linux/fs/bcachefs/btree_update_leaf.c
Brian Foster eabb10dc95 bcachefs: support btree updates of prejournaled keys
Introduce support for prejournaled key updates. This allows a
transaction to commit an update for a key that already exists (and
is pinned) in the journal. This is required for btree write buffer
updates as the current scheme of journaling both on write buffer
insertion and write buffer (slow path) flush is unsafe in certain
crash recovery scenarios.

Create a small trans update wrapper to pass along the seq where the
key resides into the btree_insert_entry. From there, trans commit
passes the seq into the btree insert path where it is used to manage
the journal pin for the associated btree leaf.

Note that this patch only introduces the underlying mechanism and
otherwise includes no functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:10:08 -04:00

2077 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_write_buffer.h"
#include "buckets.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "extent_update.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "recovery.h"
#include "subvolume.h"
#include "replicas.h"
#include "trace.h"
#include <linux/prefetch.h>
#include <linux/sort.h>
/*
* bch2_btree_path_peek_slot() for a cached iterator might return a key in a
* different snapshot:
*/
static struct bkey_s_c bch2_btree_path_peek_slot_exact(struct btree_path *path, struct bkey *u)
{
struct bkey_s_c k = bch2_btree_path_peek_slot(path, u);
if (k.k && bpos_eq(path->pos, k.k->p))
return k;
bkey_init(u);
u->p = path->pos;
return (struct bkey_s_c) { u, NULL };
}
static void verify_update_old_key(struct btree_trans *trans, struct btree_insert_entry *i)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct bch_fs *c = trans->c;
struct bkey u;
struct bkey_s_c k = bch2_btree_path_peek_slot_exact(i->path, &u);
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek_slot(c, i->btree_id, i->level, i->k->k.p);
if (j_k)
k = bkey_i_to_s_c(j_k);
}
u = *k.k;
u.needs_whiteout = i->old_k.needs_whiteout;
BUG_ON(memcmp(&i->old_k, &u, sizeof(struct bkey)));
BUG_ON(i->old_v != k.v);
#endif
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *, struct btree_path *,
struct bkey_i *, enum btree_update_flags,
unsigned long ip);
static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
const struct btree_insert_entry *r)
{
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->cached, r->cached) ?:
-cmp_int(l->level, r->level) ?:
bpos_cmp(l->k->k.p, r->k->k.p);
}
static inline struct btree_path_level *insert_l(struct btree_insert_entry *i)
{
return i->path->l + i->level;
}
static inline bool same_leaf_as_prev(struct btree_trans *trans,
struct btree_insert_entry *i)
{
return i != trans->updates &&
insert_l(&i[0])->b == insert_l(&i[-1])->b;
}
static inline bool same_leaf_as_next(struct btree_trans *trans,
struct btree_insert_entry *i)
{
return i + 1 < trans->updates + trans->nr_updates &&
insert_l(&i[0])->b == insert_l(&i[1])->b;
}
inline void bch2_btree_node_prep_for_write(struct btree_trans *trans,
struct btree_path *path,
struct btree *b)
{
struct bch_fs *c = trans->c;
if (unlikely(btree_node_just_written(b)) &&
bch2_btree_post_write_cleanup(c, b))
bch2_trans_node_reinit_iter(trans, b);
/*
* If the last bset has been written, or if it's gotten too big - start
* a new bset to insert into:
*/
if (want_new_bset(c, b))
bch2_btree_init_next(trans, b);
}
/* Inserting into a given leaf node (last stage of insert): */
/* Handle overwrites and do insert, for non extents: */
bool bch2_btree_bset_insert_key(struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
struct bkey_packed *k;
unsigned clobber_u64s = 0, new_u64s = 0;
EBUG_ON(btree_node_just_written(b));
EBUG_ON(bset_written(b, btree_bset_last(b)));
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
EBUG_ON(bpos_lt(insert->k.p, b->data->min_key));
EBUG_ON(bpos_gt(insert->k.p, b->data->max_key));
EBUG_ON(insert->k.u64s >
bch_btree_keys_u64s_remaining(trans->c, b));
k = bch2_btree_node_iter_peek_all(node_iter, b);
if (k && bkey_cmp_left_packed(b, k, &insert->k.p))
k = NULL;
/* @k is the key being overwritten/deleted, if any: */
EBUG_ON(k && bkey_deleted(k));
/* Deleting, but not found? nothing to do: */
if (bkey_deleted(&insert->k) && !k)
return false;
if (bkey_deleted(&insert->k)) {
/* Deleting: */
btree_account_key_drop(b, k);
k->type = KEY_TYPE_deleted;
if (k->needs_whiteout)
push_whiteout(trans->c, b, insert->k.p);
k->needs_whiteout = false;
if (k >= btree_bset_last(b)->start) {
clobber_u64s = k->u64s;
bch2_bset_delete(b, k, clobber_u64s);
goto fix_iter;
} else {
bch2_btree_path_fix_key_modified(trans, b, k);
}
return true;
}
if (k) {
/* Overwriting: */
btree_account_key_drop(b, k);
k->type = KEY_TYPE_deleted;
insert->k.needs_whiteout = k->needs_whiteout;
k->needs_whiteout = false;
if (k >= btree_bset_last(b)->start) {
clobber_u64s = k->u64s;
goto overwrite;
} else {
bch2_btree_path_fix_key_modified(trans, b, k);
}
}
k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b));
overwrite:
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
new_u64s = k->u64s;
fix_iter:
if (clobber_u64s != new_u64s)
bch2_btree_node_iter_fix(trans, path, b, node_iter, k,
clobber_u64s, new_u64s);
return true;
}
static int __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
unsigned i, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct btree_write *w = container_of(pin, struct btree_write, journal);
struct btree *b = container_of(w, struct btree, writes[i]);
struct btree_trans trans;
unsigned long old, new, v;
unsigned idx = w - b->writes;
bch2_trans_init(&trans, c, 0, 0);
btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
v = READ_ONCE(b->flags);
do {
old = new = v;
if (!(old & (1 << BTREE_NODE_dirty)) ||
!!(old & (1 << BTREE_NODE_write_idx)) != idx ||
w->journal.seq != seq)
break;
new &= ~BTREE_WRITE_TYPE_MASK;
new |= BTREE_WRITE_journal_reclaim;
new |= 1 << BTREE_NODE_need_write;
} while ((v = cmpxchg(&b->flags, old, new)) != old);
btree_node_write_if_need(c, b, SIX_LOCK_read);
six_unlock_read(&b->c.lock);
bch2_trans_exit(&trans);
return 0;
}
int bch2_btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 0, seq);
}
int bch2_btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 1, seq);
}
inline void bch2_btree_add_journal_pin(struct bch_fs *c,
struct btree *b, u64 seq)
{
struct btree_write *w = btree_current_write(b);
bch2_journal_pin_add(&c->journal, seq, &w->journal,
btree_node_write_idx(b) == 0
? bch2_btree_node_flush0
: bch2_btree_node_flush1);
}
/**
* btree_insert_key - insert a key one key into a leaf node
*/
inline void bch2_btree_insert_key_leaf(struct btree_trans *trans,
struct btree_path *path,
struct bkey_i *insert,
u64 journal_seq)
{
struct bch_fs *c = trans->c;
struct btree *b = path_l(path)->b;
struct bset_tree *t = bset_tree_last(b);
struct bset *i = bset(b, t);
int old_u64s = bset_u64s(t);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
if (unlikely(!bch2_btree_bset_insert_key(trans, path, b,
&path_l(path)->iter, insert)))
return;
i->journal_seq = cpu_to_le64(max(journal_seq, le64_to_cpu(i->journal_seq)));
bch2_btree_add_journal_pin(c, b, journal_seq);
if (unlikely(!btree_node_dirty(b))) {
EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags));
set_btree_node_dirty_acct(c, b);
}
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) bset_u64s(t) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_trans_node_reinit_iter(trans, b);
}
/* Cached btree updates: */
/* Normal update interface: */
static inline void btree_insert_entry_checks(struct btree_trans *trans,
struct btree_insert_entry *i)
{
BUG_ON(!bpos_eq(i->k->k.p, i->path->pos));
BUG_ON(i->cached != i->path->cached);
BUG_ON(i->level != i->path->level);
BUG_ON(i->btree_id != i->path->btree_id);
EBUG_ON(!i->level &&
!(i->flags & BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) &&
test_bit(JOURNAL_REPLAY_DONE, &trans->c->journal.flags) &&
i->k->k.p.snapshot &&
bch2_snapshot_is_internal_node(trans->c, i->k->k.p.snapshot));
}
static noinline int
bch2_trans_journal_preres_get_cold(struct btree_trans *trans, unsigned flags,
unsigned long trace_ip)
{
return drop_locks_do(trans,
bch2_journal_preres_get(&trans->c->journal,
&trans->journal_preres,
trans->journal_preres_u64s,
(flags & BCH_WATERMARK_MASK)));
}
static __always_inline int bch2_trans_journal_res_get(struct btree_trans *trans,
unsigned flags)
{
return bch2_journal_res_get(&trans->c->journal, &trans->journal_res,
trans->journal_u64s, flags);
}
#define JSET_ENTRY_LOG_U64s 4
static noinline void journal_transaction_name(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
struct jset_entry *entry =
bch2_journal_add_entry(j, &trans->journal_res,
BCH_JSET_ENTRY_log, 0, 0,
JSET_ENTRY_LOG_U64s);
struct jset_entry_log *l =
container_of(entry, struct jset_entry_log, entry);
strncpy(l->d, trans->fn, JSET_ENTRY_LOG_U64s * sizeof(u64));
}
static inline int btree_key_can_insert(struct btree_trans *trans,
struct btree *b, unsigned u64s)
{
struct bch_fs *c = trans->c;
if (!bch2_btree_node_insert_fits(c, b, u64s))
return -BCH_ERR_btree_insert_btree_node_full;
return 0;
}
static int btree_key_can_insert_cached(struct btree_trans *trans, unsigned flags,
struct btree_path *path, unsigned u64s)
{
struct bch_fs *c = trans->c;
struct bkey_cached *ck = (void *) path->l[0].b;
struct btree_insert_entry *i;
unsigned new_u64s;
struct bkey_i *new_k;
EBUG_ON(path->level);
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
bch2_btree_key_cache_must_wait(c) &&
!(flags & BTREE_INSERT_JOURNAL_RECLAIM))
return -BCH_ERR_btree_insert_need_journal_reclaim;
/*
* bch2_varint_decode can read past the end of the buffer by at most 7
* bytes (it won't be used):
*/
u64s += 1;
if (u64s <= ck->u64s)
return 0;
new_u64s = roundup_pow_of_two(u64s);
new_k = krealloc(ck->k, new_u64s * sizeof(u64), GFP_NOFS);
if (!new_k) {
bch_err(c, "error allocating memory for key cache key, btree %s u64s %u",
bch2_btree_ids[path->btree_id], new_u64s);
return -BCH_ERR_ENOMEM_btree_key_cache_insert;
}
trans_for_each_update(trans, i)
if (i->old_v == &ck->k->v)
i->old_v = &new_k->v;
ck->u64s = new_u64s;
ck->k = new_k;
return 0;
}
/* Triggers: */
static int run_one_mem_trigger(struct btree_trans *trans,
struct btree_insert_entry *i,
unsigned flags)
{
struct bkey_s_c old = { &i->old_k, i->old_v };
struct bkey_i *new = i->k;
const struct bkey_ops *old_ops = bch2_bkey_type_ops(old.k->type);
const struct bkey_ops *new_ops = bch2_bkey_type_ops(i->k->k.type);
int ret;
verify_update_old_key(trans, i);
if (unlikely(flags & BTREE_TRIGGER_NORUN))
return 0;
if (!btree_node_type_needs_gc(i->btree_id))
return 0;
if (old_ops->atomic_trigger == new_ops->atomic_trigger &&
((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) {
ret = bch2_mark_key(trans, i->btree_id, i->level,
old, bkey_i_to_s_c(new),
BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags);
} else {
struct bkey _deleted = KEY(0, 0, 0);
struct bkey_s_c deleted = (struct bkey_s_c) { &_deleted, NULL };
_deleted.p = i->path->pos;
ret = bch2_mark_key(trans, i->btree_id, i->level,
deleted, bkey_i_to_s_c(new),
BTREE_TRIGGER_INSERT|flags) ?:
bch2_mark_key(trans, i->btree_id, i->level,
old, deleted,
BTREE_TRIGGER_OVERWRITE|flags);
}
return ret;
}
static int run_one_trans_trigger(struct btree_trans *trans, struct btree_insert_entry *i,
bool overwrite)
{
/*
* Transactional triggers create new btree_insert_entries, so we can't
* pass them a pointer to a btree_insert_entry, that memory is going to
* move:
*/
struct bkey old_k = i->old_k;
struct bkey_s_c old = { &old_k, i->old_v };
const struct bkey_ops *old_ops = bch2_bkey_type_ops(old.k->type);
const struct bkey_ops *new_ops = bch2_bkey_type_ops(i->k->k.type);
verify_update_old_key(trans, i);
if ((i->flags & BTREE_TRIGGER_NORUN) ||
!(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)))
return 0;
if (!i->insert_trigger_run &&
!i->overwrite_trigger_run &&
old_ops->trans_trigger == new_ops->trans_trigger &&
((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) {
i->overwrite_trigger_run = true;
i->insert_trigger_run = true;
return bch2_trans_mark_key(trans, i->btree_id, i->level, old, i->k,
BTREE_TRIGGER_INSERT|
BTREE_TRIGGER_OVERWRITE|
i->flags) ?: 1;
} else if (overwrite && !i->overwrite_trigger_run) {
i->overwrite_trigger_run = true;
return bch2_trans_mark_old(trans, i->btree_id, i->level, old, i->flags) ?: 1;
} else if (!overwrite && !i->insert_trigger_run) {
i->insert_trigger_run = true;
return bch2_trans_mark_new(trans, i->btree_id, i->level, i->k, i->flags) ?: 1;
} else {
return 0;
}
}
static int run_btree_triggers(struct btree_trans *trans, enum btree_id btree_id,
struct btree_insert_entry *btree_id_start)
{
struct btree_insert_entry *i;
bool trans_trigger_run;
int ret, overwrite;
for (overwrite = 1; overwrite >= 0; --overwrite) {
/*
* Running triggers will append more updates to the list of updates as
* we're walking it:
*/
do {
trans_trigger_run = false;
for (i = btree_id_start;
i < trans->updates + trans->nr_updates && i->btree_id <= btree_id;
i++) {
if (i->btree_id != btree_id)
continue;
ret = run_one_trans_trigger(trans, i, overwrite);
if (ret < 0)
return ret;
if (ret)
trans_trigger_run = true;
}
} while (trans_trigger_run);
}
return 0;
}
static int bch2_trans_commit_run_triggers(struct btree_trans *trans)
{
struct btree_insert_entry *i = NULL, *btree_id_start = trans->updates;
unsigned btree_id = 0;
int ret = 0;
/*
*
* For a given btree, this algorithm runs insert triggers before
* overwrite triggers: this is so that when extents are being moved
* (e.g. by FALLOCATE_FL_INSERT_RANGE), we don't drop references before
* they are re-added.
*/
for (btree_id = 0; btree_id < BTREE_ID_NR; btree_id++) {
if (btree_id == BTREE_ID_alloc)
continue;
while (btree_id_start < trans->updates + trans->nr_updates &&
btree_id_start->btree_id < btree_id)
btree_id_start++;
ret = run_btree_triggers(trans, btree_id, btree_id_start);
if (ret)
return ret;
}
trans_for_each_update(trans, i) {
if (i->btree_id > BTREE_ID_alloc)
break;
if (i->btree_id == BTREE_ID_alloc) {
ret = run_btree_triggers(trans, BTREE_ID_alloc, i);
if (ret)
return ret;
break;
}
}
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(!(i->flags & BTREE_TRIGGER_NORUN) &&
(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)) &&
(!i->insert_trigger_run || !i->overwrite_trigger_run));
#endif
return 0;
}
static noinline int bch2_trans_commit_run_gc_triggers(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
int ret = 0;
trans_for_each_update(trans, i) {
/*
* XXX: synchronization of cached update triggers with gc
* XXX: synchronization of interior node updates with gc
*/
BUG_ON(i->cached || i->level);
if (gc_visited(c, gc_pos_btree_node(insert_l(i)->b))) {
ret = run_one_mem_trigger(trans, i, i->flags|BTREE_TRIGGER_GC);
if (ret)
break;
}
}
return ret;
}
static inline int
bch2_trans_commit_write_locked(struct btree_trans *trans, unsigned flags,
struct btree_insert_entry **stopped_at,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
struct btree_write_buffered_key *wb;
struct btree_trans_commit_hook *h;
unsigned u64s = 0;
bool marking = false;
int ret;
if (race_fault()) {
trace_and_count(c, trans_restart_fault_inject, trans, trace_ip);
return btree_trans_restart_nounlock(trans, BCH_ERR_transaction_restart_fault_inject);
}
/*
* Check if the insert will fit in the leaf node with the write lock
* held, otherwise another thread could write the node changing the
* amount of space available:
*/
prefetch(&trans->c->journal.flags);
trans_for_each_update(trans, i) {
/* Multiple inserts might go to same leaf: */
if (!same_leaf_as_prev(trans, i))
u64s = 0;
u64s += i->k->k.u64s;
ret = !i->cached
? btree_key_can_insert(trans, insert_l(i)->b, u64s)
: btree_key_can_insert_cached(trans, flags, i->path, u64s);
if (ret) {
*stopped_at = i;
return ret;
}
if (btree_node_type_needs_gc(i->bkey_type))
marking = true;
}
if (trans->nr_wb_updates &&
trans->nr_wb_updates + c->btree_write_buffer.state.nr > c->btree_write_buffer.size)
return -BCH_ERR_btree_insert_need_flush_buffer;
/*
* Don't get journal reservation until after we know insert will
* succeed:
*/
if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) {
ret = bch2_trans_journal_res_get(trans,
(flags & BCH_WATERMARK_MASK)|
JOURNAL_RES_GET_NONBLOCK);
if (ret)
return ret;
if (unlikely(trans->journal_transaction_names))
journal_transaction_name(trans);
} else {
trans->journal_res.seq = c->journal.replay_journal_seq;
}
/*
* Not allowed to fail after we've gotten our journal reservation - we
* have to use it:
*/
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
!(flags & BTREE_INSERT_JOURNAL_REPLAY)) {
if (bch2_journal_seq_verify)
trans_for_each_update(trans, i)
i->k->k.version.lo = trans->journal_res.seq;
else if (bch2_inject_invalid_keys)
trans_for_each_update(trans, i)
i->k->k.version = MAX_VERSION;
}
if (trans->fs_usage_deltas &&
bch2_trans_fs_usage_apply(trans, trans->fs_usage_deltas))
return -BCH_ERR_btree_insert_need_mark_replicas;
if (trans->nr_wb_updates) {
EBUG_ON(flags & BTREE_INSERT_JOURNAL_REPLAY);
ret = bch2_btree_insert_keys_write_buffer(trans);
if (ret)
goto revert_fs_usage;
}
h = trans->hooks;
while (h) {
ret = h->fn(trans, h);
if (ret)
goto revert_fs_usage;
h = h->next;
}
trans_for_each_update(trans, i)
if (BTREE_NODE_TYPE_HAS_MEM_TRIGGERS & (1U << i->bkey_type)) {
ret = run_one_mem_trigger(trans, i, i->flags);
if (ret)
goto fatal_err;
}
if (unlikely(c->gc_pos.phase)) {
ret = bch2_trans_commit_run_gc_triggers(trans);
if (ret)
goto fatal_err;
}
if (unlikely(trans->extra_journal_entries.nr)) {
memcpy_u64s_small(journal_res_entry(&c->journal, &trans->journal_res),
trans->extra_journal_entries.data,
trans->extra_journal_entries.nr);
trans->journal_res.offset += trans->extra_journal_entries.nr;
trans->journal_res.u64s -= trans->extra_journal_entries.nr;
}
if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) {
struct journal *j = &c->journal;
struct jset_entry *entry;
trans_for_each_update(trans, i) {
if (i->key_cache_already_flushed)
continue;
if (i->flags & BTREE_UPDATE_NOJOURNAL)
continue;
verify_update_old_key(trans, i);
if (trans->journal_transaction_names) {
entry = bch2_journal_add_entry(j, &trans->journal_res,
BCH_JSET_ENTRY_overwrite,
i->btree_id, i->level,
i->old_k.u64s);
bkey_reassemble(&entry->start[0],
(struct bkey_s_c) { &i->old_k, i->old_v });
}
entry = bch2_journal_add_entry(j, &trans->journal_res,
BCH_JSET_ENTRY_btree_keys,
i->btree_id, i->level,
i->k->k.u64s);
bkey_copy(&entry->start[0], i->k);
}
trans_for_each_wb_update(trans, wb) {
entry = bch2_journal_add_entry(j, &trans->journal_res,
BCH_JSET_ENTRY_btree_keys,
wb->btree, 0,
wb->k.k.u64s);
bkey_copy(&entry->start[0], &wb->k);
}
if (trans->journal_seq)
*trans->journal_seq = trans->journal_res.seq;
}
trans_for_each_update(trans, i) {
i->k->k.needs_whiteout = false;
if (!i->cached) {
u64 seq = trans->journal_res.seq;
if (i->flags & BTREE_UPDATE_PREJOURNAL)
seq = i->seq;
bch2_btree_insert_key_leaf(trans, i->path, i->k, seq);
} else if (!i->key_cache_already_flushed)
bch2_btree_insert_key_cached(trans, flags, i);
else {
bch2_btree_key_cache_drop(trans, i->path);
btree_path_set_dirty(i->path, BTREE_ITER_NEED_TRAVERSE);
}
}
return 0;
fatal_err:
bch2_fatal_error(c);
revert_fs_usage:
if (trans->fs_usage_deltas)
bch2_trans_fs_usage_revert(trans, trans->fs_usage_deltas);
return ret;
}
static noinline int trans_lock_write_fail(struct btree_trans *trans, struct btree_insert_entry *i)
{
while (--i >= trans->updates) {
if (same_leaf_as_prev(trans, i))
continue;
bch2_btree_node_unlock_write(trans, i->path, insert_l(i)->b);
}
trace_and_count(trans->c, trans_restart_would_deadlock_write, trans);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock_write);
}
static inline int trans_lock_write(struct btree_trans *trans)
{
struct btree_insert_entry *i;
trans_for_each_update(trans, i) {
if (same_leaf_as_prev(trans, i))
continue;
if (bch2_btree_node_lock_write(trans, i->path, &insert_l(i)->b->c))
return trans_lock_write_fail(trans, i);
if (!i->cached)
bch2_btree_node_prep_for_write(trans, i->path, insert_l(i)->b);
}
return 0;
}
static noinline void bch2_drop_overwrites_from_journal(struct btree_trans *trans)
{
struct btree_insert_entry *i;
struct btree_write_buffered_key *wb;
trans_for_each_update(trans, i)
bch2_journal_key_overwritten(trans->c, i->btree_id, i->level, i->k->k.p);
trans_for_each_wb_update(trans, wb)
bch2_journal_key_overwritten(trans->c, wb->btree, 0, wb->k.k.p);
}
#ifdef CONFIG_BCACHEFS_DEBUG
static noinline int bch2_trans_commit_bkey_invalid(struct btree_trans *trans, unsigned flags,
struct btree_insert_entry *i,
struct printbuf *err)
{
struct bch_fs *c = trans->c;
int rw = (flags & BTREE_INSERT_JOURNAL_REPLAY) ? READ : WRITE;
printbuf_reset(err);
prt_printf(err, "invalid bkey on insert from %s -> %ps",
trans->fn, (void *) i->ip_allocated);
prt_newline(err);
printbuf_indent_add(err, 2);
bch2_bkey_val_to_text(err, c, bkey_i_to_s_c(i->k));
prt_newline(err);
bch2_bkey_invalid(c, bkey_i_to_s_c(i->k),
i->bkey_type, rw, err);
bch2_print_string_as_lines(KERN_ERR, err->buf);
bch2_inconsistent_error(c);
bch2_dump_trans_updates(trans);
printbuf_exit(err);
return -EINVAL;
}
#endif
/*
* Get journal reservation, take write locks, and attempt to do btree update(s):
*/
static inline int do_bch2_trans_commit(struct btree_trans *trans, unsigned flags,
struct btree_insert_entry **stopped_at,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
int ret, u64s_delta = 0;
#ifdef CONFIG_BCACHEFS_DEBUG
struct printbuf buf = PRINTBUF;
trans_for_each_update(trans, i) {
enum bkey_invalid_flags invalid_flags = 0;
if (!(flags & BTREE_INSERT_JOURNAL_REPLAY))
invalid_flags |= BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT;
if (unlikely(bch2_bkey_invalid(c, bkey_i_to_s_c(i->k),
i->bkey_type, invalid_flags, &buf)))
return bch2_trans_commit_bkey_invalid(trans, flags, i, &buf);
btree_insert_entry_checks(trans, i);
}
printbuf_exit(&buf);
#endif
trans_for_each_update(trans, i) {
if (i->cached)
continue;
u64s_delta += !bkey_deleted(&i->k->k) ? i->k->k.u64s : 0;
u64s_delta -= i->old_btree_u64s;
if (!same_leaf_as_next(trans, i)) {
if (u64s_delta <= 0) {
ret = bch2_foreground_maybe_merge(trans, i->path,
i->level, flags);
if (unlikely(ret))
return ret;
}
u64s_delta = 0;
}
}
ret = bch2_journal_preres_get(&c->journal,
&trans->journal_preres, trans->journal_preres_u64s,
(flags & BCH_WATERMARK_MASK)|JOURNAL_RES_GET_NONBLOCK);
if (unlikely(ret == -BCH_ERR_journal_preres_get_blocked))
ret = bch2_trans_journal_preres_get_cold(trans, flags, trace_ip);
if (unlikely(ret))
return ret;
ret = trans_lock_write(trans);
if (unlikely(ret))
return ret;
ret = bch2_trans_commit_write_locked(trans, flags, stopped_at, trace_ip);
if (!ret && unlikely(trans->journal_replay_not_finished))
bch2_drop_overwrites_from_journal(trans);
trans_for_each_update(trans, i)
if (!same_leaf_as_prev(trans, i))
bch2_btree_node_unlock_write_inlined(trans, i->path,
insert_l(i)->b);
if (!ret && trans->journal_pin)
bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
trans->journal_pin, NULL);
/*
* Drop journal reservation after dropping write locks, since dropping
* the journal reservation may kick off a journal write:
*/
bch2_journal_res_put(&c->journal, &trans->journal_res);
if (unlikely(ret))
return ret;
bch2_trans_downgrade(trans);
return 0;
}
static int journal_reclaim_wait_done(struct bch_fs *c)
{
int ret = bch2_journal_error(&c->journal) ?:
!bch2_btree_key_cache_must_wait(c);
if (!ret)
journal_reclaim_kick(&c->journal);
return ret;
}
static noinline
int bch2_trans_commit_error(struct btree_trans *trans, unsigned flags,
struct btree_insert_entry *i,
int ret, unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
switch (ret) {
case -BCH_ERR_btree_insert_btree_node_full:
ret = bch2_btree_split_leaf(trans, i->path, flags);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
trace_and_count(c, trans_restart_btree_node_split, trans, trace_ip, i->path);
break;
case -BCH_ERR_btree_insert_need_mark_replicas:
ret = drop_locks_do(trans,
bch2_replicas_delta_list_mark(c, trans->fs_usage_deltas));
break;
case -BCH_ERR_journal_res_get_blocked:
/*
* XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
* flag
*/
if ((flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
(flags & BCH_WATERMARK_MASK) != BCH_WATERMARK_reclaim) {
ret = -BCH_ERR_journal_reclaim_would_deadlock;
break;
}
ret = drop_locks_do(trans,
bch2_trans_journal_res_get(trans,
(flags & BCH_WATERMARK_MASK)|
JOURNAL_RES_GET_CHECK));
break;
case -BCH_ERR_btree_insert_need_journal_reclaim:
bch2_trans_unlock(trans);
trace_and_count(c, trans_blocked_journal_reclaim, trans, trace_ip);
wait_event_freezable(c->journal.reclaim_wait,
(ret = journal_reclaim_wait_done(c)));
if (ret < 0)
break;
ret = bch2_trans_relock(trans);
break;
case -BCH_ERR_btree_insert_need_flush_buffer: {
struct btree_write_buffer *wb = &c->btree_write_buffer;
ret = 0;
if (wb->state.nr > wb->size * 3 / 4) {
bch2_trans_unlock(trans);
mutex_lock(&wb->flush_lock);
if (wb->state.nr > wb->size * 3 / 4) {
bch2_trans_begin(trans);
ret = __bch2_btree_write_buffer_flush(trans,
flags|BTREE_INSERT_NOCHECK_RW, true);
if (!ret) {
trace_and_count(c, trans_restart_write_buffer_flush, trans, _THIS_IP_);
ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_write_buffer_flush);
}
} else {
mutex_unlock(&wb->flush_lock);
ret = bch2_trans_relock(trans);
}
}
break;
}
default:
BUG_ON(ret >= 0);
break;
}
BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart) != !!trans->restarted);
bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOSPC) &&
!(flags & BTREE_INSERT_NOWAIT) &&
(flags & BTREE_INSERT_NOFAIL), c,
"%s: incorrectly got %s\n", __func__, bch2_err_str(ret));
return ret;
}
static noinline int
bch2_trans_commit_get_rw_cold(struct btree_trans *trans, unsigned flags)
{
struct bch_fs *c = trans->c;
int ret;
if (likely(!(flags & BTREE_INSERT_LAZY_RW)) ||
test_bit(BCH_FS_STARTED, &c->flags))
return -BCH_ERR_erofs_trans_commit;
ret = drop_locks_do(trans, bch2_fs_read_write_early(c));
if (ret)
return ret;
bch2_write_ref_get(c, BCH_WRITE_REF_trans);
return 0;
}
/*
* This is for updates done in the early part of fsck - btree_gc - before we've
* gone RW. we only add the new key to the list of keys for journal replay to
* do.
*/
static noinline int
do_bch2_trans_commit_to_journal_replay(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
int ret = 0;
trans_for_each_update(trans, i) {
ret = bch2_journal_key_insert(c, i->btree_id, i->level, i->k);
if (ret)
break;
}
return ret;
}
int __bch2_trans_commit(struct btree_trans *trans, unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i = NULL;
struct btree_write_buffered_key *wb;
unsigned u64s;
int ret = 0;
if (!trans->nr_updates &&
!trans->nr_wb_updates &&
!trans->extra_journal_entries.nr)
goto out_reset;
if (flags & BTREE_INSERT_GC_LOCK_HELD)
lockdep_assert_held(&c->gc_lock);
ret = bch2_trans_commit_run_triggers(trans);
if (ret)
goto out_reset;
if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
ret = do_bch2_trans_commit_to_journal_replay(trans);
goto out_reset;
}
if (!(flags & BTREE_INSERT_NOCHECK_RW) &&
unlikely(!bch2_write_ref_tryget(c, BCH_WRITE_REF_trans))) {
ret = bch2_trans_commit_get_rw_cold(trans, flags);
if (ret)
goto out_reset;
}
if (c->btree_write_buffer.state.nr > c->btree_write_buffer.size / 2 &&
mutex_trylock(&c->btree_write_buffer.flush_lock)) {
bch2_trans_begin(trans);
bch2_trans_unlock(trans);
ret = __bch2_btree_write_buffer_flush(trans,
flags|BTREE_INSERT_NOCHECK_RW, true);
if (!ret) {
trace_and_count(c, trans_restart_write_buffer_flush, trans, _THIS_IP_);
ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_write_buffer_flush);
}
goto out;
}
EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags));
memset(&trans->journal_preres, 0, sizeof(trans->journal_preres));
trans->journal_u64s = trans->extra_journal_entries.nr;
trans->journal_preres_u64s = 0;
trans->journal_transaction_names = READ_ONCE(c->opts.journal_transaction_names);
if (trans->journal_transaction_names)
trans->journal_u64s += jset_u64s(JSET_ENTRY_LOG_U64s);
trans_for_each_update(trans, i) {
EBUG_ON(!i->path->should_be_locked);
ret = bch2_btree_path_upgrade(trans, i->path, i->level + 1);
if (unlikely(ret))
goto out;
EBUG_ON(!btree_node_intent_locked(i->path, i->level));
if (i->key_cache_already_flushed)
continue;
/* we're going to journal the key being updated: */
u64s = jset_u64s(i->k->k.u64s);
if (i->cached &&
likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY)))
trans->journal_preres_u64s += u64s;
if (i->flags & BTREE_UPDATE_NOJOURNAL)
continue;
trans->journal_u64s += u64s;
/* and we're also going to log the overwrite: */
if (trans->journal_transaction_names)
trans->journal_u64s += jset_u64s(i->old_k.u64s);
}
trans_for_each_wb_update(trans, wb)
trans->journal_u64s += jset_u64s(wb->k.k.u64s);
if (trans->extra_journal_res) {
ret = bch2_disk_reservation_add(c, trans->disk_res,
trans->extra_journal_res,
(flags & BTREE_INSERT_NOFAIL)
? BCH_DISK_RESERVATION_NOFAIL : 0);
if (ret)
goto err;
}
retry:
bch2_trans_verify_not_in_restart(trans);
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
ret = do_bch2_trans_commit(trans, flags, &i, _RET_IP_);
/* make sure we didn't drop or screw up locks: */
bch2_trans_verify_locks(trans);
if (ret)
goto err;
trace_and_count(c, transaction_commit, trans, _RET_IP_);
out:
bch2_journal_preres_put(&c->journal, &trans->journal_preres);
if (likely(!(flags & BTREE_INSERT_NOCHECK_RW)))
bch2_write_ref_put(c, BCH_WRITE_REF_trans);
out_reset:
bch2_trans_reset_updates(trans);
return ret;
err:
ret = bch2_trans_commit_error(trans, flags, i, ret, _RET_IP_);
if (ret)
goto out;
goto retry;
}
static noinline int __check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c k;
int ret;
bch2_trans_iter_init(trans, &iter, id, pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while (1) {
k = bch2_btree_iter_prev(&iter);
ret = bkey_err(k);
if (ret)
break;
if (!k.k)
break;
if (!bkey_eq(pos, k.k->p))
break;
if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) {
ret = 1;
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static inline int check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
if (!btree_type_has_snapshots(id) ||
bch2_snapshot_is_leaf(trans->c, pos.snapshot))
return 0;
return __check_pos_snapshot_overwritten(trans, id, pos);
}
static noinline int extent_front_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct bkey_i **insert,
enum btree_update_flags flags)
{
struct bch_fs *c = trans->c;
struct bkey_i *update;
int ret;
update = bch2_bkey_make_mut_noupdate(trans, k);
ret = PTR_ERR_OR_ZERO(update);
if (ret)
return ret;
if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
return 0;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, (*insert)->k.p);
if (ret < 0)
return ret;
if (ret)
return 0;
ret = bch2_btree_delete_at(trans, iter, flags);
if (ret)
return ret;
*insert = update;
return 0;
}
static noinline int extent_back_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
int ret;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, insert->k.p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p);
if (ret < 0)
return ret;
if (ret)
return 0;
bch2_bkey_merge(c, bkey_i_to_s(insert), k);
return 0;
}
/*
* When deleting, check if we need to emit a whiteout (because we're overwriting
* something in an ancestor snapshot)
*/
static int need_whiteout_for_snapshot(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos)
{
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot = pos.snapshot;
int ret;
if (!bch2_snapshot_parent(trans->c, pos.snapshot))
return 0;
pos.snapshot++;
for_each_btree_key_norestart(trans, iter, btree_id, pos,
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_NOPRESERVE, k, ret) {
if (!bkey_eq(k.k->p, pos))
break;
if (bch2_snapshot_is_ancestor(trans->c, snapshot,
k.k->p.snapshot)) {
ret = !bkey_whiteout(k.k);
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
enum btree_id id,
struct bpos old_pos,
struct bpos new_pos)
{
struct bch_fs *c = trans->c;
struct btree_iter old_iter, new_iter;
struct bkey_s_c old_k, new_k;
snapshot_id_list s;
struct bkey_i *update;
int ret;
if (!bch2_snapshot_has_children(c, old_pos.snapshot))
return 0;
darray_init(&s);
bch2_trans_iter_init(trans, &old_iter, id, old_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
!(ret = bkey_err(old_k)) &&
bkey_eq(old_pos, old_k.k->p)) {
struct bpos whiteout_pos =
SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
continue;
new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bkey_err(new_k);
if (ret)
break;
if (new_k.k->type == KEY_TYPE_deleted) {
update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
break;
bkey_init(&update->k);
update->k.p = whiteout_pos;
update->k.type = KEY_TYPE_whiteout;
ret = bch2_trans_update(trans, &new_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
}
bch2_trans_iter_exit(trans, &new_iter);
ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &old_iter);
darray_exit(&s);
return ret;
}
int bch2_trans_update_extent(struct btree_trans *trans,
struct btree_iter *orig_iter,
struct bkey_i *insert,
enum btree_update_flags flags)
{
struct btree_iter iter;
struct bpos start = bkey_start_pos(&insert->k);
struct bkey_i *update;
struct bkey_s_c k;
enum btree_id btree_id = orig_iter->btree_id;
int ret = 0, compressed_sectors;
bch2_trans_iter_init(trans, &iter, btree_id, start,
BTREE_ITER_INTENT|
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_NOT_EXTENTS);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
ret = extent_front_merge(trans, &iter, k, &insert, flags);
if (ret)
goto err;
}
goto next;
}
while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
bool front_split = bkey_lt(bkey_start_pos(k.k), start);
bool back_split = bkey_gt(k.k->p, insert->k.p);
/*
* If we're going to be splitting a compressed extent, note it
* so that __bch2_trans_commit() can increase our disk
* reservation:
*/
if (((front_split && back_split) ||
((front_split || back_split) && k.k->p.snapshot != insert->k.p.snapshot)) &&
(compressed_sectors = bch2_bkey_sectors_compressed(k)))
trans->extra_journal_res += compressed_sectors;
if (front_split) {
update = bch2_bkey_make_mut_noupdate(trans, k);
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bch2_cut_back(start, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
k.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
goto err;
}
if (k.k->p.snapshot != insert->k.p.snapshot &&
(front_split || back_split)) {
update = bch2_bkey_make_mut_noupdate(trans, k);
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bch2_cut_front(start, update);
bch2_cut_back(insert->k.p, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
k.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
goto err;
}
if (bkey_le(k.k->p, insert->k.p)) {
update = bch2_trans_kmalloc(trans, sizeof(*update));
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bkey_init(&update->k);
update->k.p = k.k->p;
update->k.p.snapshot = insert->k.p.snapshot;
if (insert->k.p.snapshot != k.k->p.snapshot) {
update->k.type = KEY_TYPE_whiteout;
} else if (btree_type_has_snapshots(btree_id)) {
ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
if (ret < 0)
goto err;
if (ret)
update->k.type = KEY_TYPE_whiteout;
}
ret = bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
if (ret)
goto err;
}
if (back_split) {
update = bch2_bkey_make_mut_noupdate(trans, k);
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bch2_cut_front(insert->k.p, update);
ret = bch2_trans_update_by_path(trans, iter.path, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags, _RET_IP_);
if (ret)
goto err;
goto out;
}
next:
bch2_btree_iter_advance(&iter);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
}
if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
ret = extent_back_merge(trans, &iter, insert, k);
if (ret)
goto err;
}
out:
if (!bkey_deleted(&insert->k)) {
/*
* Rewinding iterators is expensive: get a new one and the one
* that points to the start of insert will be cloned from:
*/
bch2_trans_iter_exit(trans, &iter);
bch2_trans_iter_init(trans, &iter, btree_id, insert->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, insert, flags);
}
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static noinline int flush_new_cached_update(struct btree_trans *trans,
struct btree_path *path,
struct btree_insert_entry *i,
enum btree_update_flags flags,
unsigned long ip)
{
struct btree_path *btree_path;
struct bkey k;
int ret;
btree_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT, _THIS_IP_);
ret = bch2_btree_path_traverse(trans, btree_path, 0);
if (ret)
goto out;
/*
* The old key in the insert entry might actually refer to an existing
* key in the btree that has been deleted from cache and not yet
* flushed. Check for this and skip the flush so we don't run triggers
* against a stale key.
*/
bch2_btree_path_peek_slot_exact(btree_path, &k);
if (!bkey_deleted(&k))
goto out;
i->key_cache_already_flushed = true;
i->flags |= BTREE_TRIGGER_NORUN;
btree_path_set_should_be_locked(btree_path);
ret = bch2_trans_update_by_path(trans, btree_path, i->k, flags, ip);
out:
bch2_path_put(trans, btree_path, true);
return ret;
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path,
struct bkey_i *k, enum btree_update_flags flags,
unsigned long ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i, n;
u64 seq = 0;
int cmp;
EBUG_ON(!path->should_be_locked);
EBUG_ON(trans->nr_updates >= BTREE_ITER_MAX);
EBUG_ON(!bpos_eq(k->k.p, path->pos));
/*
* The transaction journal res hasn't been allocated at this point.
* That occurs at commit time. Reuse the seq field to pass in the seq
* of a prejournaled key.
*/
if (flags & BTREE_UPDATE_PREJOURNAL)
seq = trans->journal_res.seq;
n = (struct btree_insert_entry) {
.flags = flags,
.bkey_type = __btree_node_type(path->level, path->btree_id),
.btree_id = path->btree_id,
.level = path->level,
.cached = path->cached,
.path = path,
.k = k,
.seq = seq,
.ip_allocated = ip,
};
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(i != trans->updates &&
btree_insert_entry_cmp(i - 1, i) >= 0);
#endif
/*
* Pending updates are kept sorted: first, find position of new update,
* then delete/trim any updates the new update overwrites:
*/
trans_for_each_update(trans, i) {
cmp = btree_insert_entry_cmp(&n, i);
if (cmp <= 0)
break;
}
if (!cmp && i < trans->updates + trans->nr_updates) {
EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
bch2_path_put(trans, i->path, true);
i->flags = n.flags;
i->cached = n.cached;
i->k = n.k;
i->path = n.path;
i->seq = n.seq;
i->ip_allocated = n.ip_allocated;
} else {
array_insert_item(trans->updates, trans->nr_updates,
i - trans->updates, n);
i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
if (j_k) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
__btree_path_get(i->path, true);
/*
* If a key is present in the key cache, it must also exist in the
* btree - this is necessary for cache coherency. When iterating over
* a btree that's cached in the key cache, the btree iter code checks
* the key cache - but the key has to exist in the btree for that to
* work:
*/
if (path->cached && bkey_deleted(&i->old_k))
return flush_new_cached_update(trans, path, i, flags, ip);
return 0;
}
int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_path *path = iter->update_path ?: iter->path;
struct bkey_cached *ck;
int ret;
if (iter->flags & BTREE_ITER_IS_EXTENTS)
return bch2_trans_update_extent(trans, iter, k, flags);
if (bkey_deleted(&k->k) &&
!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
if (unlikely(ret < 0))
return ret;
if (ret)
k->k.type = KEY_TYPE_whiteout;
}
/*
* Ensure that updates to cached btrees go to the key cache:
*/
if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
!path->cached &&
!path->level &&
btree_id_cached(trans->c, path->btree_id)) {
if (!iter->key_cache_path ||
!iter->key_cache_path->should_be_locked ||
!bpos_eq(iter->key_cache_path->pos, k->k.p)) {
if (!iter->key_cache_path)
iter->key_cache_path =
bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT|
BTREE_ITER_CACHED, _THIS_IP_);
iter->key_cache_path =
bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
iter->flags & BTREE_ITER_INTENT,
_THIS_IP_);
ret = bch2_btree_path_traverse(trans, iter->key_cache_path,
BTREE_ITER_CACHED);
if (unlikely(ret))
return ret;
ck = (void *) iter->key_cache_path->l[0].b;
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
}
btree_path_set_should_be_locked(iter->key_cache_path);
}
path = iter->key_cache_path;
}
return bch2_trans_update_by_path(trans, path, k, flags, _RET_IP_);
}
/*
* Add a transaction update for a key that has already been journaled.
*/
int __must_check bch2_trans_update_seq(struct btree_trans *trans, u64 seq,
struct btree_iter *iter, struct bkey_i *k,
enum btree_update_flags flags)
{
trans->journal_res.seq = seq;
return bch2_trans_update(trans, iter, k, flags|BTREE_UPDATE_NOJOURNAL|
BTREE_UPDATE_PREJOURNAL);
}
int __must_check bch2_trans_update_buffered(struct btree_trans *trans,
enum btree_id btree,
struct bkey_i *k)
{
struct btree_write_buffered_key *i;
int ret;
EBUG_ON(trans->nr_wb_updates > trans->wb_updates_size);
EBUG_ON(k->k.u64s > BTREE_WRITE_BUFERED_U64s_MAX);
trans_for_each_wb_update(trans, i) {
if (i->btree == btree && bpos_eq(i->k.k.p, k->k.p)) {
bkey_copy(&i->k, k);
return 0;
}
}
if (!trans->wb_updates ||
trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_write_buffered_key *u;
if (trans->nr_wb_updates == trans->wb_updates_size) {
struct btree_transaction_stats *s = btree_trans_stats(trans);
BUG_ON(trans->wb_updates_size > U8_MAX / 2);
trans->wb_updates_size = max(1, trans->wb_updates_size * 2);
if (s)
s->wb_updates_size = trans->wb_updates_size;
}
u = bch2_trans_kmalloc_nomemzero(trans,
trans->wb_updates_size *
sizeof(struct btree_write_buffered_key));
ret = PTR_ERR_OR_ZERO(u);
if (ret)
return ret;
if (trans->nr_wb_updates)
memcpy(u, trans->wb_updates, trans->nr_wb_updates *
sizeof(struct btree_write_buffered_key));
trans->wb_updates = u;
}
trans->wb_updates[trans->nr_wb_updates] = (struct btree_write_buffered_key) {
.btree = btree,
};
bkey_copy(&trans->wb_updates[trans->nr_wb_updates].k, k);
trans->nr_wb_updates++;
return 0;
}
int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
enum btree_id btree, struct bpos end)
{
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
k = bch2_btree_iter_prev(iter);
ret = bkey_err(k);
if (ret)
goto err;
bch2_btree_iter_advance(iter);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
BUG_ON(k.k->type != KEY_TYPE_deleted);
if (bkey_gt(k.k->p, end)) {
ret = -BCH_ERR_ENOSPC_btree_slot;
goto err;
}
return 0;
err:
bch2_trans_iter_exit(trans, iter);
return ret;
}
void bch2_trans_commit_hook(struct btree_trans *trans,
struct btree_trans_commit_hook *h)
{
h->next = trans->hooks;
trans->hooks = h;
}
int bch2_btree_insert_nonextent(struct btree_trans *trans,
enum btree_id btree, struct bkey_i *k,
enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, btree, k->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_btree_insert(struct btree_trans *trans, enum btree_id id,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
BTREE_ITER_CACHED|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/**
* bch2_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq, int flags)
{
return bch2_trans_do(c, disk_res, journal_seq, flags,
__bch2_btree_insert(&trans, id, k, 0));
}
int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
unsigned len, unsigned update_flags)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = iter->pos;
bch2_key_resize(&k->k, len);
return bch2_trans_update(trans, iter, k, update_flags);
}
int bch2_btree_delete_at(struct btree_trans *trans,
struct btree_iter *iter, unsigned update_flags)
{
return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
}
int bch2_btree_delete_at_buffered(struct btree_trans *trans,
enum btree_id btree, struct bpos pos)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = pos;
return bch2_trans_update_buffered(trans, btree, k);
}
int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
u32 restart_count = trans->restart_count;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(trans->c, 0);
struct bkey_i delete;
ret = bkey_err(k);
if (ret)
goto err;
bkey_init(&delete.k);
/*
* This could probably be more efficient for extents:
*/
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_IS_EXTENTS)
bch2_key_resize(&delete.k,
bpos_min(end, k.k->p).offset -
iter.pos.offset);
ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
bch2_trans_commit(trans, &disk_res, journal_seq,
BTREE_INSERT_NOFAIL);
bch2_disk_reservation_put(trans->c, &disk_res);
err:
/*
* the bch2_trans_begin() call is in a weird place because we
* need to call it after every transaction commit, to avoid path
* overflow, but don't want to call it if the delete operation
* is a no-op and we have no work to do:
*/
bch2_trans_begin(trans);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
ret = 0;
if (ret)
break;
}
bch2_trans_iter_exit(trans, &iter);
if (!ret && trans_was_restarted(trans, restart_count))
ret = -BCH_ERR_transaction_restart_nested;
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
int ret = bch2_trans_run(c,
bch2_btree_delete_range_trans(&trans, id, start, end,
update_flags, journal_seq));
if (ret == -BCH_ERR_transaction_restart_nested)
ret = 0;
return ret;
}
static int __bch2_trans_log_msg(darray_u64 *entries, const char *fmt, va_list args)
{
struct printbuf buf = PRINTBUF;
struct jset_entry_log *l;
unsigned u64s;
int ret;
prt_vprintf(&buf, fmt, args);
ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
if (ret)
goto err;
u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
ret = darray_make_room(entries, jset_u64s(u64s));
if (ret)
goto err;
l = (void *) &darray_top(*entries);
l->entry.u64s = cpu_to_le16(u64s);
l->entry.btree_id = 0;
l->entry.level = 1;
l->entry.type = BCH_JSET_ENTRY_log;
l->entry.pad[0] = 0;
l->entry.pad[1] = 0;
l->entry.pad[2] = 0;
memcpy(l->d, buf.buf, buf.pos);
while (buf.pos & 7)
l->d[buf.pos++] = '\0';
entries->nr += jset_u64s(u64s);
err:
printbuf_exit(&buf);
return ret;
}
static int
__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
va_list args)
{
int ret;
if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
ret = __bch2_trans_log_msg(&c->journal.early_journal_entries, fmt, args);
} else {
ret = bch2_trans_do(c, NULL, NULL,
BTREE_INSERT_LAZY_RW|commit_flags,
__bch2_trans_log_msg(&trans.extra_journal_entries, fmt, args));
}
return ret;
}
int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, 0, fmt, args);
va_end(args);
return ret;
}
/*
* Use for logging messages during recovery to enable reserved space and avoid
* blocking.
*/
int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
va_end(args);
return ret;
}