
if (!tr_valid(vcpu))
|
|
return false;
|
|
if (!ldtr_valid(vcpu))
|
|
return false;
|
|
}
|
|
/* TODO:
|
|
* - Add checks on RIP
|
|
* - Add checks on RFLAGS
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
static int init_rmode_tss(struct kvm *kvm, void __user *ua)
|
|
{
|
|
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
|
|
u16 data;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
|
|
return -EFAULT;
|
|
}
|
|
|
|
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
|
|
if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
|
|
return -EFAULT;
|
|
|
|
data = ~0;
|
|
if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_rmode_identity_map(struct kvm *kvm)
|
|
{
|
|
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
|
|
int i, r = 0;
|
|
void __user *uaddr;
|
|
u32 tmp;
|
|
|
|
/* Protect kvm_vmx->ept_identity_pagetable_done. */
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
if (likely(kvm_vmx->ept_identity_pagetable_done))
|
|
goto out;
|
|
|
|
if (!kvm_vmx->ept_identity_map_addr)
|
|
kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
|
|
|
|
uaddr = __x86_set_memory_region(kvm,
|
|
IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
|
|
kvm_vmx->ept_identity_map_addr,
|
|
PAGE_SIZE);
|
|
if (IS_ERR(uaddr)) {
|
|
r = PTR_ERR(uaddr);
|
|
goto out;
|
|
}
|
|
|
|
/* Set up identity-mapping pagetable for EPT in real mode */
|
|
for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
|
|
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
|
|
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
|
|
if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
|
|
r = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
kvm_vmx->ept_identity_pagetable_done = true;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static void seg_setup(int seg)
|
|
{
|
|
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
unsigned int ar;
|
|
|
|
vmcs_write16(sf->selector, 0);
|
|
vmcs_writel(sf->base, 0);
|
|
vmcs_write32(sf->limit, 0xffff);
|
|
ar = 0x93;
|
|
if (seg == VCPU_SREG_CS)
|
|
ar |= 0x08; /* code segment */
|
|
|
|
vmcs_write32(sf->ar_bytes, ar);
|
|
}
|
|
|
|
int allocate_vpid(void)
|
|
{
|
|
int vpid;
|
|
|
|
if (!enable_vpid)
|
|
return 0;
|
|
spin_lock(&vmx_vpid_lock);
|
|
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
|
|
if (vpid < VMX_NR_VPIDS)
|
|
__set_bit(vpid, vmx_vpid_bitmap);
|
|
else
|
|
vpid = 0;
|
|
spin_unlock(&vmx_vpid_lock);
|
|
return vpid;
|
|
}
|
|
|
|
void free_vpid(int vpid)
|
|
{
|
|
if (!enable_vpid || vpid == 0)
|
|
return;
|
|
spin_lock(&vmx_vpid_lock);
|
|
__clear_bit(vpid, vmx_vpid_bitmap);
|
|
spin_unlock(&vmx_vpid_lock);
|
|
}
|
|
|
|
static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
|
|
{
|
|
/*
|
|
* When KVM is a nested hypervisor on top of Hyper-V and uses
|
|
* 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
|
|
* bitmap has changed.
|
|
*/
|
|
if (kvm_is_using_evmcs()) {
|
|
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
|
|
|
|
if (evmcs->hv_enlightenments_control.msr_bitmap)
|
|
evmcs->hv_clean_fields &=
|
|
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
|
|
}
|
|
|
|
vmx->nested.force_msr_bitmap_recalc = true;
|
|
}
|
|
|
|
void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
|
|
|
|
if (!cpu_has_vmx_msr_bitmap())
|
|
return;
|
|
|
|
vmx_msr_bitmap_l01_changed(vmx);
|
|
|
|
/*
|
|
* Mark the desired intercept state in shadow bitmap, this is needed
|
|
* for resync when the MSR filters change.
|
|
*/
|
|
if (is_valid_passthrough_msr(msr)) {
|
|
int idx = possible_passthrough_msr_slot(msr);
|
|
|
|
if (idx != -ENOENT) {
|
|
if (type & MSR_TYPE_R)
|
|
clear_bit(idx, vmx->shadow_msr_intercept.read);
|
|
if (type & MSR_TYPE_W)
|
|
clear_bit(idx, vmx->shadow_msr_intercept.write);
|
|
}
|
|
}
|
|
|
|
if ((type & MSR_TYPE_R) &&
|
|
!kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
|
|
vmx_set_msr_bitmap_read(msr_bitmap, msr);
|
|
type &= ~MSR_TYPE_R;
|
|
}
|
|
|
|
if ((type & MSR_TYPE_W) &&
|
|
!kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
|
|
vmx_set_msr_bitmap_write(msr_bitmap, msr);
|
|
type &= ~MSR_TYPE_W;
|
|
}
|
|
|
|
if (type & MSR_TYPE_R)
|
|
vmx_clear_msr_bitmap_read(msr_bitmap, msr);
|
|
|
|
if (type & MSR_TYPE_W)
|
|
vmx_clear_msr_bitmap_write(msr_bitmap, msr);
|
|
}
|
|
|
|
void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
|
|
|
|
if (!cpu_has_vmx_msr_bitmap())
|
|
return;
|
|
|
|
vmx_msr_bitmap_l01_changed(vmx);
|
|
|
|
/*
|
|
* Mark the desired intercept state in shadow bitmap, this is needed
|
|
* for resync when the MSR filter changes.
|
|
*/
|
|
if (is_valid_passthrough_msr(msr)) {
|
|
int idx = possible_passthrough_msr_slot(msr);
|
|
|
|
if (idx != -ENOENT) {
|
|
if (type & MSR_TYPE_R)
|
|
set_bit(idx, vmx->shadow_msr_intercept.read);
|
|
if (type & MSR_TYPE_W)
|
|
set_bit(idx, vmx->shadow_msr_intercept.write);
|
|
}
|
|
}
|
|
|
|
if (type & MSR_TYPE_R)
|
|
vmx_set_msr_bitmap_read(msr_bitmap, msr);
|
|
|
|
if (type & MSR_TYPE_W)
|
|
vmx_set_msr_bitmap_write(msr_bitmap, msr);
|
|
}
|
|
|
|
static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
|
|
* of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
|
|
* i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
|
|
*/
|
|
const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
|
|
const int write_idx = read_idx + (0x800 / sizeof(u64));
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
|
|
u8 mode;
|
|
|
|
if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
|
|
return;
|
|
|
|
if (cpu_has_secondary_exec_ctrls() &&
|
|
(secondary_exec_controls_get(vmx) &
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
|
|
mode = MSR_BITMAP_MODE_X2APIC;
|
|
if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
|
|
mode |= MSR_BITMAP_MODE_X2APIC_APICV;
|
|
} else {
|
|
mode = 0;
|
|
}
|
|
|
|
if (mode == vmx->x2apic_msr_bitmap_mode)
|
|
return;
|
|
|
|
vmx->x2apic_msr_bitmap_mode = mode;
|
|
|
|
/*
|
|
* Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
|
|
* registers (0x840 and above) intercepted, KVM doesn't support them.
|
|
* Intercept all writes by default and poke holes as needed. Pass
|
|
* through reads for all valid registers by default in x2APIC+APICv
|
|
* mode, only the current timer count needs on-demand emulation by KVM.
|
|
*/
|
|
if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
|
|
msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
|
|
else
|
|
msr_bitmap[read_idx] = ~0ull;
|
|
msr_bitmap[write_idx] = ~0ull;
|
|
|
|
/*
|
|
* TPR reads and writes can be virtualized even if virtual interrupt
|
|
* delivery is not in use.
|
|
*/
|
|
vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
|
|
!(mode & MSR_BITMAP_MODE_X2APIC));
|
|
|
|
if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
|
|
vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
|
|
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
|
|
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
|
|
if (enable_ipiv)
|
|
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
|
|
}
|
|
}
|
|
|
|
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
|
|
u32 i;
|
|
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
|
|
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
|
|
}
|
|
}
|
|
|
|
static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
void *vapic_page;
|
|
u32 vppr;
|
|
int rvi;
|
|
|
|
if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
|
|
!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
|
|
WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
|
|
return false;
|
|
|
|
rvi = vmx_get_rvi();
|
|
|
|
vapic_page = vmx->nested.virtual_apic_map.hva;
|
|
vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
|
|
|
|
return ((rvi & 0xf0) > (vppr & 0xf0));
|
|
}
|
|
|
|
static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 i;
|
|
|
|
/*
|
|
* Redo intercept permissions for MSRs that KVM is passing through to
|
|
* the guest. Disabling interception will check the new MSR filter and
|
|
* ensure that KVM enables interception if usersepace wants to filter
|
|
* the MSR. MSRs that KVM is already intercepting don't need to be
|
|
* refreshed since KVM is going to intercept them regardless of what
|
|
* userspace wants.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
|
|
u32 msr = vmx_possible_passthrough_msrs[i];
|
|
|
|
if (!test_bit(i, vmx->shadow_msr_intercept.read))
|
|
vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
|
|
|
|
if (!test_bit(i, vmx->shadow_msr_intercept.write))
|
|
vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
|
|
}
|
|
|
|
/* PT MSRs can be passed through iff PT is exposed to the guest. */
|
|
if (vmx_pt_mode_is_host_guest())
|
|
pt_update_intercept_for_msr(vcpu);
|
|
}
|
|
|
|
static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
|
|
int pi_vec)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (vcpu->mode == IN_GUEST_MODE) {
|
|
/*
|
|
* The vector of the virtual has already been set in the PIR.
|
|
* Send a notification event to deliver the virtual interrupt
|
|
* unless the vCPU is the currently running vCPU, i.e. the
|
|
* event is being sent from a fastpath VM-Exit handler, in
|
|
* which case the PIR will be synced to the vIRR before
|
|
* re-entering the guest.
|
|
*
|
|
* When the target is not the running vCPU, the following
|
|
* possibilities emerge:
|
|
*
|
|
* Case 1: vCPU stays in non-root mode. Sending a notification
|
|
* event posts the interrupt to the vCPU.
|
|
*
|
|
* Case 2: vCPU exits to root mode and is still runnable. The
|
|
* PIR will be synced to the vIRR before re-entering the guest.
|
|
* Sending a notification event is ok as the host IRQ handler
|
|
* will ignore the spurious event.
|
|
*
|
|
* Case 3: vCPU exits to root mode and is blocked. vcpu_block()
|
|
* has already synced PIR to vIRR and never blocks the vCPU if
|
|
* the vIRR is not empty. Therefore, a blocked vCPU here does
|
|
* not wait for any requested interrupts in PIR, and sending a
|
|
* notification event also results in a benign, spurious event.
|
|
*/
|
|
|
|
if (vcpu != kvm_get_running_vcpu())
|
|
__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
|
|
return;
|
|
}
|
|
#endif
|
|
/*
|
|
* The vCPU isn't in the guest; wake the vCPU in case it is blocking,
|
|
* otherwise do nothing as KVM will grab the highest priority pending
|
|
* IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
|
|
*/
|
|
kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
|
|
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
|
|
int vector)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (is_guest_mode(vcpu) &&
|
|
vector == vmx->nested.posted_intr_nv) {
|
|
/*
|
|
* If a posted intr is not recognized by hardware,
|
|
* we will accomplish it in the next vmentry.
|
|
*/
|
|
vmx->nested.pi_pending = true;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
/*
|
|
* This pairs with the smp_mb_*() after setting vcpu->mode in
|
|
* vcpu_enter_guest() to guarantee the vCPU sees the event
|
|
* request if triggering a posted interrupt "fails" because
|
|
* vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
|
|
* the smb_wmb() in kvm_make_request() only ensures everything
|
|
* done before making the request is visible when the request
|
|
* is visible, it doesn't ensure ordering between the store to
|
|
* vcpu->requests and the load from vcpu->mode.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
/* the PIR and ON have been set by L1. */
|
|
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
/*
|
|
* Send interrupt to vcpu via posted interrupt way.
|
|
* 1. If target vcpu is running(non-root mode), send posted interrupt
|
|
* notification to vcpu and hardware will sync PIR to vIRR atomically.
|
|
* 2. If target vcpu isn't running(root mode), kick it to pick up the
|
|
* interrupt from PIR in next vmentry.
|
|
*/
|
|
static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int r;
|
|
|
|
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
|
|
if (!r)
|
|
return 0;
|
|
|
|
/* Note, this is called iff the local APIC is in-kernel. */
|
|
if (!vcpu->arch.apic->apicv_active)
|
|
return -1;
|
|
|
|
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
|
|
return 0;
|
|
|
|
/* If a previous notification has sent the IPI, nothing to do. */
|
|
if (pi_test_and_set_on(&vmx->pi_desc))
|
|
return 0;
|
|
|
|
/*
|
|
* The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
|
|
* after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
|
|
* guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
|
|
* posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
|
|
*/
|
|
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
|
|
return 0;
|
|
}
|
|
|
|
static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
|
|
int trig_mode, int vector)
|
|
{
|
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
|
|
|
if (vmx_deliver_posted_interrupt(vcpu, vector)) {
|
|
kvm_lapic_set_irr(vector, apic);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
} else {
|
|
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
|
|
trig_mode, vector);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
|
|
* will not change in the lifetime of the guest.
|
|
* Note that host-state that does change is set elsewhere. E.g., host-state
|
|
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
|
|
*/
|
|
void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 low32, high32;
|
|
unsigned long tmpl;
|
|
unsigned long cr0, cr3, cr4;
|
|
|
|
cr0 = read_cr0();
|
|
WARN_ON(cr0 & X86_CR0_TS);
|
|
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
|
|
|
|
/*
|
|
* Save the most likely value for this task's CR3 in the VMCS.
|
|
* We can't use __get_current_cr3_fast() because we're not atomic.
|
|
*/
|
|
cr3 = __read_cr3();
|
|
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
|
|
vmx->loaded_vmcs->host_state.cr3 = cr3;
|
|
|
|
/* Save the most likely value for this task's CR4 in the VMCS. */
|
|
cr4 = cr4_read_shadow();
|
|
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
|
|
vmx->loaded_vmcs->host_state.cr4 = cr4;
|
|
|
|
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Load null selectors, so we can avoid reloading them in
|
|
* vmx_prepare_switch_to_host(), in case userspace uses
|
|
* the null selectors too (the expected case).
|
|
*/
|
|
vmcs_write16(HOST_DS_SELECTOR, 0);
|
|
vmcs_write16(HOST_ES_SELECTOR, 0);
|
|
#else
|
|
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
#endif
|
|
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
|
|
|
|
vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
|
|
|
|
vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
|
|
|
|
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
|
|
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
|
|
|
|
/*
|
|
* SYSENTER is used for 32-bit system calls on either 32-bit or
|
|
* 64-bit kernels. It is always zero If neither is allowed, otherwise
|
|
* vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
|
|
* have already done so!).
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
|
|
|
|
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
|
|
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
|
|
|
|
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
|
|
rdmsr(MSR_IA32_CR_PAT, low32, high32);
|
|
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
|
|
}
|
|
|
|
if (cpu_has_load_ia32_efer())
|
|
vmcs_write64(HOST_IA32_EFER, host_efer);
|
|
}
|
|
|
|
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
|
|
{
|
|
struct kvm_vcpu *vcpu = &vmx->vcpu;
|
|
|
|
vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
|
|
~vcpu->arch.cr4_guest_rsvd_bits;
|
|
if (!enable_ept) {
|
|
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
|
|
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
|
|
}
|
|
if (is_guest_mode(&vmx->vcpu))
|
|
vcpu->arch.cr4_guest_owned_bits &=
|
|
~get_vmcs12(vcpu)->cr4_guest_host_mask;
|
|
vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
|
|
}
|
|
|
|
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
|
|
|
|
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
|
|
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
|
|
|
|
if (!enable_vnmi)
|
|
pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
|
|
|
|
if (!enable_preemption_timer)
|
|
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
|
|
|
|
return pin_based_exec_ctrl;
|
|
}
|
|
|
|
static u32 vmx_vmentry_ctrl(void)
|
|
{
|
|
u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
|
|
|
|
if (vmx_pt_mode_is_system())
|
|
vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
|
|
VM_ENTRY_LOAD_IA32_RTIT_CTL);
|
|
/*
|
|
* IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
|
|
*/
|
|
vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
|
|
VM_ENTRY_LOAD_IA32_EFER |
|
|
VM_ENTRY_IA32E_MODE);
|
|
|
|
if (cpu_has_perf_global_ctrl_bug())
|
|
vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
|
|
|
|
return vmentry_ctrl;
|
|
}
|
|
|
|
static u32 vmx_vmexit_ctrl(void)
|
|
{
|
|
u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
|
|
|
|
/*
|
|
* Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
|
|
* nested virtualization and thus allowed to be set in vmcs12.
|
|
*/
|
|
vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
|
|
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
|
|
|
|
if (vmx_pt_mode_is_system())
|
|
vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
|
|
VM_EXIT_CLEAR_IA32_RTIT_CTL);
|
|
|
|
if (cpu_has_perf_global_ctrl_bug())
|
|
vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
|
|
|
|
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
|
|
return vmexit_ctrl &
|
|
~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
|
|
}
|
|
|
|
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
vmx->nested.update_vmcs01_apicv_status = true;
|
|
return;
|
|
}
|
|
|
|
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu)) {
|
|
secondary_exec_controls_setbit(vmx,
|
|
SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
|
|
if (enable_ipiv)
|
|
tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
|
|
} else {
|
|
secondary_exec_controls_clearbit(vmx,
|
|
SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
|
|
if (enable_ipiv)
|
|
tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
|
|
}
|
|
|
|
vmx_update_msr_bitmap_x2apic(vcpu);
|
|
}
|
|
|
|
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
|
|
|
|
/*
|
|
* Not used by KVM, but fully supported for nesting, i.e. are allowed in
|
|
* vmcs12 and propagated to vmcs02 when set in vmcs12.
|
|
*/
|
|
exec_control &= ~(CPU_BASED_RDTSC_EXITING |
|
|
CPU_BASED_USE_IO_BITMAPS |
|
|
CPU_BASED_MONITOR_TRAP_FLAG |
|
|
CPU_BASED_PAUSE_EXITING);
|
|
|
|
/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
|
|
exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
|
|
CPU_BASED_NMI_WINDOW_EXITING);
|
|
|
|
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
|
|
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
|
|
|
|
if (!cpu_need_tpr_shadow(&vmx->vcpu))
|
|
exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (exec_control & CPU_BASED_TPR_SHADOW)
|
|
exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
|
|
CPU_BASED_CR8_STORE_EXITING);
|
|
else
|
|
exec_control |= CPU_BASED_CR8_STORE_EXITING |
|
|
CPU_BASED_CR8_LOAD_EXITING;
|
|
#endif
|
|
/* No need to intercept CR3 access or INVPLG when using EPT. */
|
|
if (enable_ept)
|
|
exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING |
|
|
CPU_BASED_INVLPG_EXITING);
|
|
if (kvm_mwait_in_guest(vmx->vcpu.kvm))
|
|
exec_control &= ~(CPU_BASED_MWAIT_EXITING |
|
|
CPU_BASED_MONITOR_EXITING);
|
|
if (kvm_hlt_in_guest(vmx->vcpu.kvm))
|
|
exec_control &= ~CPU_BASED_HLT_EXITING;
|
|
return exec_control;
|
|
}
|
|
|
|
static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
|
|
{
|
|
u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
|
|
|
|
/*
|
|
* IPI virtualization relies on APICv. Disable IPI virtualization if
|
|
* APICv is inhibited.
|
|
*/
|
|
if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
|
|
exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
|
|
|
|
return exec_control;
|
|
}
|
|
|
|
/*
|
|
* Adjust a single secondary execution control bit to intercept/allow an
|
|
* instruction in the guest. This is usually done based on whether or not a
|
|
* feature has been exposed to the guest in order to correctly emulate faults.
|
|
*/
|
|
static inline void
|
|
vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
|
|
u32 control, bool enabled, bool exiting)
|
|
{
|
|
/*
|
|
* If the control is for an opt-in feature, clear the control if the
|
|
* feature is not exposed to the guest, i.e. not enabled. If the
|
|
* control is opt-out, i.e. an exiting control, clear the control if
|
|
* the feature _is_ exposed to the guest, i.e. exiting/interception is
|
|
* disabled for the associated instruction. Note, the caller is
|
|
* responsible presetting exec_control to set all supported bits.
|
|
*/
|
|
if (enabled == exiting)
|
|
*exec_control &= ~control;
|
|
|
|
/*
|
|
* Update the nested MSR settings so that a nested VMM can/can't set
|
|
* controls for features that are/aren't exposed to the guest.
|
|
*/
|
|
if (nested) {
|
|
/*
|
|
* All features that can be added or removed to VMX MSRs must
|
|
* be supported in the first place for nested virtualization.
|
|
*/
|
|
if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
|
|
enabled = false;
|
|
|
|
if (enabled)
|
|
vmx->nested.msrs.secondary_ctls_high |= control;
|
|
else
|
|
vmx->nested.msrs.secondary_ctls_high &= ~control;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wrapper macro for the common case of adjusting a secondary execution control
|
|
* based on a single guest CPUID bit, with a dedicated feature bit. This also
|
|
* verifies that the control is actually supported by KVM and hardware.
|
|
*/
|
|
#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
|
|
({ \
|
|
struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
|
|
bool __enabled; \
|
|
\
|
|
if (cpu_has_vmx_##name()) { \
|
|
if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
|
|
__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
|
|
else \
|
|
__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
|
|
vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
|
|
__enabled, exiting); \
|
|
} \
|
|
})
|
|
|
|
/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
|
|
#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
|
|
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
|
|
|
|
#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
|
|
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
|
|
|
|
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
|
|
{
|
|
struct kvm_vcpu *vcpu = &vmx->vcpu;
|
|
|
|
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
|
|
|
|
if (vmx_pt_mode_is_system())
|
|
exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
|
|
if (!cpu_need_virtualize_apic_accesses(vcpu))
|
|
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
if (vmx->vpid == 0)
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
|
|
if (!enable_ept) {
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
|
|
enable_unrestricted_guest = 0;
|
|
}
|
|
if (!enable_unrestricted_guest)
|
|
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
|
|
if (kvm_pause_in_guest(vmx->vcpu.kvm))
|
|
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
|
|
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
|
|
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
|
|
|
|
/*
|
|
* KVM doesn't support VMFUNC for L1, but the control is set in KVM's
|
|
* base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
|
|
*/
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
|
|
|
|
/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
|
|
* in vmx_set_cr4. */
|
|
exec_control &= ~SECONDARY_EXEC_DESC;
|
|
|
|
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
|
|
(handle_vmptrld).
|
|
We can NOT enable shadow_vmcs here because we don't have yet
|
|
a current VMCS12
|
|
*/
|
|
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
|
|
|
|
/*
|
|
* PML is enabled/disabled when dirty logging of memsmlots changes, but
|
|
* it needs to be set here when dirty logging is already active, e.g.
|
|
* if this vCPU was created after dirty logging was enabled.
|
|
*/
|
|
if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
|
|
|
|
vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
|
|
|
|
/*
|
|
* RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
|
|
* feature is exposed to the guest. This creates a virtualization hole
|
|
* if both are supported in hardware but only one is exposed to the
|
|
* guest, but letting the guest execute RDTSCP or RDPID when either one
|
|
* is advertised is preferable to emulating the advertised instruction
|
|
* in KVM on #UD, and obviously better than incorrectly injecting #UD.
|
|
*/
|
|
if (cpu_has_vmx_rdtscp()) {
|
|
bool rdpid_or_rdtscp_enabled =
|
|
guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
|
|
guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
|
|
|
|
vmx_adjust_secondary_exec_control(vmx, &exec_control,
|
|
SECONDARY_EXEC_ENABLE_RDTSCP,
|
|
rdpid_or_rdtscp_enabled, false);
|
|
}
|
|
|
|
vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
|
|
|
|
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
|
|
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
|
|
|
|
vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
|
|
ENABLE_USR_WAIT_PAUSE, false);
|
|
|
|
if (!vcpu->kvm->arch.bus_lock_detection_enabled)
|
|
exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
|
|
|
|
if (!kvm_notify_vmexit_enabled(vcpu->kvm))
|
|
exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
|
|
|
|
return exec_control;
|
|
}
|
|
|
|
static inline int vmx_get_pid_table_order(struct kvm *kvm)
|
|
{
|
|
return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
|
|
}
|
|
|
|
static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
|
|
{
|
|
struct page *pages;
|
|
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
|
|
|
|
if (!irqchip_in_kernel(kvm) || !enable_ipiv)
|
|
return 0;
|
|
|
|
if (kvm_vmx->pid_table)
|
|
return 0;
|
|
|
|
pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
|
|
vmx_get_pid_table_order(kvm));
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
kvm_vmx->pid_table = (void *)page_address(pages);
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_vcpu_precreate(struct kvm *kvm)
|
|
{
|
|
return vmx_alloc_ipiv_pid_table(kvm);
|
|
}
|
|
|
|
#define VMX_XSS_EXIT_BITMAP 0
|
|
|
|
static void init_vmcs(struct vcpu_vmx *vmx)
|
|
{
|
|
struct kvm *kvm = vmx->vcpu.kvm;
|
|
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
|
|
|
|
if (nested)
|
|
nested_vmx_set_vmcs_shadowing_bitmap();
|
|
|
|
if (cpu_has_vmx_msr_bitmap())
|
|
vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
|
|
|
|
vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
|
|
|
|
/* Control */
|
|
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
|
|
|
|
exec_controls_set(vmx, vmx_exec_control(vmx));
|
|
|
|
if (cpu_has_secondary_exec_ctrls())
|
|
secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
|
|
|
|
if (cpu_has_tertiary_exec_ctrls())
|
|
tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
|
|
|
|
if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
|
|
vmcs_write64(EOI_EXIT_BITMAP0, 0);
|
|
vmcs_write64(EOI_EXIT_BITMAP1, 0);
|
|
vmcs_write64(EOI_EXIT_BITMAP2, 0);
|
|
vmcs_write64(EOI_EXIT_BITMAP3, 0);
|
|
|
|
vmcs_write16(GUEST_INTR_STATUS, 0);
|
|
|
|
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
|
|
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
|
|
}
|
|
|
|
if (vmx_can_use_ipiv(&vmx->vcpu)) {
|
|
vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
|
|
vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
|
|
}
|
|
|
|
if (!kvm_pause_in_guest(kvm)) {
|
|
vmcs_write32(PLE_GAP, ple_gap);
|
|
vmx->ple_window = ple_window;
|
|
vmx->ple_window_dirty = true;
|
|
}
|
|
|
|
if (kvm_notify_vmexit_enabled(kvm))
|
|
vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
|
|
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
|
|
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
|
|
|
|
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
|
|
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
|
|
vmx_set_constant_host_state(vmx);
|
|
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
|
|
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
|
|
|
|
if (cpu_has_vmx_vmfunc())
|
|
vmcs_write64(VM_FUNCTION_CONTROL, 0);
|
|
|
|
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
|
|
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
|
|
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
|
|
|
|
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
|
|
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
|
|
|
|
vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
|
|
|
|
/* 22.2.1, 20.8.1 */
|
|
vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
|
|
|
|
vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
|
|
|
|
set_cr4_guest_host_mask(vmx);
|
|
|
|
if (vmx->vpid != 0)
|
|
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
|
|
|
|
if (cpu_has_vmx_xsaves())
|
|
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
|
|
|
|
if (enable_pml) {
|
|
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
|
|
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
|
|
}
|
|
|
|
vmx_write_encls_bitmap(&vmx->vcpu, NULL);
|
|
|
|
if (vmx_pt_mode_is_host_guest()) {
|
|
memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
|
|
/* Bit[6~0] are forced to 1, writes are ignored. */
|
|
vmx->pt_desc.guest.output_mask = 0x7F;
|
|
vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
|
|
}
|
|
|
|
vmcs_write32(GUEST_SYSENTER_CS, 0);
|
|
vmcs_writel(GUEST_SYSENTER_ESP, 0);
|
|
vmcs_writel(GUEST_SYSENTER_EIP, 0);
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
|
|
|
|
if (cpu_has_vmx_tpr_shadow()) {
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
|
|
if (cpu_need_tpr_shadow(&vmx->vcpu))
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
|
|
__pa(vmx->vcpu.arch.apic->regs));
|
|
vmcs_write32(TPR_THRESHOLD, 0);
|
|
}
|
|
|
|
vmx_setup_uret_msrs(vmx);
|
|
}
|
|
|
|
static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
init_vmcs(vmx);
|
|
|
|
if (nested)
|
|
memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
|
|
|
|
vcpu_setup_sgx_lepubkeyhash(vcpu);
|
|
|
|
vmx->nested.posted_intr_nv = -1;
|
|
vmx->nested.vmxon_ptr = INVALID_GPA;
|
|
vmx->nested.current_vmptr = INVALID_GPA;
|
|
vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
|
|
|
|
vcpu->arch.microcode_version = 0x100000000ULL;
|
|
vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
|
|
|
|
/*
|
|
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
|
|
* or POSTED_INTR_WAKEUP_VECTOR.
|
|
*/
|
|
vmx->pi_desc.nv = POSTED_INTR_VECTOR;
|
|
vmx->pi_desc.sn = 1;
|
|
}
|
|
|
|
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!init_event)
|
|
__vmx_vcpu_reset(vcpu);
|
|
|
|
vmx->rmode.vm86_active = 0;
|
|
vmx->spec_ctrl = 0;
|
|
|
|
vmx->msr_ia32_umwait_control = 0;
|
|
|
|
vmx->hv_deadline_tsc = -1;
|
|
kvm_set_cr8(vcpu, 0);
|
|
|
|
vmx_segment_cache_clear(vmx);
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
|
|
|
|
seg_setup(VCPU_SREG_CS);
|
|
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
|
|
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
|
|
|
|
seg_setup(VCPU_SREG_DS);
|
|
seg_setup(VCPU_SREG_ES);
|
|
seg_setup(VCPU_SREG_FS);
|
|
seg_setup(VCPU_SREG_GS);
|
|
seg_setup(VCPU_SREG_SS);
|
|
|
|
vmcs_write16(GUEST_TR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_TR_BASE, 0);
|
|
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_LDTR_BASE, 0);
|
|
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
|
|
|
|
vmcs_writel(GUEST_GDTR_BASE, 0);
|
|
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_writel(GUEST_IDTR_BASE, 0);
|
|
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
|
|
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
|
|
if (kvm_mpx_supported())
|
|
vmcs_write64(GUEST_BNDCFGS, 0);
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
|
|
|
|
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
|
|
|
|
vpid_sync_context(vmx->vpid);
|
|
|
|
vmx_update_fb_clear_dis(vcpu, vmx);
|
|
}
|
|
|
|
static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
|
|
}
|
|
|
|
static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!enable_vnmi ||
|
|
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
|
|
vmx_enable_irq_window(vcpu);
|
|
return;
|
|
}
|
|
|
|
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
|
|
}
|
|
|
|
static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
uint32_t intr;
|
|
int irq = vcpu->arch.interrupt.nr;
|
|
|
|
trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
|
|
|
|
++vcpu->stat.irq_injections;
|
|
if (vmx->rmode.vm86_active) {
|
|
int inc_eip = 0;
|
|
if (vcpu->arch.interrupt.soft)
|
|
inc_eip = vcpu->arch.event_exit_inst_len;
|
|
kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
|
|
return;
|
|
}
|
|
intr = irq | INTR_INFO_VALID_MASK;
|
|
if (vcpu->arch.interrupt.soft) {
|
|
intr |= INTR_TYPE_SOFT_INTR;
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmx->vcpu.arch.event_exit_inst_len);
|
|
} else
|
|
intr |= INTR_TYPE_EXT_INTR;
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
|
|
|
|
vmx_clear_hlt(vcpu);
|
|
}
|
|
|
|
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!enable_vnmi) {
|
|
/*
|
|
* Tracking the NMI-blocked state in software is built upon
|
|
* finding the next open IRQ window. This, in turn, depends on
|
|
* well-behaving guests: They have to keep IRQs disabled at
|
|
* least as long as the NMI handler runs. Otherwise we may
|
|
* cause NMI nesting, maybe breaking the guest. But as this is
|
|
* highly unlikely, we can live with the residual risk.
|
|
*/
|
|
vmx->loaded_vmcs->soft_vnmi_blocked = 1;
|
|
vmx->loaded_vmcs->vnmi_blocked_time = 0;
|
|
}
|
|
|
|
++vcpu->stat.nmi_injections;
|
|
vmx->loaded_vmcs->nmi_known_unmasked = false;
|
|
|
|
if (vmx->rmode.vm86_active) {
|
|
kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
|
|
return;
|
|
}
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
|
|
|
|
vmx_clear_hlt(vcpu);
|
|
}
|
|
|
|
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
bool masked;
|
|
|
|
if (!enable_vnmi)
|
|
return vmx->loaded_vmcs->soft_vnmi_blocked;
|
|
if (vmx->loaded_vmcs->nmi_known_unmasked)
|
|
return false;
|
|
masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
|
|
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
|
|
return masked;
|
|
}
|
|
|
|
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!enable_vnmi) {
|
|
if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
|
|
vmx->loaded_vmcs->soft_vnmi_blocked = masked;
|
|
vmx->loaded_vmcs->vnmi_blocked_time = 0;
|
|
}
|
|
} else {
|
|
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
|
|
if (masked)
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
else
|
|
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
}
|
|
}
|
|
|
|
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
|
|
return false;
|
|
|
|
if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
|
|
return true;
|
|
|
|
return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
|
|
GUEST_INTR_STATE_NMI));
|
|
}
|
|
|
|
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
if (to_vmx(vcpu)->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
|
|
return -EBUSY;
|
|
|
|
return !vmx_nmi_blocked(vcpu);
|
|
}
|
|
|
|
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
|
|
return false;
|
|
|
|
return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
|
|
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
|
|
}
|
|
|
|
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
if (to_vmx(vcpu)->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
|
|
* e.g. if the IRQ arrived asynchronously after checking nested events.
|
|
*/
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
|
|
return -EBUSY;
|
|
|
|
return !vmx_interrupt_blocked(vcpu);
|
|
}
|
|
|
|
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
void __user *ret;
|
|
|
|
if (enable_unrestricted_guest)
|
|
return 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
|
|
PAGE_SIZE * 3);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
if (IS_ERR(ret))
|
|
return PTR_ERR(ret);
|
|
|
|
to_kvm_vmx(kvm)->tss_addr = addr;
|
|
|
|
return init_rmode_tss(kvm, ret);
|
|
}
|
|
|
|
static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
|
|
{
|
|
to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
|
|
return 0;
|
|
}
|
|
|
|
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
|
|
{
|
|
switch (vec) {
|
|
case BP_VECTOR:
|
|
/*
|
|
* Update instruction length as we may reinject the exception
|
|
* from user space while in guest debugging mode.
|
|
*/
|
|
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
return false;
|
|
fallthrough;
|
|
case DB_VECTOR:
|
|
return !(vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
|
|
case DE_VECTOR:
|
|
case OF_VECTOR:
|
|
case BR_VECTOR:
|
|
case UD_VECTOR:
|
|
case DF_VECTOR:
|
|
case SS_VECTOR:
|
|
case GP_VECTOR:
|
|
case MF_VECTOR:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
|
|
int vec, u32 err_code)
|
|
{
|
|
/*
|
|
* Instruction with address size override prefix opcode 0x67
|
|
* Cause the #SS fault with 0 error code in VM86 mode.
|
|
*/
|
|
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
|
|
if (kvm_emulate_instruction(vcpu, 0)) {
|
|
if (vcpu->arch.halt_request) {
|
|
vcpu->arch.halt_request = 0;
|
|
return kvm_emulate_halt_noskip(vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Forward all other exceptions that are valid in real mode.
|
|
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
|
|
* the required debugging infrastructure rework.
|
|
*/
|
|
kvm_queue_exception(vcpu, vec);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_machine_check(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* handled by vmx_vcpu_run() */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the host has split lock detection disabled, then #AC is
|
|
* unconditionally injected into the guest, which is the pre split lock
|
|
* detection behaviour.
|
|
*
|
|
* If the host has split lock detection enabled then #AC is
|
|
* only injected into the guest when:
|
|
* - Guest CPL == 3 (user mode)
|
|
* - Guest has #AC detection enabled in CR0
|
|
* - Guest EFLAGS has AC bit set
|
|
*/
|
|
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
|
|
return true;
|
|
|
|
return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
|
|
(kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
|
|
}
|
|
|
|
static int handle_exception_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 intr_info, ex_no, error_code;
|
|
unsigned long cr2, dr6;
|
|
u32 vect_info;
|
|
|
|
vect_info = vmx->idt_vectoring_info;
|
|
intr_info = vmx_get_intr_info(vcpu);
|
|
|
|
/*
|
|
* Machine checks are handled by handle_exception_irqoff(), or by
|
|
* vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
|
|
* vmx_vcpu_enter_exit().
|
|
*/
|
|
if (is_machine_check(intr_info) || is_nmi(intr_info))
|
|
return 1;
|
|
|
|
/*
|
|
* Queue the exception here instead of in handle_nm_fault_irqoff().
|
|
* This ensures the nested_vmx check is not skipped so vmexit can
|
|
* be reflected to L1 (when it intercepts #NM) before reaching this
|
|
* point.
|
|
*/
|
|
if (is_nm_fault(intr_info)) {
|
|
kvm_queue_exception(vcpu, NM_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (is_invalid_opcode(intr_info))
|
|
return handle_ud(vcpu);
|
|
|
|
error_code = 0;
|
|
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
|
|
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
|
|
|
|
if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
|
|
WARN_ON_ONCE(!enable_vmware_backdoor);
|
|
|
|
/*
|
|
* VMware backdoor emulation on #GP interception only handles
|
|
* IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
|
|
* error code on #GP.
|
|
*/
|
|
if (error_code) {
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
|
|
return 1;
|
|
}
|
|
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
|
|
}
|
|
|
|
/*
|
|
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
|
|
* MMIO, it is better to report an internal error.
|
|
* See the comments in vmx_handle_exit.
|
|
*/
|
|
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
|
|
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
|
|
vcpu->run->internal.ndata = 4;
|
|
vcpu->run->internal.data[0] = vect_info;
|
|
vcpu->run->internal.data[1] = intr_info;
|
|
vcpu->run->internal.data[2] = error_code;
|
|
vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
if (is_page_fault(intr_info)) {
|
|
cr2 = vmx_get_exit_qual(vcpu);
|
|
if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
|
|
/*
|
|
* EPT will cause page fault only if we need to
|
|
* detect illegal GPAs.
|
|
*/
|
|
WARN_ON_ONCE(!allow_smaller_maxphyaddr);
|
|
kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
|
|
return 1;
|
|
} else
|
|
return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
|
|
}
|
|
|
|
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
|
|
|
|
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
|
|
return handle_rmode_exception(vcpu, ex_no, error_code);
|
|
|
|
switch (ex_no) {
|
|
case DB_VECTOR:
|
|
dr6 = vmx_get_exit_qual(vcpu);
|
|
if (!(vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
|
|
/*
|
|
* If the #DB was due to ICEBP, a.k.a. INT1, skip the
|
|
* instruction. ICEBP generates a trap-like #DB, but
|
|
* despite its interception control being tied to #DB,
|
|
* is an instruction intercept, i.e. the VM-Exit occurs
|
|
* on the ICEBP itself. Use the inner "skip" helper to
|
|
* avoid single-step #DB and MTF updates, as ICEBP is
|
|
* higher priority. Note, skipping ICEBP still clears
|
|
* STI and MOVSS blocking.
|
|
*
|
|
* For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
|
|
* if single-step is enabled in RFLAGS and STI or MOVSS
|
|
* blocking is active, as the CPU doesn't set the bit
|
|
* on VM-Exit due to #DB interception. VM-Entry has a
|
|
* consistency check that a single-step #DB is pending
|
|
* in this scenario as the previous instruction cannot
|
|
* have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
|
|
* don't modify RFLAGS), therefore the one instruction
|
|
* delay when activating single-step breakpoints must
|
|
* have already expired. Note, the CPU sets/clears BS
|
|
* as appropriate for all other VM-Exits types.
|
|
*/
|
|
if (is_icebp(intr_info))
|
|
WARN_ON(!skip_emulated_instruction(vcpu));
|
|
else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
|
|
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
|
|
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
|
|
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
|
|
|
|
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
|
|
return 1;
|
|
}
|
|
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
|
|
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
|
|
fallthrough;
|
|
case BP_VECTOR:
|
|
/*
|
|
* Update instruction length as we may reinject #BP from
|
|
* user space while in guest debugging mode. Reading it for
|
|
* #DB as well causes no harm, it is not used in that case.
|
|
*/
|
|
vmx->vcpu.arch.event_exit_inst_len =
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
|
|
kvm_run->debug.arch.exception = ex_no;
|
|
break;
|
|
case AC_VECTOR:
|
|
if (vmx_guest_inject_ac(vcpu)) {
|
|
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handle split lock. Depending on detection mode this will
|
|
* either warn and disable split lock detection for this
|
|
* task or force SIGBUS on it.
|
|
*/
|
|
if (handle_guest_split_lock(kvm_rip_read(vcpu)))
|
|
return 1;
|
|
fallthrough;
|
|
default:
|
|
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
|
|
kvm_run->ex.exception = ex_no;
|
|
kvm_run->ex.error_code = error_code;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int handle_triple_fault(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
vcpu->mmio_needed = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_io(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
string = (exit_qualification & 16) != 0;
|
|
|
|
++vcpu->stat.io_exits;
|
|
|
|
if (string)
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
|
|
port = exit_qualification >> 16;
|
|
size = (exit_qualification & 7) + 1;
|
|
in = (exit_qualification & 8) != 0;
|
|
|
|
return kvm_fast_pio(vcpu, size, port, in);
|
|
}
|
|
|
|
static void
|
|
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xc1;
|
|
}
|
|
|
|
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
|
|
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
if (is_guest_mode(vcpu)) {
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
unsigned long orig_val = val;
|
|
|
|
/*
|
|
* We get here when L2 changed cr0 in a way that did not change
|
|
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
|
|
* but did change L0 shadowed bits. So we first calculate the
|
|
* effective cr0 value that L1 would like to write into the
|
|
* hardware. It consists of the L2-owned bits from the new
|
|
* value combined with the L1-owned bits from L1's guest_cr0.
|
|
*/
|
|
val = (val & ~vmcs12->cr0_guest_host_mask) |
|
|
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
|
|
|
|
if (kvm_set_cr0(vcpu, val))
|
|
return 1;
|
|
vmcs_writel(CR0_READ_SHADOW, orig_val);
|
|
return 0;
|
|
} else {
|
|
return kvm_set_cr0(vcpu, val);
|
|
}
|
|
}
|
|
|
|
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
if (is_guest_mode(vcpu)) {
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
unsigned long orig_val = val;
|
|
|
|
/* analogously to handle_set_cr0 */
|
|
val = (val & ~vmcs12->cr4_guest_host_mask) |
|
|
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
|
|
if (kvm_set_cr4(vcpu, val))
|
|
return 1;
|
|
vmcs_writel(CR4_READ_SHADOW, orig_val);
|
|
return 0;
|
|
} else
|
|
return kvm_set_cr4(vcpu, val);
|
|
}
|
|
|
|
static int handle_desc(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
|
|
* and other code needs to be updated if UMIP can be guest owned.
|
|
*/
|
|
BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
|
|
|
|
WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
}
|
|
|
|
static int handle_cr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification, val;
|
|
int cr;
|
|
int reg;
|
|
int err;
|
|
int ret;
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
cr = exit_qualification & 15;
|
|
reg = (exit_qualification >> 8) & 15;
|
|
switch ((exit_qualification >> 4) & 3) {
|
|
case 0: /* mov to cr */
|
|
val = kvm_register_read(vcpu, reg);
|
|
trace_kvm_cr_write(cr, val);
|
|
switch (cr) {
|
|
case 0:
|
|
err = handle_set_cr0(vcpu, val);
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
case 3:
|
|
WARN_ON_ONCE(enable_unrestricted_guest);
|
|
|
|
err = kvm_set_cr3(vcpu, val);
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
case 4:
|
|
err = handle_set_cr4(vcpu, val);
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
case 8: {
|
|
u8 cr8_prev = kvm_get_cr8(vcpu);
|
|
u8 cr8 = (u8)val;
|
|
err = kvm_set_cr8(vcpu, cr8);
|
|
ret = kvm_complete_insn_gp(vcpu, err);
|
|
if (lapic_in_kernel(vcpu))
|
|
return ret;
|
|
if (cr8_prev <= cr8)
|
|
return ret;
|
|
/*
|
|
* TODO: we might be squashing a
|
|
* KVM_GUESTDBG_SINGLESTEP-triggered
|
|
* KVM_EXIT_DEBUG here.
|
|
*/
|
|
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
}
|
|
break;
|
|
case 2: /* clts */
|
|
KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
|
|
return -EIO;
|
|
case 1: /*mov from cr*/
|
|
switch (cr) {
|
|
case 3:
|
|
WARN_ON_ONCE(enable_unrestricted_guest);
|
|
|
|
val = kvm_read_cr3(vcpu);
|
|
kvm_register_write(vcpu, reg, val);
|
|
trace_kvm_cr_read(cr, val);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
case 8:
|
|
val = kvm_get_cr8(vcpu);
|
|
kvm_register_write(vcpu, reg, val);
|
|
trace_kvm_cr_read(cr, val);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
break;
|
|
case 3: /* lmsw */
|
|
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
|
|
trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
|
|
kvm_lmsw(vcpu, val);
|
|
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
default:
|
|
break;
|
|
}
|
|
vcpu->run->exit_reason = 0;
|
|
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
|
|
(int)(exit_qualification >> 4) & 3, cr);
|
|
return 0;
|
|
}
|
|
|
|
static int handle_dr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
int dr, dr7, reg;
|
|
int err = 1;
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
|
|
|
|
/* First, if DR does not exist, trigger UD */
|
|
if (!kvm_require_dr(vcpu, dr))
|
|
return 1;
|
|
|
|
if (vmx_get_cpl(vcpu) > 0)
|
|
goto out;
|
|
|
|
dr7 = vmcs_readl(GUEST_DR7);
|
|
if (dr7 & DR7_GD) {
|
|
/*
|
|
* As the vm-exit takes precedence over the debug trap, we
|
|
* need to emulate the latter, either for the host or the
|
|
* guest debugging itself.
|
|
*/
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
|
|
vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
|
|
vcpu->run->debug.arch.dr7 = dr7;
|
|
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
|
|
vcpu->run->debug.arch.exception = DB_VECTOR;
|
|
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
|
|
return 0;
|
|
} else {
|
|
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (vcpu->guest_debug == 0) {
|
|
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
|
|
|
|
/*
|
|
* No more DR vmexits; force a reload of the debug registers
|
|
* and reenter on this instruction. The next vmexit will
|
|
* retrieve the full state of the debug registers.
|
|
*/
|
|
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
|
|
return 1;
|
|
}
|
|
|
|
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
|
|
if (exit_qualification & TYPE_MOV_FROM_DR) {
|
|
unsigned long val;
|
|
|
|
kvm_get_dr(vcpu, dr, &val);
|
|
kvm_register_write(vcpu, reg, val);
|
|
err = 0;
|
|
} else {
|
|
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
|
|
}
|
|
|
|
out:
|
|
return kvm_complete_insn_gp(vcpu, err);
|
|
}
|
|
|
|
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
get_debugreg(vcpu->arch.db[0], 0);
|
|
get_debugreg(vcpu->arch.db[1], 1);
|
|
get_debugreg(vcpu->arch.db[2], 2);
|
|
get_debugreg(vcpu->arch.db[3], 3);
|
|
get_debugreg(vcpu->arch.dr6, 6);
|
|
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
|
|
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
|
|
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
|
|
|
|
/*
|
|
* exc_debug expects dr6 to be cleared after it runs, avoid that it sees
|
|
* a stale dr6 from the guest.
|
|
*/
|
|
set_debugreg(DR6_RESERVED, 6);
|
|
}
|
|
|
|
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
vmcs_writel(GUEST_DR7, val);
|
|
}
|
|
|
|
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_apic_update_ppr(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
++vcpu->stat.irq_window_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int handle_invlpg(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
|
|
|
|
kvm_mmu_invlpg(vcpu, exit_qualification);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int handle_apic_access(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(fasteoi)) {
|
|
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
|
|
int access_type, offset;
|
|
|
|
access_type = exit_qualification & APIC_ACCESS_TYPE;
|
|
offset = exit_qualification & APIC_ACCESS_OFFSET;
|
|
/*
|
|
* Sane guest uses MOV to write EOI, with written value
|
|
* not cared. So make a short-circuit here by avoiding
|
|
* heavy instruction emulation.
|
|
*/
|
|
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
|
|
(offset == APIC_EOI)) {
|
|
kvm_lapic_set_eoi(vcpu);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
}
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
}
|
|
|
|
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
|
|
int vector = exit_qualification & 0xff;
|
|
|
|
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
|
|
kvm_apic_set_eoi_accelerated(vcpu, vector);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_apic_write(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
|
|
|
|
/*
|
|
* APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
|
|
* hardware has done any necessary aliasing, offset adjustments, etc...
|
|
* for the access. I.e. the correct value has already been written to
|
|
* the vAPIC page for the correct 16-byte chunk. KVM needs only to
|
|
* retrieve the register value and emulate the access.
|
|
*/
|
|
u32 offset = exit_qualification & 0xff0;
|
|
|
|
kvm_apic_write_nodecode(vcpu, offset);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_task_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long exit_qualification;
|
|
bool has_error_code = false;
|
|
u32 error_code = 0;
|
|
u16 tss_selector;
|
|
int reason, type, idt_v, idt_index;
|
|
|
|
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
|
|
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
|
|
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
|
|
reason = (u32)exit_qualification >> 30;
|
|
if (reason == TASK_SWITCH_GATE && idt_v) {
|
|
switch (type) {
|
|
case INTR_TYPE_NMI_INTR:
|
|
vcpu->arch.nmi_injected = false;
|
|
vmx_set_nmi_mask(vcpu, true);
|
|
break;
|
|
case INTR_TYPE_EXT_INTR:
|
|
case INTR_TYPE_SOFT_INTR:
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
break;
|
|
case INTR_TYPE_HARD_EXCEPTION:
|
|
if (vmx->idt_vectoring_info &
|
|
VECTORING_INFO_DELIVER_CODE_MASK) {
|
|
has_error_code = true;
|
|
error_code =
|
|
vmcs_read32(IDT_VECTORING_ERROR_CODE);
|
|
}
|
|
fallthrough;
|
|
case INTR_TYPE_SOFT_EXCEPTION:
|
|
kvm_clear_exception_queue(vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
tss_selector = exit_qualification;
|
|
|
|
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
|
|
type != INTR_TYPE_EXT_INTR &&
|
|
type != INTR_TYPE_NMI_INTR))
|
|
WARN_ON(!skip_emulated_instruction(vcpu));
|
|
|
|
/*
|
|
* TODO: What about debug traps on tss switch?
|
|
* Are we supposed to inject them and update dr6?
|
|
*/
|
|
return kvm_task_switch(vcpu, tss_selector,
|
|
type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
|
|
reason, has_error_code, error_code);
|
|
}
|
|
|
|
static int handle_ept_violation(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
gpa_t gpa;
|
|
u64 error_code;
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
|
|
/*
|
|
* EPT violation happened while executing iret from NMI,
|
|
* "blocked by NMI" bit has to be set before next VM entry.
|
|
* There are errata that may cause this bit to not be set:
|
|
* AAK134, BY25.
|
|
*/
|
|
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
|
|
enable_vnmi &&
|
|
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
|
|
|
|
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
|
|
trace_kvm_page_fault(vcpu, gpa, exit_qualification);
|
|
|
|
/* Is it a read fault? */
|
|
error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
|
|
? PFERR_USER_MASK : 0;
|
|
/* Is it a write fault? */
|
|
error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
|
|
? PFERR_WRITE_MASK : 0;
|
|
/* Is it a fetch fault? */
|
|
error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
|
|
? PFERR_FETCH_MASK : 0;
|
|
/* ept page table entry is present? */
|
|
error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
|
|
? PFERR_PRESENT_MASK : 0;
|
|
|
|
error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
|
|
PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
|
|
|
|
vcpu->arch.exit_qualification = exit_qualification;
|
|
|
|
/*
|
|
* Check that the GPA doesn't exceed physical memory limits, as that is
|
|
* a guest page fault. We have to emulate the instruction here, because
|
|
* if the illegal address is that of a paging structure, then
|
|
* EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
|
|
* would also use advanced VM-exit information for EPT violations to
|
|
* reconstruct the page fault error code.
|
|
*/
|
|
if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
|
|
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
|
|
}
|
|
|
|
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t gpa;
|
|
|
|
if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
|
|
return 1;
|
|
|
|
/*
|
|
* A nested guest cannot optimize MMIO vmexits, because we have an
|
|
* nGPA here instead of the required GPA.
|
|
*/
|
|
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
|
|
if (!is_guest_mode(vcpu) &&
|
|
!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
|
|
trace_kvm_fast_mmio(gpa);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
|
|
}
|
|
|
|
static int handle_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
|
|
return -EIO;
|
|
|
|
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
|
|
++vcpu->stat.nmi_window_exits;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
return vmx->emulation_required && !vmx->rmode.vm86_active &&
|
|
(kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
|
|
}
|
|
|
|
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
bool intr_window_requested;
|
|
unsigned count = 130;
|
|
|
|
intr_window_requested = exec_controls_get(vmx) &
|
|
CPU_BASED_INTR_WINDOW_EXITING;
|
|
|
|
while (vmx->emulation_required && count-- != 0) {
|
|
if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
|
|
return handle_interrupt_window(&vmx->vcpu);
|
|
|
|
if (kvm_test_request(KVM_REQ_EVENT, vcpu))
|
|
return 1;
|
|
|
|
if (!kvm_emulate_instruction(vcpu, 0))
|
|
return 0;
|
|
|
|
if (vmx_emulation_required_with_pending_exception(vcpu)) {
|
|
kvm_prepare_emulation_failure_exit(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (vcpu->arch.halt_request) {
|
|
vcpu->arch.halt_request = 0;
|
|
return kvm_emulate_halt_noskip(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Note, return 1 and not 0, vcpu_run() will invoke
|
|
* xfer_to_guest_mode() which will create a proper return
|
|
* code.
|
|
*/
|
|
if (__xfer_to_guest_mode_work_pending())
|
|
return 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vmx_emulation_required_with_pending_exception(vcpu)) {
|
|
kvm_prepare_emulation_failure_exit(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void grow_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned int old = vmx->ple_window;
|
|
|
|
vmx->ple_window = __grow_ple_window(old, ple_window,
|
|
ple_window_grow,
|
|
ple_window_max);
|
|
|
|
if (vmx->ple_window != old) {
|
|
vmx->ple_window_dirty = true;
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
vmx->ple_window, old);
|
|
}
|
|
}
|
|
|
|
static void shrink_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned int old = vmx->ple_window;
|
|
|
|
vmx->ple_window = __shrink_ple_window(old, ple_window,
|
|
ple_window_shrink,
|
|
ple_window);
|
|
|
|
if (vmx->ple_window != old) {
|
|
vmx->ple_window_dirty = true;
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
vmx->ple_window, old);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
|
|
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
|
|
*/
|
|
static int handle_pause(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_pause_in_guest(vcpu->kvm))
|
|
grow_ple_window(vcpu);
|
|
|
|
/*
|
|
* Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
|
|
* VM-execution control is ignored if CPL > 0. OTOH, KVM
|
|
* never set PAUSE_EXITING and just set PLE if supported,
|
|
* so the vcpu must be CPL=0 if it gets a PAUSE exit.
|
|
*/
|
|
kvm_vcpu_on_spin(vcpu, true);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int handle_invpcid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 vmx_instruction_info;
|
|
unsigned long type;
|
|
gva_t gva;
|
|
struct {
|
|
u64 pcid;
|
|
u64 gla;
|
|
} operand;
|
|
int gpr_index;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
|
|
gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
|
|
type = kvm_register_read(vcpu, gpr_index);
|
|
|
|
/* According to the Intel instruction reference, the memory operand
|
|
* is read even if it isn't needed (e.g., for type==all)
|
|
*/
|
|
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
|
|
vmx_instruction_info, false,
|
|
sizeof(operand), &gva))
|
|
return 1;
|
|
|
|
return kvm_handle_invpcid(vcpu, type, gva);
|
|
}
|
|
|
|
static int handle_pml_full(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
|
|
trace_kvm_pml_full(vcpu->vcpu_id);
|
|
|
|
exit_qualification = vmx_get_exit_qual(vcpu);
|
|
|
|
/*
|
|
* PML buffer FULL happened while executing iret from NMI,
|
|
* "blocked by NMI" bit has to be set before next VM entry.
|
|
*/
|
|
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
|
|
enable_vnmi &&
|
|
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
|
|
/*
|
|
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
|
|
* here.., and there's no userspace involvement needed for PML.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!vmx->req_immediate_exit &&
|
|
!unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
|
|
kvm_lapic_expired_hv_timer(vcpu);
|
|
return EXIT_FASTPATH_REENTER_GUEST;
|
|
}
|
|
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
|
|
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
handle_fastpath_preemption_timer(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* When nested=0, all VMX instruction VM Exits filter here. The handlers
|
|
* are overwritten by nested_vmx_setup() when nested=1.
|
|
*/
|
|
static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
#ifndef CONFIG_X86_SGX_KVM
|
|
static int handle_encls(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* SGX virtualization is disabled. There is no software enable bit for
|
|
* SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
|
|
* the guest from executing ENCLS (when SGX is supported by hardware).
|
|
*/
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_X86_SGX_KVM */
|
|
|
|
static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
|
|
* VM-Exits. Unconditionally set the flag here and leave the handling to
|
|
* vmx_handle_exit().
|
|
*/
|
|
to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
|
|
return 1;
|
|
}
|
|
|
|
static int handle_notify(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qual = vmx_get_exit_qual(vcpu);
|
|
bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
|
|
|
|
++vcpu->stat.notify_window_exits;
|
|
|
|
/*
|
|
* Notify VM exit happened while executing iret from NMI,
|
|
* "blocked by NMI" bit has to be set before next VM entry.
|
|
*/
|
|
if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
|
|
if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
|
|
context_invalid) {
|
|
vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
|
|
vcpu->run->notify.flags = context_invalid ?
|
|
KVM_NOTIFY_CONTEXT_INVALID : 0;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The exit handlers return 1 if the exit was handled fully and guest execution
|
|
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
|
|
* to be done to userspace and return 0.
|
|
*/
|
|
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
|
|
[EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
|
|
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
|
|
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
|
|
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
|
|
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
|
|
[EXIT_REASON_CR_ACCESS] = handle_cr,
|
|
[EXIT_REASON_DR_ACCESS] = handle_dr,
|
|
[EXIT_REASON_CPUID] = kvm_emulate_cpuid,
|
|
[EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
|
|
[EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
|
|
[EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
|
|
[EXIT_REASON_HLT] = kvm_emulate_halt,
|
|
[EXIT_REASON_INVD] = kvm_emulate_invd,
|
|
[EXIT_REASON_INVLPG] = handle_invlpg,
|
|
[EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
|
|
[EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
|
|
[EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMPTRST] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMREAD] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMRESUME] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMWRITE] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMOFF] = handle_vmx_instruction,
|
|
[EXIT_REASON_VMON] = handle_vmx_instruction,
|
|
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
|
|
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
|
|
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
|
|
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
|
|
[EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
|
|
[EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
|
|
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
|
|
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
|
|
[EXIT_REASON_GDTR_IDTR] = handle_desc,
|
|
[EXIT_REASON_LDTR_TR] = handle_desc,
|
|
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
|
|
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
|
|
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
|
|
[EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
|
|
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
|
|
[EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
|
|
[EXIT_REASON_INVEPT] = handle_vmx_instruction,
|
|
[EXIT_REASON_INVVPID] = handle_vmx_instruction,
|
|
[EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
|
|
[EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
|
|
[EXIT_REASON_PML_FULL] = handle_pml_full,
|
|
[EXIT_REASON_INVPCID] = handle_invpcid,
|
|
[EXIT_REASON_VMFUNC] = handle_vmx_instruction,
|
|
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
|
|
[EXIT_REASON_ENCLS] = handle_encls,
|
|
[EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
|
|
[EXIT_REASON_NOTIFY] = handle_notify,
|
|
};
|
|
|
|
static const int kvm_vmx_max_exit_handlers =
|
|
ARRAY_SIZE(kvm_vmx_exit_handlers);
|
|
|
|
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
|
|
u64 *info1, u64 *info2,
|
|
u32 *intr_info, u32 *error_code)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
*reason = vmx->exit_reason.full;
|
|
*info1 = vmx_get_exit_qual(vcpu);
|
|
if (!(vmx->exit_reason.failed_vmentry)) {
|
|
*info2 = vmx->idt_vectoring_info;
|
|
*intr_info = vmx_get_intr_info(vcpu);
|
|
if (is_exception_with_error_code(*intr_info))
|
|
*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
|
|
else
|
|
*error_code = 0;
|
|
} else {
|
|
*info2 = 0;
|
|
*intr_info = 0;
|
|
*error_code = 0;
|
|
}
|
|
}
|
|
|
|
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx->pml_pg) {
|
|
__free_page(vmx->pml_pg);
|
|
vmx->pml_pg = NULL;
|
|
}
|
|
}
|
|
|
|
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 *pml_buf;
|
|
u16 pml_idx;
|
|
|
|
pml_idx = vmcs_read16(GUEST_PML_INDEX);
|
|
|
|
/* Do nothing if PML buffer is empty */
|
|
if (pml_idx == (PML_ENTITY_NUM - 1))
|
|
return;
|
|
|
|
/* PML index always points to next available PML buffer entity */
|
|
if (pml_idx >= PML_ENTITY_NUM)
|
|
pml_idx = 0;
|
|
else
|
|
pml_idx++;
|
|
|
|
pml_buf = page_address(vmx->pml_pg);
|
|
for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
|
|
u64 gpa;
|
|
|
|
gpa = pml_buf[pml_idx];
|
|
WARN_ON(gpa & (PAGE_SIZE - 1));
|
|
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
|
|
}
|
|
|
|
/* reset PML index */
|
|
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
|
|
}
|
|
|
|
static void vmx_dump_sel(char *name, uint32_t sel)
|
|
{
|
|
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
|
|
name, vmcs_read16(sel),
|
|
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
|
|
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
|
|
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
|
|
}
|
|
|
|
static void vmx_dump_dtsel(char *name, uint32_t limit)
|
|
{
|
|
pr_err("%s limit=0x%08x, base=0x%016lx\n",
|
|
name, vmcs_read32(limit),
|
|
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
|
|
}
|
|
|
|
static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
|
|
{
|
|
unsigned int i;
|
|
struct vmx_msr_entry *e;
|
|
|
|
pr_err("MSR %s:\n", name);
|
|
for (i = 0, e = m->val; i < m->nr; ++i, ++e)
|
|
pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
|
|
}
|
|
|
|
void dump_vmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 vmentry_ctl, vmexit_ctl;
|
|
u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
|
|
u64 tertiary_exec_control;
|
|
unsigned long cr4;
|
|
int efer_slot;
|
|
|
|
if (!dump_invalid_vmcs) {
|
|
pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
|
|
return;
|
|
}
|
|
|
|
vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
|
|
vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
|
|
cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
|
|
cr4 = vmcs_readl(GUEST_CR4);
|
|
|
|
if (cpu_has_secondary_exec_ctrls())
|
|
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
|
|
else
|
|
secondary_exec_control = 0;
|
|
|
|
if (cpu_has_tertiary_exec_ctrls())
|
|
tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
|
|
else
|
|
tertiary_exec_control = 0;
|
|
|
|
pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
|
|
vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
|
|
pr_err("*** Guest State ***\n");
|
|
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
|
|
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
|
|
vmcs_readl(CR0_GUEST_HOST_MASK));
|
|
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
|
|
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
|
|
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
|
|
if (cpu_has_vmx_ept()) {
|
|
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
|
|
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
|
|
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
|
|
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
|
|
}
|
|
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
|
|
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
|
|
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
|
|
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
|
|
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
|
|
vmcs_readl(GUEST_SYSENTER_ESP),
|
|
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
|
|
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
|
|
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
|
|
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
|
|
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
|
|
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
|
|
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
|
|
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
|
|
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
|
|
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
|
|
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
|
|
efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
|
|
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
|
|
pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
|
|
else if (efer_slot >= 0)
|
|
pr_err("EFER= 0x%016llx (autoload)\n",
|
|
vmx->msr_autoload.guest.val[efer_slot].value);
|
|
else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
|
|
pr_err("EFER= 0x%016llx (effective)\n",
|
|
vcpu->arch.efer | (EFER_LMA | EFER_LME));
|
|
else
|
|
pr_err("EFER= 0x%016llx (effective)\n",
|
|
vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
|
|
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
|
|
pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
|
|
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
|
|
vmcs_read64(GUEST_IA32_DEBUGCTL),
|
|
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
|
|
if (cpu_has_load_perf_global_ctrl() &&
|
|
vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
|
|
pr_err("PerfGlobCtl = 0x%016llx\n",
|
|
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
|
|
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
|
|
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
|
|
pr_err("Interruptibility = %08x ActivityState = %08x\n",
|
|
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
|
|
vmcs_read32(GUEST_ACTIVITY_STATE));
|
|
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
|
|
pr_err("InterruptStatus = %04x\n",
|
|
vmcs_read16(GUEST_INTR_STATUS));
|
|
if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
|
|
vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
|
|
if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
|
|
vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
|
|
|
|
pr_err("*** Host State ***\n");
|
|
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
|
|
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
|
|
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
|
|
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
|
|
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
|
|
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
|
|
vmcs_read16(HOST_TR_SELECTOR));
|
|
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
|
|
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
|
|
vmcs_readl(HOST_TR_BASE));
|
|
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
|
|
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
|
|
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
|
|
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
|
|
vmcs_readl(HOST_CR4));
|
|
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
|
|
vmcs_readl(HOST_IA32_SYSENTER_ESP),
|
|
vmcs_read32(HOST_IA32_SYSENTER_CS),
|
|
vmcs_readl(HOST_IA32_SYSENTER_EIP));
|
|
if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
|
|
pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
|
|
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
|
|
pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
|
|
if (cpu_has_load_perf_global_ctrl() &&
|
|
vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
|
|
pr_err("PerfGlobCtl = 0x%016llx\n",
|
|
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
|
|
if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
|
|
vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
|
|
|
|
pr_err("*** Control State ***\n");
|
|
pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
|
|
cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
|
|
pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
|
|
pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
|
|
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
|
|
vmcs_read32(EXCEPTION_BITMAP),
|
|
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
|
|
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
|
|
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
|
|
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
|
|
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
|
|
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
|
|
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
|
|
vmcs_read32(VM_EXIT_INTR_INFO),
|
|
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
|
|
pr_err(" reason=%08x qualification=%016lx\n",
|
|
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
|
|
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
|
|
vmcs_read32(IDT_VECTORING_INFO_FIELD),
|
|
vmcs_read32(IDT_VECTORING_ERROR_CODE));
|
|
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
|
|
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
|
|
pr_err("TSC Multiplier = 0x%016llx\n",
|
|
vmcs_read64(TSC_MULTIPLIER));
|
|
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
|
|
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
|
|
u16 status = vmcs_read16(GUEST_INTR_STATUS);
|
|
pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
|
|
}
|
|
pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
|
|
if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
|
|
pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
|
|
pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
|
|
}
|
|
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
|
|
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
|
|
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
|
|
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
|
|
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
|
|
pr_err("PLE Gap=%08x Window=%08x\n",
|
|
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
|
|
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
|
|
pr_err("Virtual processor ID = 0x%04x\n",
|
|
vmcs_read16(VIRTUAL_PROCESSOR_ID));
|
|
}
|
|
|
|
/*
|
|
* The guest has exited. See if we can fix it or if we need userspace
|
|
* assistance.
|
|
*/
|
|
static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
union vmx_exit_reason exit_reason = vmx->exit_reason;
|
|
u32 vectoring_info = vmx->idt_vectoring_info;
|
|
u16 exit_handler_index;
|
|
|
|
/*
|
|
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
|
|
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
|
|
* querying dirty_bitmap, we only need to kick all vcpus out of guest
|
|
* mode as if vcpus is in root mode, the PML buffer must has been
|
|
* flushed already. Note, PML is never enabled in hardware while
|
|
* running L2.
|
|
*/
|
|
if (enable_pml && !is_guest_mode(vcpu))
|
|
vmx_flush_pml_buffer(vcpu);
|
|
|
|
/*
|
|
* KVM should never reach this point with a pending nested VM-Enter.
|
|
* More specifically, short-circuiting VM-Entry to emulate L2 due to
|
|
* invalid guest state should never happen as that means KVM knowingly
|
|
* allowed a nested VM-Enter with an invalid vmcs12. More below.
|
|
*/
|
|
if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
|
|
return -EIO;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/*
|
|
* PML is never enabled when running L2, bail immediately if a
|
|
* PML full exit occurs as something is horribly wrong.
|
|
*/
|
|
if (exit_reason.basic == EXIT_REASON_PML_FULL)
|
|
goto unexpected_vmexit;
|
|
|
|
/*
|
|
* The host physical addresses of some pages of guest memory
|
|
* are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
|
|
* Page). The CPU may write to these pages via their host
|
|
* physical address while L2 is running, bypassing any
|
|
* address-translation-based dirty tracking (e.g. EPT write
|
|
* protection).
|
|
*
|
|
* Mark them dirty on every exit from L2 to prevent them from
|
|
* getting out of sync with dirty tracking.
|
|
*/
|
|
nested_mark_vmcs12_pages_dirty(vcpu);
|
|
|
|
/*
|
|
* Synthesize a triple fault if L2 state is invalid. In normal
|
|
* operation, nested VM-Enter rejects any attempt to enter L2
|
|
* with invalid state. However, those checks are skipped if
|
|
* state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
|
|
* L2 state is invalid, it means either L1 modified SMRAM state
|
|
* or userspace provided bad state. Synthesize TRIPLE_FAULT as
|
|
* doing so is architecturally allowed in the RSM case, and is
|
|
* the least awful solution for the userspace case without
|
|
* risking false positives.
|
|
*/
|
|
if (vmx->emulation_required) {
|
|
nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
|
|
return 1;
|
|
}
|
|
|
|
if (nested_vmx_reflect_vmexit(vcpu))
|
|
return 1;
|
|
}
|
|
|
|
/* If guest state is invalid, start emulating. L2 is handled above. */
|
|
if (vmx->emulation_required)
|
|
return handle_invalid_guest_state(vcpu);
|
|
|
|
if (exit_reason.failed_vmentry) {
|
|
dump_vmcs(vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
vcpu->run->fail_entry.hardware_entry_failure_reason
|
|
= exit_reason.full;
|
|
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(vmx->fail)) {
|
|
dump_vmcs(vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
vcpu->run->fail_entry.hardware_entry_failure_reason
|
|
= vmcs_read32(VM_INSTRUCTION_ERROR);
|
|
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
|
|
* delivery event since it indicates guest is accessing MMIO.
|
|
* The vm-exit can be triggered again after return to guest that
|
|
* will cause infinite loop.
|
|
*/
|
|
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
|
|
(exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
|
|
exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
|
|
exit_reason.basic != EXIT_REASON_PML_FULL &&
|
|
exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
|
|
exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
|
|
exit_reason.basic != EXIT_REASON_NOTIFY)) {
|
|
int ndata = 3;
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
|
|
vcpu->run->internal.data[0] = vectoring_info;
|
|
vcpu->run->internal.data[1] = exit_reason.full;
|
|
vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
|
|
if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
|
|
vcpu->run->internal.data[ndata++] =
|
|
vmcs_read64(GUEST_PHYSICAL_ADDRESS);
|
|
}
|
|
vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
|
|
vcpu->run->internal.ndata = ndata;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!enable_vnmi &&
|
|
vmx->loaded_vmcs->soft_vnmi_blocked)) {
|
|
if (!vmx_interrupt_blocked(vcpu)) {
|
|
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
|
|
} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
|
|
vcpu->arch.nmi_pending) {
|
|
/*
|
|
* This CPU don't support us in finding the end of an
|
|
* NMI-blocked window if the guest runs with IRQs
|
|
* disabled. So we pull the trigger after 1 s of
|
|
* futile waiting, but inform the user about this.
|
|
*/
|
|
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
|
|
"state on VCPU %d after 1 s timeout\n",
|
|
__func__, vcpu->vcpu_id);
|
|
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
|
|
}
|
|
}
|
|
|
|
if (exit_fastpath != EXIT_FASTPATH_NONE)
|
|
return 1;
|
|
|
|
if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
|
|
goto unexpected_vmexit;
|
|
#ifdef CONFIG_RETPOLINE
|
|
if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
|
|
return kvm_emulate_wrmsr(vcpu);
|
|
else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
|
|
return handle_preemption_timer(vcpu);
|
|
else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
|
|
return handle_interrupt_window(vcpu);
|
|
else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
|
|
return handle_external_interrupt(vcpu);
|
|
else if (exit_reason.basic == EXIT_REASON_HLT)
|
|
return kvm_emulate_halt(vcpu);
|
|
else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
|
|
return handle_ept_misconfig(vcpu);
|
|
#endif
|
|
|
|
exit_handler_index = array_index_nospec((u16)exit_reason.basic,
|
|
kvm_vmx_max_exit_handlers);
|
|
if (!kvm_vmx_exit_handlers[exit_handler_index])
|
|
goto unexpected_vmexit;
|
|
|
|
return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
|
|
|
|
unexpected_vmexit:
|
|
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
|
|
exit_reason.full);
|
|
dump_vmcs(vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror =
|
|
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = exit_reason.full;
|
|
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
|
|
{
|
|
int ret = __vmx_handle_exit(vcpu, exit_fastpath);
|
|
|
|
/*
|
|
* Exit to user space when bus lock detected to inform that there is
|
|
* a bus lock in guest.
|
|
*/
|
|
if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
|
|
if (ret > 0)
|
|
vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
|
|
|
|
vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Software based L1D cache flush which is used when microcode providing
|
|
* the cache control MSR is not loaded.
|
|
*
|
|
* The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
|
|
* flush it is required to read in 64 KiB because the replacement algorithm
|
|
* is not exactly LRU. This could be sized at runtime via topology
|
|
* information but as all relevant affected CPUs have 32KiB L1D cache size
|
|
* there is no point in doing so.
|
|
*/
|
|
static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
|
|
{
|
|
int size = PAGE_SIZE << L1D_CACHE_ORDER;
|
|
|
|
/*
|
|
* This code is only executed when the flush mode is 'cond' or
|
|
* 'always'
|
|
*/
|
|
if (static_branch_likely(&vmx_l1d_flush_cond)) {
|
|
bool flush_l1d;
|
|
|
|
/*
|
|
* Clear the per-vcpu flush bit, it gets set again
|
|
* either from vcpu_run() or from one of the unsafe
|
|
* VMEXIT handlers.
|
|
*/
|
|
flush_l1d = vcpu->arch.l1tf_flush_l1d;
|
|
vcpu->arch.l1tf_flush_l1d = false;
|
|
|
|
/*
|
|
* Clear the per-cpu flush bit, it gets set again from
|
|
* the interrupt handlers.
|
|
*/
|
|
flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
|
|
kvm_clear_cpu_l1tf_flush_l1d();
|
|
|
|
if (!flush_l1d)
|
|
return;
|
|
}
|
|
|
|
vcpu->stat.l1d_flush++;
|
|
|
|
if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
|
|
native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
|
|
return;
|
|
}
|
|
|
|
asm volatile(
|
|
/* First ensure the pages are in the TLB */
|
|
"xorl %%eax, %%eax\n"
|
|
".Lpopulate_tlb:\n\t"
|
|
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
|
|
"addl $4096, %%eax\n\t"
|
|
"cmpl %%eax, %[size]\n\t"
|
|
"jne .Lpopulate_tlb\n\t"
|
|
"xorl %%eax, %%eax\n\t"
|
|
"cpuid\n\t"
|
|
/* Now fill the cache */
|
|
"xorl %%eax, %%eax\n"
|
|
".Lfill_cache:\n"
|
|
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
|
|
"addl $64, %%eax\n\t"
|
|
"cmpl %%eax, %[size]\n\t"
|
|
"jne .Lfill_cache\n\t"
|
|
"lfence\n"
|
|
:: [flush_pages] "r" (vmx_l1d_flush_pages),
|
|
[size] "r" (size)
|
|
: "eax", "ebx", "ecx", "edx");
|
|
}
|
|
|
|
static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
int tpr_threshold;
|
|
|
|
if (is_guest_mode(vcpu) &&
|
|
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
|
|
return;
|
|
|
|
tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
|
|
if (is_guest_mode(vcpu))
|
|
to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
|
|
else
|
|
vmcs_write32(TPR_THRESHOLD, tpr_threshold);
|
|
}
|
|
|
|
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 sec_exec_control;
|
|
|
|
if (!lapic_in_kernel(vcpu))
|
|
return;
|
|
|
|
if (!flexpriority_enabled &&
|
|
!cpu_has_vmx_virtualize_x2apic_mode())
|
|
return;
|
|
|
|
/* Postpone execution until vmcs01 is the current VMCS. */
|
|
if (is_guest_mode(vcpu)) {
|
|
vmx->nested.change_vmcs01_virtual_apic_mode = true;
|
|
return;
|
|
}
|
|
|
|
sec_exec_control = secondary_exec_controls_get(vmx);
|
|
sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
|
|
|
|
switch (kvm_get_apic_mode(vcpu)) {
|
|
case LAPIC_MODE_INVALID:
|
|
WARN_ONCE(true, "Invalid local APIC state");
|
|
break;
|
|
case LAPIC_MODE_DISABLED:
|
|
break;
|
|
case LAPIC_MODE_XAPIC:
|
|
if (flexpriority_enabled) {
|
|
sec_exec_control |=
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
|
|
|
|
/*
|
|
* Flush the TLB, reloading the APIC access page will
|
|
* only do so if its physical address has changed, but
|
|
* the guest may have inserted a non-APIC mapping into
|
|
* the TLB while the APIC access page was disabled.
|
|
*/
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
|
|
}
|
|
break;
|
|
case LAPIC_MODE_X2APIC:
|
|
if (cpu_has_vmx_virtualize_x2apic_mode())
|
|
sec_exec_control |=
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
|
|
break;
|
|
}
|
|
secondary_exec_controls_set(vmx, sec_exec_control);
|
|
|
|
vmx_update_msr_bitmap_x2apic(vcpu);
|
|
}
|
|
|
|
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
|
|
{
|
|
const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *slot;
|
|
unsigned long mmu_seq;
|
|
kvm_pfn_t pfn;
|
|
|
|
/* Defer reload until vmcs01 is the current VMCS. */
|
|
if (is_guest_mode(vcpu)) {
|
|
to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
|
|
return;
|
|
}
|
|
|
|
if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
|
|
return;
|
|
|
|
/*
|
|
* Grab the memslot so that the hva lookup for the mmu_notifier retry
|
|
* is guaranteed to use the same memslot as the pfn lookup, i.e. rely
|
|
* on the pfn lookup's validation of the memslot to ensure a valid hva
|
|
* is used for the retry check.
|
|
*/
|
|
slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
|
|
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
|
|
return;
|
|
|
|
/*
|
|
* Ensure that the mmu_notifier sequence count is read before KVM
|
|
* retrieves the pfn from the primary MMU. Note, the memslot is
|
|
* protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
|
|
* in kvm_mmu_invalidate_end().
|
|
*/
|
|
mmu_seq = kvm->mmu_invalidate_seq;
|
|
smp_rmb();
|
|
|
|
/*
|
|
* No need to retry if the memslot does not exist or is invalid. KVM
|
|
* controls the APIC-access page memslot, and only deletes the memslot
|
|
* if APICv is permanently inhibited, i.e. the memslot won't reappear.
|
|
*/
|
|
pfn = gfn_to_pfn_memslot(slot, gfn);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return;
|
|
|
|
read_lock(&vcpu->kvm->mmu_lock);
|
|
if (mmu_invalidate_retry_hva(kvm, mmu_seq,
|
|
gfn_to_hva_memslot(slot, gfn))) {
|
|
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
|
|
read_unlock(&vcpu->kvm->mmu_lock);
|
|
goto out;
|
|
}
|
|
|
|
vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
|
|
read_unlock(&vcpu->kvm->mmu_lock);
|
|
|
|
/*
|
|
* No need for a manual TLB flush at this point, KVM has already done a
|
|
* flush if there were SPTEs pointing at the previous page.
|
|
*/
|
|
out:
|
|
/*
|
|
* Do not pin apic access page in memory, the MMU notifier
|
|
* will call us again if it is migrated or swapped out.
|
|
*/
|
|
kvm_release_pfn_clean(pfn);
|
|
}
|
|
|
|
static void vmx_hwapic_isr_update(int max_isr)
|
|
{
|
|
u16 status;
|
|
u8 old;
|
|
|
|
if (max_isr == -1)
|
|
max_isr = 0;
|
|
|
|
status = vmcs_read16(GUEST_INTR_STATUS);
|
|
old = status >> 8;
|
|
if (max_isr != old) {
|
|
status &= 0xff;
|
|
status |= max_isr << 8;
|
|
vmcs_write16(GUEST_INTR_STATUS, status);
|
|
}
|
|
}
|
|
|
|
static void vmx_set_rvi(int vector)
|
|
{
|
|
u16 status;
|
|
u8 old;
|
|
|
|
if (vector == -1)
|
|
vector = 0;
|
|
|
|
status = vmcs_read16(GUEST_INTR_STATUS);
|
|
old = (u8)status & 0xff;
|
|
if ((u8)vector != old) {
|
|
status &= ~0xff;
|
|
status |= (u8)vector;
|
|
vmcs_write16(GUEST_INTR_STATUS, status);
|
|
}
|
|
}
|
|
|
|
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
|
|
{
|
|
/*
|
|
* When running L2, updating RVI is only relevant when
|
|
* vmcs12 virtual-interrupt-delivery enabled.
|
|
* However, it can be enabled only when L1 also
|
|
* intercepts external-interrupts and in that case
|
|
* we should not update vmcs02 RVI but instead intercept
|
|
* interrupt. Therefore, do nothing when running L2.
|
|
*/
|
|
if (!is_guest_mode(vcpu))
|
|
vmx_set_rvi(max_irr);
|
|
}
|
|
|
|
static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int max_irr;
|
|
bool got_posted_interrupt;
|
|
|
|
if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
|
|
return -EIO;
|
|
|
|
if (pi_test_on(&vmx->pi_desc)) {
|
|
pi_clear_on(&vmx->pi_desc);
|
|
/*
|
|
* IOMMU can write to PID.ON, so the barrier matters even on UP.
|
|
* But on x86 this is just a compiler barrier anyway.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
got_posted_interrupt =
|
|
kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
|
|
} else {
|
|
max_irr = kvm_lapic_find_highest_irr(vcpu);
|
|
got_posted_interrupt = false;
|
|
}
|
|
|
|
/*
|
|
* Newly recognized interrupts are injected via either virtual interrupt
|
|
* delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
|
|
* disabled in two cases:
|
|
*
|
|
* 1) If L2 is running and the vCPU has a new pending interrupt. If L1
|
|
* wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
|
|
* VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
|
|
* into L2, but KVM doesn't use virtual interrupt delivery to inject
|
|
* interrupts into L2, and so KVM_REQ_EVENT is again needed.
|
|
*
|
|
* 2) If APICv is disabled for this vCPU, assigned devices may still
|
|
* attempt to post interrupts. The posted interrupt vector will cause
|
|
* a VM-Exit and the subsequent entry will call sync_pir_to_irr.
|
|
*/
|
|
if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
|
|
vmx_set_rvi(max_irr);
|
|
else if (got_posted_interrupt)
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return max_irr;
|
|
}
|
|
|
|
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
|
|
{
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
|
|
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
|
|
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
|
|
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
|
|
}
|
|
|
|
static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
pi_clear_on(&vmx->pi_desc);
|
|
memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
|
|
}
|
|
|
|
void vmx_do_interrupt_irqoff(unsigned long entry);
|
|
void vmx_do_nmi_irqoff(void);
|
|
|
|
static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Save xfd_err to guest_fpu before interrupt is enabled, so the
|
|
* MSR value is not clobbered by the host activity before the guest
|
|
* has chance to consume it.
|
|
*
|
|
* Do not blindly read xfd_err here, since this exception might
|
|
* be caused by L1 interception on a platform which doesn't
|
|
* support xfd at all.
|
|
*
|
|
* Do it conditionally upon guest_fpu::xfd. xfd_err matters
|
|
* only when xfd contains a non-zero value.
|
|
*
|
|
* Queuing exception is done in vmx_handle_exit. See comment there.
|
|
*/
|
|
if (vcpu->arch.guest_fpu.fpstate->xfd)
|
|
rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
|
|
}
|
|
|
|
static void handle_exception_irqoff(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
|
|
|
|
/* if exit due to PF check for async PF */
|
|
if (is_page_fault(intr_info))
|
|
vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
|
|
/* if exit due to NM, handle before interrupts are enabled */
|
|
else if (is_nm_fault(intr_info))
|
|
handle_nm_fault_irqoff(&vmx->vcpu);
|
|
/* Handle machine checks before interrupts are enabled */
|
|
else if (is_machine_check(intr_info))
|
|
kvm_machine_check();
|
|
}
|
|
|
|
static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 intr_info = vmx_get_intr_info(vcpu);
|
|
unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
|
|
gate_desc *desc = (gate_desc *)host_idt_base + vector;
|
|
|
|
if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
|
|
"unexpected VM-Exit interrupt info: 0x%x", intr_info))
|
|
return;
|
|
|
|
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
|
|
vmx_do_interrupt_irqoff(gate_offset(desc));
|
|
kvm_after_interrupt(vcpu);
|
|
|
|
vcpu->arch.at_instruction_boundary = true;
|
|
}
|
|
|
|
static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->emulation_required)
|
|
return;
|
|
|
|
if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
|
|
handle_external_interrupt_irqoff(vcpu);
|
|
else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
|
|
handle_exception_irqoff(vmx);
|
|
}
|
|
|
|
/*
|
|
* The kvm parameter can be NULL (module initialization, or invocation before
|
|
* VM creation). Be sure to check the kvm parameter before using it.
|
|
*/
|
|
static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
|
|
{
|
|
switch (index) {
|
|
case MSR_IA32_SMBASE:
|
|
if (!IS_ENABLED(CONFIG_KVM_SMM))
|
|
return false;
|
|
/*
|
|
* We cannot do SMM unless we can run the guest in big
|
|
* real mode.
|
|
*/
|
|
return enable_unrestricted_guest || emulate_invalid_guest_state;
|
|
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
|
|
return nested;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
case MSR_AMD64_TSC_RATIO:
|
|
/* This is AMD only. */
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 exit_intr_info;
|
|
bool unblock_nmi;
|
|
u8 vector;
|
|
bool idtv_info_valid;
|
|
|
|
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
|
|
|
|
if (enable_vnmi) {
|
|
if (vmx->loaded_vmcs->nmi_known_unmasked)
|
|
return;
|
|
|
|
exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
|
|
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
|
|
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
|
|
/*
|
|
* SDM 3: 27.7.1.2 (September 2008)
|
|
* Re-set bit "block by NMI" before VM entry if vmexit caused by
|
|
* a guest IRET fault.
|
|
* SDM 3: 23.2.2 (September 2008)
|
|
* Bit 12 is undefined in any of the following cases:
|
|
* If the VM exit sets the valid bit in the IDT-vectoring
|
|
* information field.
|
|
* If the VM exit is due to a double fault.
|
|
*/
|
|
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
|
|
vector != DF_VECTOR && !idtv_info_valid)
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
else
|
|
vmx->loaded_vmcs->nmi_known_unmasked =
|
|
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
|
|
& GUEST_INTR_STATE_NMI);
|
|
} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
|
|
vmx->loaded_vmcs->vnmi_blocked_time +=
|
|
ktime_to_ns(ktime_sub(ktime_get(),
|
|
vmx->loaded_vmcs->entry_time));
|
|
}
|
|
|
|
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
|
|
u32 idt_vectoring_info,
|
|
int instr_len_field,
|
|
int error_code_field)
|
|
{
|
|
u8 vector;
|
|
int type;
|
|
bool idtv_info_valid;
|
|
|
|
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
|
|
|
|
vcpu->arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(vcpu);
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
|
|
if (!idtv_info_valid)
|
|
return;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
|
|
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case INTR_TYPE_NMI_INTR:
|
|
vcpu->arch.nmi_injected = true;
|
|
/*
|
|
* SDM 3: 27.7.1.2 (September 2008)
|
|
* Clear bit "block by NMI" before VM entry if a NMI
|
|
* delivery faulted.
|
|
*/
|
|
vmx_set_nmi_mask(vcpu, false);
|
|
break;
|
|
case INTR_TYPE_SOFT_EXCEPTION:
|
|
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
|
|
fallthrough;
|
|
case INTR_TYPE_HARD_EXCEPTION:
|
|
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
|
|
u32 err = vmcs_read32(error_code_field);
|
|
kvm_requeue_exception_e(vcpu, vector, err);
|
|
} else
|
|
kvm_requeue_exception(vcpu, vector);
|
|
break;
|
|
case INTR_TYPE_SOFT_INTR:
|
|
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
|
|
fallthrough;
|
|
case INTR_TYPE_EXT_INTR:
|
|
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
|
|
{
|
|
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
|
|
VM_EXIT_INSTRUCTION_LEN,
|
|
IDT_VECTORING_ERROR_CODE);
|
|
}
|
|
|
|
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
__vmx_complete_interrupts(vcpu,
|
|
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
|
|
VM_ENTRY_INSTRUCTION_LEN,
|
|
VM_ENTRY_EXCEPTION_ERROR_CODE);
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
|
|
}
|
|
|
|
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
|
|
{
|
|
int i, nr_msrs;
|
|
struct perf_guest_switch_msr *msrs;
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
|
|
|
|
pmu->host_cross_mapped_mask = 0;
|
|
if (pmu->pebs_enable & pmu->global_ctrl)
|
|
intel_pmu_cross_mapped_check(pmu);
|
|
|
|
/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
|
|
msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
|
|
if (!msrs)
|
|
return;
|
|
|
|
for (i = 0; i < nr_msrs; i++)
|
|
if (msrs[i].host == msrs[i].guest)
|
|
clear_atomic_switch_msr(vmx, msrs[i].msr);
|
|
else
|
|
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
|
|
msrs[i].host, false);
|
|
}
|
|
|
|
static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 tscl;
|
|
u32 delta_tsc;
|
|
|
|
if (vmx->req_immediate_exit) {
|
|
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
|
|
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
|
|
} else if (vmx->hv_deadline_tsc != -1) {
|
|
tscl = rdtsc();
|
|
if (vmx->hv_deadline_tsc > tscl)
|
|
/* set_hv_timer ensures the delta fits in 32-bits */
|
|
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
|
|
cpu_preemption_timer_multi);
|
|
else
|
|
delta_tsc = 0;
|
|
|
|
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
|
|
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
|
|
} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
|
|
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
|
|
vmx->loaded_vmcs->hv_timer_soft_disabled = true;
|
|
}
|
|
}
|
|
|
|
void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
|
|
{
|
|
if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
|
|
vmx->loaded_vmcs->host_state.rsp = host_rsp;
|
|
vmcs_writel(HOST_RSP, host_rsp);
|
|
}
|
|
}
|
|
|
|
void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
|
|
unsigned int flags)
|
|
{
|
|
u64 hostval = this_cpu_read(x86_spec_ctrl_current);
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
|
|
return;
|
|
|
|
if (flags & VMX_RUN_SAVE_SPEC_CTRL)
|
|
vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
|
|
|
|
/*
|
|
* If the guest/host SPEC_CTRL values differ, restore the host value.
|
|
*
|
|
* For legacy IBRS, the IBRS bit always needs to be written after
|
|
* transitioning from a less privileged predictor mode, regardless of
|
|
* whether the guest/host values differ.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
|
|
vmx->spec_ctrl != hostval)
|
|
native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
|
|
|
|
barrier_nospec();
|
|
}
|
|
|
|
static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
|
|
{
|
|
switch (to_vmx(vcpu)->exit_reason.basic) {
|
|
case EXIT_REASON_MSR_WRITE:
|
|
return handle_fastpath_set_msr_irqoff(vcpu);
|
|
case EXIT_REASON_PREEMPTION_TIMER:
|
|
return handle_fastpath_preemption_timer(vcpu);
|
|
default:
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
}
|
|
|
|
static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
|
|
unsigned int flags)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
guest_state_enter_irqoff();
|
|
|
|
/* L1D Flush includes CPU buffer clear to mitigate MDS */
|
|
if (static_branch_unlikely(&vmx_l1d_should_flush))
|
|
vmx_l1d_flush(vcpu);
|
|
else if (static_branch_unlikely(&mds_user_clear))
|
|
mds_clear_cpu_buffers();
|
|
else if (static_branch_unlikely(&mmio_stale_data_clear) &&
|
|
kvm_arch_has_assigned_device(vcpu->kvm))
|
|
mds_clear_cpu_buffers();
|
|
|
|
vmx_disable_fb_clear(vmx);
|
|
|
|
if (vcpu->arch.cr2 != native_read_cr2())
|
|
native_write_cr2(vcpu->arch.cr2);
|
|
|
|
vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
|
|
flags);
|
|
|
|
vcpu->arch.cr2 = native_read_cr2();
|
|
vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
|
|
|
|
vmx->idt_vectoring_info = 0;
|
|
|
|
vmx_enable_fb_clear(vmx);
|
|
|
|
if (unlikely(vmx->fail)) {
|
|
vmx->exit_reason.full = 0xdead;
|
|
goto out;
|
|
}
|
|
|
|
vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
|
|
if (likely(!vmx->exit_reason.failed_vmentry))
|
|
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
|
|
|
|
if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
|
|
is_nmi(vmx_get_intr_info(vcpu))) {
|
|
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
|
|
vmx_do_nmi_irqoff();
|
|
kvm_after_interrupt(vcpu);
|
|
}
|
|
|
|
out:
|
|
guest_state_exit_irqoff();
|
|
}
|
|
|
|
static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long cr3, cr4;
|
|
|
|
/* Record the guest's net vcpu time for enforced NMI injections. */
|
|
if (unlikely(!enable_vnmi &&
|
|
vmx->loaded_vmcs->soft_vnmi_blocked))
|
|
vmx->loaded_vmcs->entry_time = ktime_get();
|
|
|
|
/*
|
|
* Don't enter VMX if guest state is invalid, let the exit handler
|
|
* start emulation until we arrive back to a valid state. Synthesize a
|
|
* consistency check VM-Exit due to invalid guest state and bail.
|
|
*/
|
|
if (unlikely(vmx->emulation_required)) {
|
|
vmx->fail = 0;
|
|
|
|
vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
|
|
vmx->exit_reason.failed_vmentry = 1;
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
|
|
vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
|
|
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
|
|
vmx->exit_intr_info = 0;
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
|
|
trace_kvm_entry(vcpu);
|
|
|
|
if (vmx->ple_window_dirty) {
|
|
vmx->ple_window_dirty = false;
|
|
vmcs_write32(PLE_WINDOW, vmx->ple_window);
|
|
}
|
|
|
|
/*
|
|
* We did this in prepare_switch_to_guest, because it needs to
|
|
* be within srcu_read_lock.
|
|
*/
|
|
WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
|
|
|
|
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
|
|
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
|
|
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
|
|
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
|
|
vcpu->arch.regs_dirty = 0;
|
|
|
|
/*
|
|
* Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
|
|
* prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
|
|
* it switches back to the current->mm, which can occur in KVM context
|
|
* when switching to a temporary mm to patch kernel code, e.g. if KVM
|
|
* toggles a static key while handling a VM-Exit.
|
|
*/
|
|
cr3 = __get_current_cr3_fast();
|
|
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
|
|
vmcs_writel(HOST_CR3, cr3);
|
|
vmx->loaded_vmcs->host_state.cr3 = cr3;
|
|
}
|
|
|
|
cr4 = cr4_read_shadow();
|
|
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
|
|
vmcs_writel(HOST_CR4, cr4);
|
|
vmx->loaded_vmcs->host_state.cr4 = cr4;
|
|
}
|
|
|
|
/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
|
|
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
|
|
set_debugreg(vcpu->arch.dr6, 6);
|
|
|
|
/* When single-stepping over STI and MOV SS, we must clear the
|
|
* corresponding interruptibility bits in the guest state. Otherwise
|
|
* vmentry fails as it then expects bit 14 (BS) in pending debug
|
|
* exceptions being set, but that's not correct for the guest debugging
|
|
* case. */
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
vmx_set_interrupt_shadow(vcpu, 0);
|
|
|
|
kvm_load_guest_xsave_state(vcpu);
|
|
|
|
pt_guest_enter(vmx);
|
|
|
|
atomic_switch_perf_msrs(vmx);
|
|
if (intel_pmu_lbr_is_enabled(vcpu))
|
|
vmx_passthrough_lbr_msrs(vcpu);
|
|
|
|
if (enable_preemption_timer)
|
|
vmx_update_hv_timer(vcpu);
|
|
|
|
kvm_wait_lapic_expire(vcpu);
|
|
|
|
/* The actual VMENTER/EXIT is in the .noinstr.text section. */
|
|
vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
|
|
|
|
/* All fields are clean at this point */
|
|
if (kvm_is_using_evmcs()) {
|
|
current_evmcs->hv_clean_fields |=
|
|
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
|
|
|
|
current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
|
|
}
|
|
|
|
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
|
|
if (vmx->host_debugctlmsr)
|
|
update_debugctlmsr(vmx->host_debugctlmsr);
|
|
|
|
#ifndef CONFIG_X86_64
|
|
/*
|
|
* The sysexit path does not restore ds/es, so we must set them to
|
|
* a reasonable value ourselves.
|
|
*
|
|
* We can't defer this to vmx_prepare_switch_to_host() since that
|
|
* function may be executed in interrupt context, which saves and
|
|
* restore segments around it, nullifying its effect.
|
|
*/
|
|
loadsegment(ds, __USER_DS);
|
|
loadsegment(es, __USER_DS);
|
|
#endif
|
|
|
|
pt_guest_exit(vmx);
|
|
|
|
kvm_load_host_xsave_state(vcpu);
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/*
|
|
* Track VMLAUNCH/VMRESUME that have made past guest state
|
|
* checking.
|
|
*/
|
|
if (vmx->nested.nested_run_pending &&
|
|
!vmx->exit_reason.failed_vmentry)
|
|
++vcpu->stat.nested_run;
|
|
|
|
vmx->nested.nested_run_pending = 0;
|
|
}
|
|
|
|
if (unlikely(vmx->fail))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
|
|
kvm_machine_check();
|
|
|
|
trace_kvm_exit(vcpu, KVM_ISA_VMX);
|
|
|
|
if (unlikely(vmx->exit_reason.failed_vmentry))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
vmx->loaded_vmcs->launched = 1;
|
|
|
|
vmx_recover_nmi_blocking(vmx);
|
|
vmx_complete_interrupts(vmx);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
return vmx_exit_handlers_fastpath(vcpu);
|
|
}
|
|
|
|
static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (enable_pml)
|
|
vmx_destroy_pml_buffer(vmx);
|
|
free_vpid(vmx->vpid);
|
|
nested_vmx_free_vcpu(vcpu);
|
|
free_loaded_vmcs(vmx->loaded_vmcs);
|
|
}
|
|
|
|
static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmx_uret_msr *tsx_ctrl;
|
|
struct vcpu_vmx *vmx;
|
|
int i, err;
|
|
|
|
BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
|
|
vmx = to_vmx(vcpu);
|
|
|
|
INIT_LIST_HEAD(&vmx->pi_wakeup_list);
|
|
|
|
err = -ENOMEM;
|
|
|
|
vmx->vpid = allocate_vpid();
|
|
|
|
/*
|
|
* If PML is turned on, failure on enabling PML just results in failure
|
|
* of creating the vcpu, therefore we can simplify PML logic (by
|
|
* avoiding dealing with cases, such as enabling PML partially on vcpus
|
|
* for the guest), etc.
|
|
*/
|
|
if (enable_pml) {
|
|
vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!vmx->pml_pg)
|
|
goto free_vpid;
|
|
}
|
|
|
|
for (i = 0; i < kvm_nr_uret_msrs; ++i)
|
|
vmx->guest_uret_msrs[i].mask = -1ull;
|
|
if (boot_cpu_has(X86_FEATURE_RTM)) {
|
|
/*
|
|
* TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
|
|
* Keep the host value unchanged to avoid changing CPUID bits
|
|
* under the host kernel's feet.
|
|
*/
|
|
tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
|
|
if (tsx_ctrl)
|
|
tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
|
|
}
|
|
|
|
err = alloc_loaded_vmcs(&vmx->vmcs01);
|
|
if (err < 0)
|
|
goto free_pml;
|
|
|
|
/*
|
|
* Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
|
|
* nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
|
|
* feature only for vmcs01, KVM currently isn't equipped to realize any
|
|
* performance benefits from enabling it for vmcs02.
|
|
*/
|
|
if (kvm_is_using_evmcs() &&
|
|
(ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
|
|
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
|
|
|
|
evmcs->hv_enlightenments_control.msr_bitmap = 1;
|
|
}
|
|
|
|
/* The MSR bitmap starts with all ones */
|
|
bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
|
|
bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
|
|
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
|
|
#ifdef CONFIG_X86_64
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
|
|
#endif
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
|
|
if (kvm_cstate_in_guest(vcpu->kvm)) {
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
|
|
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
|
|
}
|
|
|
|
vmx->loaded_vmcs = &vmx->vmcs01;
|
|
|
|
if (cpu_need_virtualize_apic_accesses(vcpu)) {
|
|
err = kvm_alloc_apic_access_page(vcpu->kvm);
|
|
if (err)
|
|
goto free_vmcs;
|
|
}
|
|
|
|
if (enable_ept && !enable_unrestricted_guest) {
|
|
err = init_rmode_identity_map(vcpu->kvm);
|
|
if (err)
|
|
goto free_vmcs;
|
|
}
|
|
|
|
if (vmx_can_use_ipiv(vcpu))
|
|
WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
|
|
__pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
|
|
|
|
return 0;
|
|
|
|
free_vmcs:
|
|
free_loaded_vmcs(vmx->loaded_vmcs);
|
|
free_pml:
|
|
vmx_destroy_pml_buffer(vmx);
|
|
free_vpid:
|
|
free_vpid(vmx->vpid);
|
|
return err;
|
|
}
|
|
|
|
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
|
|
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
|
|
|
|
static int vmx_vm_init(struct kvm *kvm)
|
|
{
|
|
if (!ple_gap)
|
|
kvm->arch.pause_in_guest = true;
|
|
|
|
if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
|
|
switch (l1tf_mitigation) {
|
|
case L1TF_MITIGATION_OFF:
|
|
case L1TF_MITIGATION_FLUSH_NOWARN:
|
|
/* 'I explicitly don't care' is set */
|
|
break;
|
|
case L1TF_MITIGATION_FLUSH:
|
|
case L1TF_MITIGATION_FLUSH_NOSMT:
|
|
case L1TF_MITIGATION_FULL:
|
|
/*
|
|
* Warn upon starting the first VM in a potentially
|
|
* insecure environment.
|
|
*/
|
|
if (sched_smt_active())
|
|
pr_warn_once(L1TF_MSG_SMT);
|
|
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
|
|
pr_warn_once(L1TF_MSG_L1D);
|
|
break;
|
|
case L1TF_MITIGATION_FULL_FORCE:
|
|
/* Flush is enforced */
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
u8 cache;
|
|
|
|
/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
|
|
* memory aliases with conflicting memory types and sometimes MCEs.
|
|
* We have to be careful as to what are honored and when.
|
|
*
|
|
* For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
|
|
* UC. The effective memory type is UC or WC depending on guest PAT.
|
|
* This was historically the source of MCEs and we want to be
|
|
* conservative.
|
|
*
|
|
* When there is no need to deal with noncoherent DMA (e.g., no VT-d
|
|
* or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
|
|
* EPT memory type is set to WB. The effective memory type is forced
|
|
* WB.
|
|
*
|
|
* Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
|
|
* EPT memory type is used to emulate guest CD/MTRR.
|
|
*/
|
|
|
|
if (is_mmio)
|
|
return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
|
|
|
|
if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
|
|
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
|
|
|
|
if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
|
|
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
|
|
cache = MTRR_TYPE_WRBACK;
|
|
else
|
|
cache = MTRR_TYPE_UNCACHABLE;
|
|
|
|
return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
|
|
}
|
|
|
|
return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
|
|
}
|
|
|
|
static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
|
|
{
|
|
/*
|
|
* These bits in the secondary execution controls field
|
|
* are dynamic, the others are mostly based on the hypervisor
|
|
* architecture and the guest's CPUID. Do not touch the
|
|
* dynamic bits.
|
|
*/
|
|
u32 mask =
|
|
SECONDARY_EXEC_SHADOW_VMCS |
|
|
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
|
|
SECONDARY_EXEC_DESC;
|
|
|
|
u32 cur_ctl = secondary_exec_controls_get(vmx);
|
|
|
|
secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
|
|
}
|
|
|
|
/*
|
|
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
|
|
* (indicating "allowed-1") if they are supported in the guest's CPUID.
|
|
*/
|
|
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
|
|
vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
|
|
|
|
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
|
|
if (entry && (entry->_reg & (_cpuid_mask))) \
|
|
vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
|
|
} while (0)
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, 0x1);
|
|
cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
|
|
cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
|
|
cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
|
|
cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
|
|
cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
|
|
cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
|
|
cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
|
|
cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
|
|
cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
|
|
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
|
|
cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
|
|
cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
|
|
cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
|
|
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
|
|
|
|
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
|
|
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
|
|
cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
|
|
cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
|
|
cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
|
|
cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
|
|
cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
|
|
|
|
#undef cr4_fixed1_update
|
|
}
|
|
|
|
static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_cpuid_entry2 *best = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < PT_CPUID_LEAVES; i++) {
|
|
best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
|
|
if (!best)
|
|
return;
|
|
vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
|
|
vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
|
|
vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
|
|
vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
|
|
}
|
|
|
|
/* Get the number of configurable Address Ranges for filtering */
|
|
vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
|
|
PT_CAP_num_address_ranges);
|
|
|
|
/* Initialize and clear the no dependency bits */
|
|
vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
|
|
RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
|
|
RTIT_CTL_BRANCH_EN);
|
|
|
|
/*
|
|
* If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
|
|
* will inject an #GP
|
|
*/
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
|
|
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
|
|
|
|
/*
|
|
* If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
|
|
* PSBFreq can be set
|
|
*/
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
|
|
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
|
|
RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
|
|
|
|
/*
|
|
* If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
|
|
*/
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
|
|
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
|
|
RTIT_CTL_MTC_RANGE);
|
|
|
|
/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
|
|
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
|
|
RTIT_CTL_PTW_EN);
|
|
|
|
/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
|
|
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
|
|
|
|
/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
|
|
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
|
|
|
|
/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
|
|
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
|
|
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
|
|
|
|
/* unmask address range configure area */
|
|
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
|
|
vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
|
|
}
|
|
|
|
static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* XSAVES is effectively enabled if and only if XSAVE is also exposed
|
|
* to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
|
|
* set if and only if XSAVE is supported.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE) &&
|
|
guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
|
|
|
|
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
|
|
|
|
vmx_setup_uret_msrs(vmx);
|
|
|
|
if (cpu_has_secondary_exec_ctrls())
|
|
vmcs_set_secondary_exec_control(vmx,
|
|
vmx_secondary_exec_control(vmx));
|
|
|
|
if (guest_can_use(vcpu, X86_FEATURE_VMX))
|
|
vmx->msr_ia32_feature_control_valid_bits |=
|
|
FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
|
|
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
|
|
else
|
|
vmx->msr_ia32_feature_control_valid_bits &=
|
|
~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
|
|
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
|
|
|
|
if (guest_can_use(vcpu, X86_FEATURE_VMX))
|
|
nested_vmx_cr_fixed1_bits_update(vcpu);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
|
|
guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
|
|
update_intel_pt_cfg(vcpu);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_RTM)) {
|
|
struct vmx_uret_msr *msr;
|
|
msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
|
|
if (msr) {
|
|
bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
|
|
vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
|
|
}
|
|
}
|
|
|
|
if (kvm_cpu_cap_has(X86_FEATURE_XFD))
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_XFD));
|
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
|
|
!guest_has_pred_cmd_msr(vcpu));
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
|
|
vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
|
|
|
|
set_cr4_guest_host_mask(vmx);
|
|
|
|
vmx_write_encls_bitmap(vcpu, NULL);
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
|
|
vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
|
|
else
|
|
vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
|
|
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
|
|
vmx->msr_ia32_feature_control_valid_bits |=
|
|
FEAT_CTL_SGX_LC_ENABLED;
|
|
else
|
|
vmx->msr_ia32_feature_control_valid_bits &=
|
|
~FEAT_CTL_SGX_LC_ENABLED;
|
|
|
|
/* Refresh #PF interception to account for MAXPHYADDR changes. */
|
|
vmx_update_exception_bitmap(vcpu);
|
|
}
|
|
|
|
static u64 vmx_get_perf_capabilities(void)
|
|
{
|
|
u64 perf_cap = PMU_CAP_FW_WRITES;
|
|
struct x86_pmu_lbr lbr;
|
|
u64 host_perf_cap = 0;
|
|
|
|
if (!enable_pmu)
|
|
return 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PDCM))
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
|
|
x86_perf_get_lbr(&lbr);
|
|
if (lbr.nr)
|
|
perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
|
|
}
|
|
|
|
if (vmx_pebs_supported()) {
|
|
perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
|
|
if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
|
|
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
|
|
}
|
|
|
|
return perf_cap;
|
|
}
|
|
|
|
static __init void vmx_set_cpu_caps(void)
|
|
{
|
|
kvm_set_cpu_caps();
|
|
|
|
/* CPUID 0x1 */
|
|
if (nested)
|
|
kvm_cpu_cap_set(X86_FEATURE_VMX);
|
|
|
|
/* CPUID 0x7 */
|
|
if (kvm_mpx_supported())
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
|
|
if (!cpu_has_vmx_invpcid())
|
|
kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
|
|
if (vmx_pt_mode_is_host_guest())
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
|
|
if (vmx_pebs_supported()) {
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
|
|
}
|
|
|
|
if (!enable_pmu)
|
|
kvm_cpu_cap_clear(X86_FEATURE_PDCM);
|
|
kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
|
|
|
|
if (!enable_sgx) {
|
|
kvm_cpu_cap_clear(X86_FEATURE_SGX);
|
|
kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
|
|
kvm_cpu_cap_clear(X86_FEATURE_SGX1);
|
|
kvm_cpu_cap_clear(X86_FEATURE_SGX2);
|
|
}
|
|
|
|
if (vmx_umip_emulated())
|
|
kvm_cpu_cap_set(X86_FEATURE_UMIP);
|
|
|
|
/* CPUID 0xD.1 */
|
|
kvm_caps.supported_xss = 0;
|
|
if (!cpu_has_vmx_xsaves())
|
|
kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
|
|
|
|
/* CPUID 0x80000001 and 0x7 (RDPID) */
|
|
if (!cpu_has_vmx_rdtscp()) {
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
|
|
}
|
|
|
|
if (cpu_has_vmx_waitpkg())
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
|
|
}
|
|
|
|
static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
to_vmx(vcpu)->req_immediate_exit = true;
|
|
}
|
|
|
|
static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
unsigned short port;
|
|
bool intercept;
|
|
int size;
|
|
|
|
if (info->intercept == x86_intercept_in ||
|
|
info->intercept == x86_intercept_ins) {
|
|
port = info->src_val;
|
|
size = info->dst_bytes;
|
|
} else {
|
|
port = info->dst_val;
|
|
size = info->src_bytes;
|
|
}
|
|
|
|
/*
|
|
* If the 'use IO bitmaps' VM-execution control is 0, IO instruction
|
|
* VM-exits depend on the 'unconditional IO exiting' VM-execution
|
|
* control.
|
|
*
|
|
* Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
|
|
*/
|
|
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
|
|
intercept = nested_cpu_has(vmcs12,
|
|
CPU_BASED_UNCOND_IO_EXITING);
|
|
else
|
|
intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
|
|
|
|
/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
|
|
return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
|
|
}
|
|
|
|
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
|
|
|
|
switch (info->intercept) {
|
|
/*
|
|
* RDPID causes #UD if disabled through secondary execution controls.
|
|
* Because it is marked as EmulateOnUD, we need to intercept it here.
|
|
* Note, RDPID is hidden behind ENABLE_RDTSCP.
|
|
*/
|
|
case x86_intercept_rdpid:
|
|
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
|
|
exception->vector = UD_VECTOR;
|
|
exception->error_code_valid = false;
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
}
|
|
break;
|
|
|
|
case x86_intercept_in:
|
|
case x86_intercept_ins:
|
|
case x86_intercept_out:
|
|
case x86_intercept_outs:
|
|
return vmx_check_intercept_io(vcpu, info);
|
|
|
|
case x86_intercept_lgdt:
|
|
case x86_intercept_lidt:
|
|
case x86_intercept_lldt:
|
|
case x86_intercept_ltr:
|
|
case x86_intercept_sgdt:
|
|
case x86_intercept_sidt:
|
|
case x86_intercept_sldt:
|
|
case x86_intercept_str:
|
|
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
|
|
break;
|
|
|
|
case x86_intercept_pause:
|
|
/*
|
|
* PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
|
|
* with vanilla NOPs in the emulator. Apply the interception
|
|
* check only to actual PAUSE instructions. Don't check
|
|
* PAUSE-loop-exiting, software can't expect a given PAUSE to
|
|
* exit, i.e. KVM is within its rights to allow L2 to execute
|
|
* the PAUSE.
|
|
*/
|
|
if ((info->rep_prefix != REPE_PREFIX) ||
|
|
!nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
break;
|
|
|
|
/* TODO: check more intercepts... */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return X86EMUL_UNHANDLEABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
|
|
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
|
|
u64 divisor, u64 *result)
|
|
{
|
|
u64 low = a << shift, high = a >> (64 - shift);
|
|
|
|
/* To avoid the overflow on divq */
|
|
if (high >= divisor)
|
|
return 1;
|
|
|
|
/* Low hold the result, high hold rem which is discarded */
|
|
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
|
|
"rm" (divisor), "0" (low), "1" (high));
|
|
*result = low;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
|
|
bool *expired)
|
|
{
|
|
struct vcpu_vmx *vmx;
|
|
u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
|
|
struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
|
|
|
|
vmx = to_vmx(vcpu);
|
|
tscl = rdtsc();
|
|
guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
|
|
delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
|
|
lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
|
|
ktimer->timer_advance_ns);
|
|
|
|
if (delta_tsc > lapic_timer_advance_cycles)
|
|
delta_tsc -= lapic_timer_advance_cycles;
|
|
else
|
|
delta_tsc = 0;
|
|
|
|
/* Convert to host delta tsc if tsc scaling is enabled */
|
|
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
|
|
delta_tsc && u64_shl_div_u64(delta_tsc,
|
|
kvm_caps.tsc_scaling_ratio_frac_bits,
|
|
vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
|
|
return -ERANGE;
|
|
|
|
/*
|
|
* If the delta tsc can't fit in the 32 bit after the multi shift,
|
|
* we can't use the preemption timer.
|
|
* It's possible that it fits on later vmentries, but checking
|
|
* on every vmentry is costly so we just use an hrtimer.
|
|
*/
|
|
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
|
|
return -ERANGE;
|
|
|
|
vmx->hv_deadline_tsc = tscl + delta_tsc;
|
|
*expired = !delta_tsc;
|
|
return 0;
|
|
}
|
|
|
|
static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
to_vmx(vcpu)->hv_deadline_tsc = -1;
|
|
}
|
|
#endif
|
|
|
|
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
if (!kvm_pause_in_guest(vcpu->kvm))
|
|
shrink_ple_window(vcpu);
|
|
}
|
|
|
|
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (WARN_ON_ONCE(!enable_pml))
|
|
return;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
vmx->nested.update_vmcs01_cpu_dirty_logging = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note, nr_memslots_dirty_logging can be changed concurrent with this
|
|
* code, but in that case another update request will be made and so
|
|
* the guest will never run with a stale PML value.
|
|
*/
|
|
if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
|
|
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
|
|
else
|
|
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
|
|
}
|
|
|
|
static void vmx_setup_mce(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
|
|
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
|
|
FEAT_CTL_LMCE_ENABLED;
|
|
else
|
|
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
|
|
~FEAT_CTL_LMCE_ENABLED;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_SMM
|
|
static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
/* we need a nested vmexit to enter SMM, postpone if run is pending */
|
|
if (to_vmx(vcpu)->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
return !is_smm(vcpu);
|
|
}
|
|
|
|
static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/*
|
|
* TODO: Implement custom flows for forcing the vCPU out/in of L2 on
|
|
* SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
|
|
* SMI and RSM only modify state that is saved and restored via SMRAM.
|
|
* E.g. most MSRs are left untouched, but many are modified by VM-Exit
|
|
* and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
|
|
*/
|
|
vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
|
|
if (vmx->nested.smm.guest_mode)
|
|
nested_vmx_vmexit(vcpu, -1, 0, 0);
|
|
|
|
vmx->nested.smm.vmxon = vmx->nested.vmxon;
|
|
vmx->nested.vmxon = false;
|
|
vmx_clear_hlt(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int ret;
|
|
|
|
if (vmx->nested.smm.vmxon) {
|
|
vmx->nested.vmxon = true;
|
|
vmx->nested.smm.vmxon = false;
|
|
}
|
|
|
|
if (vmx->nested.smm.guest_mode) {
|
|
ret = nested_vmx_enter_non_root_mode(vcpu, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vmx->nested.nested_run_pending = 1;
|
|
vmx->nested.smm.guest_mode = false;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* RSM will cause a vmexit anyway. */
|
|
}
|
|
#endif
|
|
|
|
static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
|
|
}
|
|
|
|
static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu)) {
|
|
struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
|
|
|
|
if (hrtimer_try_to_cancel(timer) == 1)
|
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
|
|
}
|
|
}
|
|
|
|
static void vmx_hardware_unsetup(void)
|
|
{
|
|
kvm_set_posted_intr_wakeup_handler(NULL);
|
|
|
|
if (nested)
|
|
nested_vmx_hardware_unsetup();
|
|
|
|
free_kvm_area();
|
|
}
|
|
|
|
#define VMX_REQUIRED_APICV_INHIBITS \
|
|
( \
|
|
BIT(APICV_INHIBIT_REASON_DISABLE)| \
|
|
BIT(APICV_INHIBIT_REASON_ABSENT) | \
|
|
BIT(APICV_INHIBIT_REASON_HYPERV) | \
|
|
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
|
|
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
|
|
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
|
|
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
|
|
)
|
|
|
|
static void vmx_vm_destroy(struct kvm *kvm)
|
|
{
|
|
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
|
|
|
|
free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
|
|
}
|
|
|
|
static struct kvm_x86_ops vmx_x86_ops __initdata = {
|
|
.name = KBUILD_MODNAME,
|
|
|
|
.check_processor_compatibility = vmx_check_processor_compat,
|
|
|
|
.hardware_unsetup = vmx_hardware_unsetup,
|
|
|
|
.hardware_enable = vmx_hardware_enable,
|
|
.hardware_disable = vmx_hardware_disable,
|
|
.has_emulated_msr = vmx_has_emulated_msr,
|
|
|
|
.vm_size = sizeof(struct kvm_vmx),
|
|
.vm_init = vmx_vm_init,
|
|
.vm_destroy = vmx_vm_destroy,
|
|
|
|
.vcpu_precreate = vmx_vcpu_precreate,
|
|
.vcpu_create = vmx_vcpu_create,
|
|
.vcpu_free = vmx_vcpu_free,
|
|
.vcpu_reset = vmx_vcpu_reset,
|
|
|
|
.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
|
|
.vcpu_load = vmx_vcpu_load,
|
|
.vcpu_put = vmx_vcpu_put,
|
|
|
|
.update_exception_bitmap = vmx_update_exception_bitmap,
|
|
.get_msr_feature = vmx_get_msr_feature,
|
|
.get_msr = vmx_get_msr,
|
|
.set_msr = vmx_set_msr,
|
|
.get_segment_base = vmx_get_segment_base,
|
|
.get_segment = vmx_get_segment,
|
|
.set_segment = vmx_set_segment,
|
|
.get_cpl = vmx_get_cpl,
|
|
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
|
|
.is_valid_cr0 = vmx_is_valid_cr0,
|
|
.set_cr0 = vmx_set_cr0,
|
|
.is_valid_cr4 = vmx_is_valid_cr4,
|
|
.set_cr4 = vmx_set_cr4,
|
|
.set_efer = vmx_set_efer,
|
|
.get_idt = vmx_get_idt,
|
|
.set_idt = vmx_set_idt,
|
|
.get_gdt = vmx_get_gdt,
|
|
.set_gdt = vmx_set_gdt,
|
|
.set_dr7 = vmx_set_dr7,
|
|
.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
|
|
.cache_reg = vmx_cache_reg,
|
|
.get_rflags = vmx_get_rflags,
|
|
.set_rflags = vmx_set_rflags,
|
|
.get_if_flag = vmx_get_if_flag,
|
|
|
|
.flush_tlb_all = vmx_flush_tlb_all,
|
|
.flush_tlb_current = vmx_flush_tlb_current,
|
|
.flush_tlb_gva = vmx_flush_tlb_gva,
|
|
.flush_tlb_guest = vmx_flush_tlb_guest,
|
|
|
|
.vcpu_pre_run = vmx_vcpu_pre_run,
|
|
.vcpu_run = vmx_vcpu_run,
|
|
.handle_exit = vmx_handle_exit,
|
|
.skip_emulated_instruction = vmx_skip_emulated_instruction,
|
|
.update_emulated_instruction = vmx_update_emulated_instruction,
|
|
.set_interrupt_shadow = vmx_set_interrupt_shadow,
|
|
.get_interrupt_shadow = vmx_get_interrupt_shadow,
|
|
.patch_hypercall = vmx_patch_hypercall,
|
|
.inject_irq = vmx_inject_irq,
|
|
.inject_nmi = vmx_inject_nmi,
|
|
.inject_exception = vmx_inject_exception,
|
|
.cancel_injection = vmx_cancel_injection,
|
|
.interrupt_allowed = vmx_interrupt_allowed,
|
|
.nmi_allowed = vmx_nmi_allowed,
|
|
.get_nmi_mask = vmx_get_nmi_mask,
|
|
.set_nmi_mask = vmx_set_nmi_mask,
|
|
.enable_nmi_window = vmx_enable_nmi_window,
|
|
.enable_irq_window = vmx_enable_irq_window,
|
|
.update_cr8_intercept = vmx_update_cr8_intercept,
|
|
.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
|
|
.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
|
|
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
|
|
.load_eoi_exitmap = vmx_load_eoi_exitmap,
|
|
.apicv_post_state_restore = vmx_apicv_post_state_restore,
|
|
.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
|
|
.hwapic_irr_update = vmx_hwapic_irr_update,
|
|
.hwapic_isr_update = vmx_hwapic_isr_update,
|
|
.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
|
|
.sync_pir_to_irr = vmx_sync_pir_to_irr,
|
|
.deliver_interrupt = vmx_deliver_interrupt,
|
|
.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
|
|
|
|
.set_tss_addr = vmx_set_tss_addr,
|
|
.set_identity_map_addr = vmx_set_identity_map_addr,
|
|
.get_mt_mask = vmx_get_mt_mask,
|
|
|
|
.get_exit_info = vmx_get_exit_info,
|
|
|
|
.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
|
|
|
|
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
|
|
|
|
.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
|
|
.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
|
|
.write_tsc_offset = vmx_write_tsc_offset,
|
|
.write_tsc_multiplier = vmx_write_tsc_multiplier,
|
|
|
|
.load_mmu_pgd = vmx_load_mmu_pgd,
|
|
|
|
.check_intercept = vmx_check_intercept,
|
|
.handle_exit_irqoff = vmx_handle_exit_irqoff,
|
|
|
|
.request_immediate_exit = vmx_request_immediate_exit,
|
|
|
|
.sched_in = vmx_sched_in,
|
|
|
|
.cpu_dirty_log_size = PML_ENTITY_NUM,
|
|
.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
|
|
|
|
.nested_ops = &vmx_nested_ops,
|
|
|
|
.pi_update_irte = vmx_pi_update_irte,
|
|
.pi_start_assignment = vmx_pi_start_assignment,
|
|
|
|
#ifdef CONFIG_X86_64
|
|
.set_hv_timer = vmx_set_hv_timer,
|
|
.cancel_hv_timer = vmx_cancel_hv_timer,
|
|
#endif
|
|
|
|
.setup_mce = vmx_setup_mce,
|
|
|
|
#ifdef CONFIG_KVM_SMM
|
|
.smi_allowed = vmx_smi_allowed,
|
|
.enter_smm = vmx_enter_smm,
|
|
.leave_smm = vmx_leave_smm,
|
|
.enable_smi_window = vmx_enable_smi_window,
|
|
#endif
|
|
|
|
.can_emulate_instruction = vmx_can_emulate_instruction,
|
|
.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
|
|
.migrate_timers = vmx_migrate_timers,
|
|
|
|
.msr_filter_changed = vmx_msr_filter_changed,
|
|
.complete_emulated_msr = kvm_complete_insn_gp,
|
|
|
|
.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
|
|
};
|
|
|
|
static unsigned int vmx_handle_intel_pt_intr(void)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
|
|
|
|
/* '0' on failure so that the !PT case can use a RET0 static call. */
|
|
if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
|
|
return 0;
|
|
|
|
kvm_make_request(KVM_REQ_PMI, vcpu);
|
|
__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
|
|
(unsigned long *)&vcpu->arch.pmu.global_status);
|
|
return 1;
|
|
}
|
|
|
|
static __init void vmx_setup_user_return_msrs(void)
|
|
{
|
|
|
|
/*
|
|
* Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
|
|
* will emulate SYSCALL in legacy mode if the vendor string in guest
|
|
* CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
|
|
* support this emulation, MSR_STAR is included in the list for i386,
|
|
* but is never loaded into hardware. MSR_CSTAR is also never loaded
|
|
* into hardware and is here purely for emulation purposes.
|
|
*/
|
|
const u32 vmx_uret_msrs_list[] = {
|
|
#ifdef CONFIG_X86_64
|
|
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
|
|
#endif
|
|
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
|
|
MSR_IA32_TSX_CTRL,
|
|
};
|
|
int i;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
|
|
kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
|
|
}
|
|
|
|
static void __init vmx_setup_me_spte_mask(void)
|
|
{
|
|
u64 me_mask = 0;
|
|
|
|
/*
|
|
* kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
|
|
* the former to avoid exposing shadow_phys_bits.
|
|
*
|
|
* On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
|
|
* shadow_phys_bits. On MKTME and/or TDX capable systems,
|
|
* boot_cpu_data.x86_phys_bits holds the actual physical address
|
|
* w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
|
|
* reported by CPUID. Those bits between are KeyID bits.
|
|
*/
|
|
if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
|
|
me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
|
|
kvm_get_shadow_phys_bits() - 1);
|
|
/*
|
|
* Unlike SME, host kernel doesn't support setting up any
|
|
* MKTME KeyID on Intel platforms. No memory encryption
|
|
* bits should be included into the SPTE.
|
|
*/
|
|
kvm_mmu_set_me_spte_mask(0, me_mask);
|
|
}
|
|
|
|
static struct kvm_x86_init_ops vmx_init_ops __initdata;
|
|
|
|
static __init int hardware_setup(void)
|
|
{
|
|
unsigned long host_bndcfgs;
|
|
struct desc_ptr dt;
|
|
int r;
|
|
|
|
store_idt(&dt);
|
|
host_idt_base = dt.address;
|
|
|
|
vmx_setup_user_return_msrs();
|
|
|
|
if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
|
|
return -EIO;
|
|
|
|
if (cpu_has_perf_global_ctrl_bug())
|
|
pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
|
|
"does not work properly. Using workaround\n");
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_MPX)) {
|
|
rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
|
|
WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
|
|
}
|
|
|
|
if (!cpu_has_vmx_mpx())
|
|
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
|
|
XFEATURE_MASK_BNDCSR);
|
|
|
|
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
|
|
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
|
|
enable_vpid = 0;
|
|
|
|
if (!cpu_has_vmx_ept() ||
|
|
!cpu_has_vmx_ept_4levels() ||
|
|
!cpu_has_vmx_ept_mt_wb() ||
|
|
!cpu_has_vmx_invept_global())
|
|
enable_ept = 0;
|
|
|
|
/* NX support is required for shadow paging. */
|
|
if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
|
|
pr_err_ratelimited("NX (Execute Disable) not supported\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
|
|
enable_ept_ad_bits = 0;
|
|
|
|
if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
|
|
enable_unrestricted_guest = 0;
|
|
|
|
if (!cpu_has_vmx_flexpriority())
|
|
flexpriority_enabled = 0;
|
|
|
|
if (!cpu_has_virtual_nmis())
|
|
enable_vnmi = 0;
|
|
|
|
#ifdef CONFIG_X86_SGX_KVM
|
|
if (!cpu_has_vmx_encls_vmexit())
|
|
enable_sgx = false;
|
|
#endif
|
|
|
|
/*
|
|
* set_apic_access_page_addr() is used to reload apic access
|
|
* page upon invalidation. No need to do anything if not
|
|
* using the APIC_ACCESS_ADDR VMCS field.
|
|
*/
|
|
if (!flexpriority_enabled)
|
|
vmx_x86_ops.set_apic_access_page_addr = NULL;
|
|
|
|
if (!cpu_has_vmx_tpr_shadow())
|
|
vmx_x86_ops.update_cr8_intercept = NULL;
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
|
|
&& enable_ept) {
|
|
vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
|
|
vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
|
|
}
|
|
#endif
|
|
|
|
if (!cpu_has_vmx_ple()) {
|
|
ple_gap = 0;
|
|
ple_window = 0;
|
|
ple_window_grow = 0;
|
|
ple_window_max = 0;
|
|
ple_window_shrink = 0;
|
|
}
|
|
|
|
if (!cpu_has_vmx_apicv())
|
|
enable_apicv = 0;
|
|
if (!enable_apicv)
|
|
vmx_x86_ops.sync_pir_to_irr = NULL;
|
|
|
|
if (!enable_apicv || !cpu_has_vmx_ipiv())
|
|
enable_ipiv = false;
|
|
|
|
if (cpu_has_vmx_tsc_scaling())
|
|
kvm_caps.has_tsc_control = true;
|
|
|
|
kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
|
|
kvm_caps.tsc_scaling_ratio_frac_bits = 48;
|
|
kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
|
|
kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
|
|
|
|
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
|
|
|
|
if (enable_ept)
|
|
kvm_mmu_set_ept_masks(enable_ept_ad_bits,
|
|
cpu_has_vmx_ept_execute_only());
|
|
|
|
/*
|
|
* Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
|
|
* bits to shadow_zero_check.
|
|
*/
|
|
vmx_setup_me_spte_mask();
|
|
|
|
kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
|
|
ept_caps_to_lpage_level(vmx_capability.ept));
|
|
|
|
/*
|
|
* Only enable PML when hardware supports PML feature, and both EPT
|
|
* and EPT A/D bit features are enabled -- PML depends on them to work.
|
|
*/
|
|
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
|
|
enable_pml = 0;
|
|
|
|
if (!enable_pml)
|
|
vmx_x86_ops.cpu_dirty_log_size = 0;
|
|
|
|
if (!cpu_has_vmx_preemption_timer())
|
|
enable_preemption_timer = false;
|
|
|
|
if (enable_preemption_timer) {
|
|
u64 use_timer_freq = 5000ULL * 1000 * 1000;
|
|
|
|
cpu_preemption_timer_multi =
|
|
vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
|
|
|
|
if (tsc_khz)
|
|
use_timer_freq = (u64)tsc_khz * 1000;
|
|
use_timer_freq >>= cpu_preemption_timer_multi;
|
|
|
|
/*
|
|
* KVM "disables" the preemption timer by setting it to its max
|
|
* value. Don't use the timer if it might cause spurious exits
|
|
* at a rate faster than 0.1 Hz (of uninterrupted guest time).
|
|
*/
|
|
if (use_timer_freq > 0xffffffffu / 10)
|
|
enable_preemption_timer = false;
|
|
}
|
|
|
|
if (!enable_preemption_timer) {
|
|
vmx_x86_ops.set_hv_timer = NULL;
|
|
vmx_x86_ops.cancel_hv_timer = NULL;
|
|
vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
|
|
}
|
|
|
|
kvm_caps.supported_mce_cap |= MCG_LMCE_P;
|
|
kvm_caps.supported_mce_cap |= MCG_CMCI_P;
|
|
|
|
if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
|
|
return -EINVAL;
|
|
if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
|
|
pt_mode = PT_MODE_SYSTEM;
|
|
if (pt_mode == PT_MODE_HOST_GUEST)
|
|
vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
|
|
else
|
|
vmx_init_ops.handle_intel_pt_intr = NULL;
|
|
|
|
setup_default_sgx_lepubkeyhash();
|
|
|
|
if (nested) {
|
|
nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
|
|
|
|
r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
vmx_set_cpu_caps();
|
|
|
|
r = alloc_kvm_area();
|
|
if (r && nested)
|
|
nested_vmx_hardware_unsetup();
|
|
|
|
kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct kvm_x86_init_ops vmx_init_ops __initdata = {
|
|
.hardware_setup = hardware_setup,
|
|
.handle_intel_pt_intr = NULL,
|
|
|
|
.runtime_ops = &vmx_x86_ops,
|
|
.pmu_ops = &intel_pmu_ops,
|
|
};
|
|
|
|
static void vmx_cleanup_l1d_flush(void)
|
|
{
|
|
if (vmx_l1d_flush_pages) {
|
|
free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
|
|
vmx_l1d_flush_pages = NULL;
|
|
}
|
|
/* Restore state so sysfs ignores VMX */
|
|
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
|
|
}
|
|
|
|
static void __vmx_exit(void)
|
|
{
|
|
allow_smaller_maxphyaddr = false;
|
|
|
|
cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
|
|
|
|
vmx_cleanup_l1d_flush();
|
|
}
|
|
|
|
static void vmx_exit(void)
|
|
{
|
|
kvm_exit();
|
|
kvm_x86_vendor_exit();
|
|
|
|
__vmx_exit();
|
|
}
|
|
module_exit(vmx_exit);
|
|
|
|
static int __init vmx_init(void)
|
|
{
|
|
int r, cpu;
|
|
|
|
if (!kvm_is_vmx_supported())
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
|
|
* to unwind if a later step fails.
|
|
*/
|
|
hv_init_evmcs();
|
|
|
|
r = kvm_x86_vendor_init(&vmx_init_ops);
|
|
if (r)
|
|
return r;
|
|
|
|
/*
|
|
* Must be called after common x86 init so enable_ept is properly set
|
|
* up. Hand the parameter mitigation value in which was stored in
|
|
* the pre module init parser. If no parameter was given, it will
|
|
* contain 'auto' which will be turned into the default 'cond'
|
|
* mitigation mode.
|
|
*/
|
|
r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
|
|
if (r)
|
|
goto err_l1d_flush;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
|
|
|
|
pi_init_cpu(cpu);
|
|
}
|
|
|
|
cpu_emergency_register_virt_callback(vmx_emergency_disable);
|
|
|
|
vmx_check_vmcs12_offsets();
|
|
|
|
/*
|
|
* Shadow paging doesn't have a (further) performance penalty
|
|
* from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
|
|
* by default
|
|
*/
|
|
if (!enable_ept)
|
|
allow_smaller_maxphyaddr = true;
|
|
|
|
/*
|
|
* Common KVM initialization _must_ come last, after this, /dev/kvm is
|
|
* exposed to userspace!
|
|
*/
|
|
r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
|
|
THIS_MODULE);
|
|
if (r)
|
|
goto err_kvm_init;
|
|
|
|
return 0;
|
|
|
|
err_kvm_init:
|
|
__vmx_exit();
|
|
err_l1d_flush:
|
|
kvm_x86_vendor_exit();
|
|
return r;
|
|
}
|
|
module_init(vmx_init);
|