eec73529a9
Rename freq_scale to a less generic name, as it will get exported soon for modules. Since x86 already names its own implementation of this as arch_freq_scale, lets stick to that. Suggested-by: Will Deacon <will@kernel.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
400 lines
10 KiB
C
400 lines
10 KiB
C
/*
|
|
* arch/arm64/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011,2013,2014 Linaro Limited.
|
|
*
|
|
* Based on the arm32 version written by Vincent Guittot in turn based on
|
|
* arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/arch_topology.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
|
|
u64 mpidr;
|
|
|
|
if (cpuid_topo->package_id != -1)
|
|
goto topology_populated;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* Uniprocessor systems can rely on default topology values */
|
|
if (mpidr & MPIDR_UP_BITMASK)
|
|
return;
|
|
|
|
/*
|
|
* This would be the place to create cpu topology based on MPIDR.
|
|
*
|
|
* However, it cannot be trusted to depict the actual topology; some
|
|
* pieces of the architecture enforce an artificial cap on Aff0 values
|
|
* (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
|
|
* artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
|
|
* having absolutely no relationship to the actual underlying system
|
|
* topology, and cannot be reasonably used as core / package ID.
|
|
*
|
|
* If the MT bit is set, Aff0 *could* be used to define a thread ID, but
|
|
* we still wouldn't be able to obtain a sane core ID. This means we
|
|
* need to entirely ignore MPIDR for any topology deduction.
|
|
*/
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = cpuid;
|
|
cpuid_topo->package_id = cpu_to_node(cpuid);
|
|
|
|
pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
|
|
cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
|
|
cpuid_topo->thread_id, mpidr);
|
|
|
|
topology_populated:
|
|
update_siblings_masks(cpuid);
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static bool __init acpi_cpu_is_threaded(int cpu)
|
|
{
|
|
int is_threaded = acpi_pptt_cpu_is_thread(cpu);
|
|
|
|
/*
|
|
* if the PPTT doesn't have thread information, assume a homogeneous
|
|
* machine and return the current CPU's thread state.
|
|
*/
|
|
if (is_threaded < 0)
|
|
is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
|
|
|
|
return !!is_threaded;
|
|
}
|
|
|
|
/*
|
|
* Propagate the topology information of the processor_topology_node tree to the
|
|
* cpu_topology array.
|
|
*/
|
|
int __init parse_acpi_topology(void)
|
|
{
|
|
int cpu, topology_id;
|
|
|
|
if (acpi_disabled)
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int i, cache_id;
|
|
|
|
topology_id = find_acpi_cpu_topology(cpu, 0);
|
|
if (topology_id < 0)
|
|
return topology_id;
|
|
|
|
if (acpi_cpu_is_threaded(cpu)) {
|
|
cpu_topology[cpu].thread_id = topology_id;
|
|
topology_id = find_acpi_cpu_topology(cpu, 1);
|
|
cpu_topology[cpu].core_id = topology_id;
|
|
} else {
|
|
cpu_topology[cpu].thread_id = -1;
|
|
cpu_topology[cpu].core_id = topology_id;
|
|
}
|
|
topology_id = find_acpi_cpu_topology_package(cpu);
|
|
cpu_topology[cpu].package_id = topology_id;
|
|
|
|
i = acpi_find_last_cache_level(cpu);
|
|
|
|
if (i > 0) {
|
|
/*
|
|
* this is the only part of cpu_topology that has
|
|
* a direct relationship with the cache topology
|
|
*/
|
|
cache_id = find_acpi_cpu_cache_topology(cpu, i);
|
|
if (cache_id > 0)
|
|
cpu_topology[cpu].llc_id = cache_id;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_AMU_EXTN
|
|
#define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
|
|
#define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
|
|
#else
|
|
#define read_corecnt() (0UL)
|
|
#define read_constcnt() (0UL)
|
|
#endif
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "AMU: " fmt
|
|
|
|
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
|
|
static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
|
|
static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
|
|
static cpumask_var_t amu_fie_cpus;
|
|
|
|
void update_freq_counters_refs(void)
|
|
{
|
|
this_cpu_write(arch_core_cycles_prev, read_corecnt());
|
|
this_cpu_write(arch_const_cycles_prev, read_constcnt());
|
|
}
|
|
|
|
static inline bool freq_counters_valid(int cpu)
|
|
{
|
|
if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
|
|
return false;
|
|
|
|
if (!cpu_has_amu_feat(cpu)) {
|
|
pr_debug("CPU%d: counters are not supported.\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
|
|
!per_cpu(arch_core_cycles_prev, cpu))) {
|
|
pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate)
|
|
{
|
|
u64 ratio;
|
|
|
|
if (unlikely(!max_rate || !ref_rate)) {
|
|
pr_debug("CPU%d: invalid maximum or reference frequency.\n",
|
|
cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Pre-compute the fixed ratio between the frequency of the constant
|
|
* reference counter and the maximum frequency of the CPU.
|
|
*
|
|
* ref_rate
|
|
* arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALE²
|
|
* max_rate
|
|
*
|
|
* We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
|
|
* in order to ensure a good resolution for arch_max_freq_scale for
|
|
* very low reference frequencies (down to the KHz range which should
|
|
* be unlikely).
|
|
*/
|
|
ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
|
|
ratio = div64_u64(ratio, max_rate);
|
|
if (!ratio) {
|
|
WARN_ONCE(1, "Reference frequency too low.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
|
|
#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
|
|
|
|
static void amu_fie_setup(const struct cpumask *cpus)
|
|
{
|
|
bool invariant;
|
|
int cpu;
|
|
|
|
/* We are already set since the last insmod of cpufreq driver */
|
|
if (unlikely(cpumask_subset(cpus, amu_fie_cpus)))
|
|
return;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
if (!freq_counters_valid(cpu) ||
|
|
freq_inv_set_max_ratio(cpu,
|
|
cpufreq_get_hw_max_freq(cpu) * 1000,
|
|
arch_timer_get_rate()))
|
|
return;
|
|
}
|
|
|
|
cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
|
|
|
|
invariant = topology_scale_freq_invariant();
|
|
|
|
/* We aren't fully invariant yet */
|
|
if (!invariant && !cpumask_equal(amu_fie_cpus, cpu_present_mask))
|
|
return;
|
|
|
|
static_branch_enable(&amu_fie_key);
|
|
|
|
pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
|
|
cpumask_pr_args(cpus));
|
|
|
|
/*
|
|
* Task scheduler behavior depends on frequency invariance support,
|
|
* either cpufreq or counter driven. If the support status changes as
|
|
* a result of counter initialisation and use, retrigger the build of
|
|
* scheduling domains to ensure the information is propagated properly.
|
|
*/
|
|
if (!invariant)
|
|
rebuild_sched_domains_energy();
|
|
}
|
|
|
|
static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_policy *policy = data;
|
|
|
|
if (val == CPUFREQ_CREATE_POLICY)
|
|
amu_fie_setup(policy->related_cpus);
|
|
|
|
/*
|
|
* We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
|
|
* counters don't have any dependency on cpufreq driver once we have
|
|
* initialized AMU support and enabled invariance. The AMU counters will
|
|
* keep on working just fine in the absence of the cpufreq driver, and
|
|
* for the CPUs for which there are no counters available, the last set
|
|
* value of arch_freq_scale will remain valid as that is the frequency
|
|
* those CPUs are running at.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block init_amu_fie_notifier = {
|
|
.notifier_call = init_amu_fie_callback,
|
|
};
|
|
|
|
static int __init init_amu_fie(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
ret = cpufreq_register_notifier(&init_amu_fie_notifier,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
if (ret)
|
|
free_cpumask_var(amu_fie_cpus);
|
|
|
|
return ret;
|
|
}
|
|
core_initcall(init_amu_fie);
|
|
|
|
bool arch_freq_counters_available(const struct cpumask *cpus)
|
|
{
|
|
return amu_freq_invariant() &&
|
|
cpumask_subset(cpus, amu_fie_cpus);
|
|
}
|
|
|
|
void topology_scale_freq_tick(void)
|
|
{
|
|
u64 prev_core_cnt, prev_const_cnt;
|
|
u64 core_cnt, const_cnt, scale;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!amu_freq_invariant())
|
|
return;
|
|
|
|
if (!cpumask_test_cpu(cpu, amu_fie_cpus))
|
|
return;
|
|
|
|
prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
|
|
prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
|
|
|
|
update_freq_counters_refs();
|
|
|
|
const_cnt = this_cpu_read(arch_const_cycles_prev);
|
|
core_cnt = this_cpu_read(arch_core_cycles_prev);
|
|
|
|
if (unlikely(core_cnt <= prev_core_cnt ||
|
|
const_cnt <= prev_const_cnt))
|
|
return;
|
|
|
|
/*
|
|
* /\core arch_max_freq_scale
|
|
* scale = ------- * --------------------
|
|
* /\const SCHED_CAPACITY_SCALE
|
|
*
|
|
* See validate_cpu_freq_invariance_counters() for details on
|
|
* arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
|
|
*/
|
|
scale = core_cnt - prev_core_cnt;
|
|
scale *= this_cpu_read(arch_max_freq_scale);
|
|
scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
|
|
const_cnt - prev_const_cnt);
|
|
|
|
scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
|
|
this_cpu_write(arch_freq_scale, (unsigned long)scale);
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI_CPPC_LIB
|
|
#include <acpi/cppc_acpi.h>
|
|
|
|
static void cpu_read_corecnt(void *val)
|
|
{
|
|
*(u64 *)val = read_corecnt();
|
|
}
|
|
|
|
static void cpu_read_constcnt(void *val)
|
|
{
|
|
*(u64 *)val = read_constcnt();
|
|
}
|
|
|
|
static inline
|
|
int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
|
|
{
|
|
/*
|
|
* Abort call on counterless CPU or when interrupts are
|
|
* disabled - can lead to deadlock in smp sync call.
|
|
*/
|
|
if (!cpu_has_amu_feat(cpu))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (WARN_ON_ONCE(irqs_disabled()))
|
|
return -EPERM;
|
|
|
|
smp_call_function_single(cpu, func, val, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Refer to drivers/acpi/cppc_acpi.c for the description of the functions
|
|
* below.
|
|
*/
|
|
bool cpc_ffh_supported(void)
|
|
{
|
|
return freq_counters_valid(get_cpu_with_amu_feat());
|
|
}
|
|
|
|
int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
|
|
{
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
switch ((u64)reg->address) {
|
|
case 0x0:
|
|
ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
|
|
break;
|
|
case 0x1:
|
|
ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
|
|
break;
|
|
}
|
|
|
|
if (!ret) {
|
|
*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
|
|
reg->bit_offset);
|
|
*val >>= reg->bit_offset;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
#endif /* CONFIG_ACPI_CPPC_LIB */
|