54f180d3c1
Now vzalloc() is used in swap code to allocate various data structures, such as swap cache, swap slots cache, cluster info, etc. Because the size may be too large on some system, so that normal kzalloc() may fail. But using kzalloc() has some advantages, for example, less memory fragmentation, less TLB pressure, etc. So change the data structure allocation in swap code to use kvzalloc() which will try kzalloc() firstly, and fallback to vzalloc() if kzalloc() failed. In general, although kmalloc() will reduce the number of high-order pages in short term, vmalloc() will cause more pain for memory fragmentation in the long term. And the swap data structure allocation that is changed in this patch is expected to be long term allocation. From Dave Hansen: "for example, we have a two-page data structure. vmalloc() takes two effectively random order-0 pages, probably from two different 2M pages and pins them. That "kills" two 2M pages. kmalloc(), allocating two *contiguous* pages, will not cross a 2M boundary. That means it will only "kill" the possibility of a single 2M page. More 2M pages == less fragmentation. The allocation in this patch occurs during swap on time, which is usually done during system boot, so usually we have high opportunity to allocate the contiguous pages successfully. The allocation for swap_map[] in struct swap_info_struct is not changed, because that is usually quite large and vmalloc_to_page() is used for it. That makes it a little harder to change. Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3311 lines
85 KiB
C
3311 lines
85 KiB
C
/*
|
|
* linux/mm/swapfile.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/security.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/frontswap.h>
|
|
#include <linux/swapfile.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap_slots.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/swap_cgroup.h>
|
|
|
|
static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
|
|
unsigned char);
|
|
static void free_swap_count_continuations(struct swap_info_struct *);
|
|
static sector_t map_swap_entry(swp_entry_t, struct block_device**);
|
|
|
|
DEFINE_SPINLOCK(swap_lock);
|
|
static unsigned int nr_swapfiles;
|
|
atomic_long_t nr_swap_pages;
|
|
/*
|
|
* Some modules use swappable objects and may try to swap them out under
|
|
* memory pressure (via the shrinker). Before doing so, they may wish to
|
|
* check to see if any swap space is available.
|
|
*/
|
|
EXPORT_SYMBOL_GPL(nr_swap_pages);
|
|
/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
|
|
long total_swap_pages;
|
|
static int least_priority;
|
|
|
|
static const char Bad_file[] = "Bad swap file entry ";
|
|
static const char Unused_file[] = "Unused swap file entry ";
|
|
static const char Bad_offset[] = "Bad swap offset entry ";
|
|
static const char Unused_offset[] = "Unused swap offset entry ";
|
|
|
|
/*
|
|
* all active swap_info_structs
|
|
* protected with swap_lock, and ordered by priority.
|
|
*/
|
|
PLIST_HEAD(swap_active_head);
|
|
|
|
/*
|
|
* all available (active, not full) swap_info_structs
|
|
* protected with swap_avail_lock, ordered by priority.
|
|
* This is used by get_swap_page() instead of swap_active_head
|
|
* because swap_active_head includes all swap_info_structs,
|
|
* but get_swap_page() doesn't need to look at full ones.
|
|
* This uses its own lock instead of swap_lock because when a
|
|
* swap_info_struct changes between not-full/full, it needs to
|
|
* add/remove itself to/from this list, but the swap_info_struct->lock
|
|
* is held and the locking order requires swap_lock to be taken
|
|
* before any swap_info_struct->lock.
|
|
*/
|
|
static PLIST_HEAD(swap_avail_head);
|
|
static DEFINE_SPINLOCK(swap_avail_lock);
|
|
|
|
struct swap_info_struct *swap_info[MAX_SWAPFILES];
|
|
|
|
static DEFINE_MUTEX(swapon_mutex);
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
|
|
/* Activity counter to indicate that a swapon or swapoff has occurred */
|
|
static atomic_t proc_poll_event = ATOMIC_INIT(0);
|
|
|
|
static inline unsigned char swap_count(unsigned char ent)
|
|
{
|
|
return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
|
|
}
|
|
|
|
/* returns 1 if swap entry is freed */
|
|
static int
|
|
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
|
|
{
|
|
swp_entry_t entry = swp_entry(si->type, offset);
|
|
struct page *page;
|
|
int ret = 0;
|
|
|
|
page = find_get_page(swap_address_space(entry), swp_offset(entry));
|
|
if (!page)
|
|
return 0;
|
|
/*
|
|
* This function is called from scan_swap_map() and it's called
|
|
* by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
|
|
* We have to use trylock for avoiding deadlock. This is a special
|
|
* case and you should use try_to_free_swap() with explicit lock_page()
|
|
* in usual operations.
|
|
*/
|
|
if (trylock_page(page)) {
|
|
ret = try_to_free_swap(page);
|
|
unlock_page(page);
|
|
}
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* swapon tell device that all the old swap contents can be discarded,
|
|
* to allow the swap device to optimize its wear-levelling.
|
|
*/
|
|
static int discard_swap(struct swap_info_struct *si)
|
|
{
|
|
struct swap_extent *se;
|
|
sector_t start_block;
|
|
sector_t nr_blocks;
|
|
int err = 0;
|
|
|
|
/* Do not discard the swap header page! */
|
|
se = &si->first_swap_extent;
|
|
start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
|
|
nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
|
|
if (nr_blocks) {
|
|
err = blkdev_issue_discard(si->bdev, start_block,
|
|
nr_blocks, GFP_KERNEL, 0);
|
|
if (err)
|
|
return err;
|
|
cond_resched();
|
|
}
|
|
|
|
list_for_each_entry(se, &si->first_swap_extent.list, list) {
|
|
start_block = se->start_block << (PAGE_SHIFT - 9);
|
|
nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
|
|
|
|
err = blkdev_issue_discard(si->bdev, start_block,
|
|
nr_blocks, GFP_KERNEL, 0);
|
|
if (err)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
return err; /* That will often be -EOPNOTSUPP */
|
|
}
|
|
|
|
/*
|
|
* swap allocation tell device that a cluster of swap can now be discarded,
|
|
* to allow the swap device to optimize its wear-levelling.
|
|
*/
|
|
static void discard_swap_cluster(struct swap_info_struct *si,
|
|
pgoff_t start_page, pgoff_t nr_pages)
|
|
{
|
|
struct swap_extent *se = si->curr_swap_extent;
|
|
int found_extent = 0;
|
|
|
|
while (nr_pages) {
|
|
if (se->start_page <= start_page &&
|
|
start_page < se->start_page + se->nr_pages) {
|
|
pgoff_t offset = start_page - se->start_page;
|
|
sector_t start_block = se->start_block + offset;
|
|
sector_t nr_blocks = se->nr_pages - offset;
|
|
|
|
if (nr_blocks > nr_pages)
|
|
nr_blocks = nr_pages;
|
|
start_page += nr_blocks;
|
|
nr_pages -= nr_blocks;
|
|
|
|
if (!found_extent++)
|
|
si->curr_swap_extent = se;
|
|
|
|
start_block <<= PAGE_SHIFT - 9;
|
|
nr_blocks <<= PAGE_SHIFT - 9;
|
|
if (blkdev_issue_discard(si->bdev, start_block,
|
|
nr_blocks, GFP_NOIO, 0))
|
|
break;
|
|
}
|
|
|
|
se = list_next_entry(se, list);
|
|
}
|
|
}
|
|
|
|
#define SWAPFILE_CLUSTER 256
|
|
#define LATENCY_LIMIT 256
|
|
|
|
static inline void cluster_set_flag(struct swap_cluster_info *info,
|
|
unsigned int flag)
|
|
{
|
|
info->flags = flag;
|
|
}
|
|
|
|
static inline unsigned int cluster_count(struct swap_cluster_info *info)
|
|
{
|
|
return info->data;
|
|
}
|
|
|
|
static inline void cluster_set_count(struct swap_cluster_info *info,
|
|
unsigned int c)
|
|
{
|
|
info->data = c;
|
|
}
|
|
|
|
static inline void cluster_set_count_flag(struct swap_cluster_info *info,
|
|
unsigned int c, unsigned int f)
|
|
{
|
|
info->flags = f;
|
|
info->data = c;
|
|
}
|
|
|
|
static inline unsigned int cluster_next(struct swap_cluster_info *info)
|
|
{
|
|
return info->data;
|
|
}
|
|
|
|
static inline void cluster_set_next(struct swap_cluster_info *info,
|
|
unsigned int n)
|
|
{
|
|
info->data = n;
|
|
}
|
|
|
|
static inline void cluster_set_next_flag(struct swap_cluster_info *info,
|
|
unsigned int n, unsigned int f)
|
|
{
|
|
info->flags = f;
|
|
info->data = n;
|
|
}
|
|
|
|
static inline bool cluster_is_free(struct swap_cluster_info *info)
|
|
{
|
|
return info->flags & CLUSTER_FLAG_FREE;
|
|
}
|
|
|
|
static inline bool cluster_is_null(struct swap_cluster_info *info)
|
|
{
|
|
return info->flags & CLUSTER_FLAG_NEXT_NULL;
|
|
}
|
|
|
|
static inline void cluster_set_null(struct swap_cluster_info *info)
|
|
{
|
|
info->flags = CLUSTER_FLAG_NEXT_NULL;
|
|
info->data = 0;
|
|
}
|
|
|
|
static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
|
|
unsigned long offset)
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
|
|
ci = si->cluster_info;
|
|
if (ci) {
|
|
ci += offset / SWAPFILE_CLUSTER;
|
|
spin_lock(&ci->lock);
|
|
}
|
|
return ci;
|
|
}
|
|
|
|
static inline void unlock_cluster(struct swap_cluster_info *ci)
|
|
{
|
|
if (ci)
|
|
spin_unlock(&ci->lock);
|
|
}
|
|
|
|
static inline struct swap_cluster_info *lock_cluster_or_swap_info(
|
|
struct swap_info_struct *si,
|
|
unsigned long offset)
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
|
|
ci = lock_cluster(si, offset);
|
|
if (!ci)
|
|
spin_lock(&si->lock);
|
|
|
|
return ci;
|
|
}
|
|
|
|
static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
|
|
struct swap_cluster_info *ci)
|
|
{
|
|
if (ci)
|
|
unlock_cluster(ci);
|
|
else
|
|
spin_unlock(&si->lock);
|
|
}
|
|
|
|
static inline bool cluster_list_empty(struct swap_cluster_list *list)
|
|
{
|
|
return cluster_is_null(&list->head);
|
|
}
|
|
|
|
static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
|
|
{
|
|
return cluster_next(&list->head);
|
|
}
|
|
|
|
static void cluster_list_init(struct swap_cluster_list *list)
|
|
{
|
|
cluster_set_null(&list->head);
|
|
cluster_set_null(&list->tail);
|
|
}
|
|
|
|
static void cluster_list_add_tail(struct swap_cluster_list *list,
|
|
struct swap_cluster_info *ci,
|
|
unsigned int idx)
|
|
{
|
|
if (cluster_list_empty(list)) {
|
|
cluster_set_next_flag(&list->head, idx, 0);
|
|
cluster_set_next_flag(&list->tail, idx, 0);
|
|
} else {
|
|
struct swap_cluster_info *ci_tail;
|
|
unsigned int tail = cluster_next(&list->tail);
|
|
|
|
/*
|
|
* Nested cluster lock, but both cluster locks are
|
|
* only acquired when we held swap_info_struct->lock
|
|
*/
|
|
ci_tail = ci + tail;
|
|
spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
|
|
cluster_set_next(ci_tail, idx);
|
|
spin_unlock(&ci_tail->lock);
|
|
cluster_set_next_flag(&list->tail, idx, 0);
|
|
}
|
|
}
|
|
|
|
static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
|
|
struct swap_cluster_info *ci)
|
|
{
|
|
unsigned int idx;
|
|
|
|
idx = cluster_next(&list->head);
|
|
if (cluster_next(&list->tail) == idx) {
|
|
cluster_set_null(&list->head);
|
|
cluster_set_null(&list->tail);
|
|
} else
|
|
cluster_set_next_flag(&list->head,
|
|
cluster_next(&ci[idx]), 0);
|
|
|
|
return idx;
|
|
}
|
|
|
|
/* Add a cluster to discard list and schedule it to do discard */
|
|
static void swap_cluster_schedule_discard(struct swap_info_struct *si,
|
|
unsigned int idx)
|
|
{
|
|
/*
|
|
* If scan_swap_map() can't find a free cluster, it will check
|
|
* si->swap_map directly. To make sure the discarding cluster isn't
|
|
* taken by scan_swap_map(), mark the swap entries bad (occupied). It
|
|
* will be cleared after discard
|
|
*/
|
|
memset(si->swap_map + idx * SWAPFILE_CLUSTER,
|
|
SWAP_MAP_BAD, SWAPFILE_CLUSTER);
|
|
|
|
cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
|
|
|
|
schedule_work(&si->discard_work);
|
|
}
|
|
|
|
/*
|
|
* Doing discard actually. After a cluster discard is finished, the cluster
|
|
* will be added to free cluster list. caller should hold si->lock.
|
|
*/
|
|
static void swap_do_scheduled_discard(struct swap_info_struct *si)
|
|
{
|
|
struct swap_cluster_info *info, *ci;
|
|
unsigned int idx;
|
|
|
|
info = si->cluster_info;
|
|
|
|
while (!cluster_list_empty(&si->discard_clusters)) {
|
|
idx = cluster_list_del_first(&si->discard_clusters, info);
|
|
spin_unlock(&si->lock);
|
|
|
|
discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
|
|
SWAPFILE_CLUSTER);
|
|
|
|
spin_lock(&si->lock);
|
|
ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
|
|
cluster_set_flag(ci, CLUSTER_FLAG_FREE);
|
|
unlock_cluster(ci);
|
|
cluster_list_add_tail(&si->free_clusters, info, idx);
|
|
ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
|
|
memset(si->swap_map + idx * SWAPFILE_CLUSTER,
|
|
0, SWAPFILE_CLUSTER);
|
|
unlock_cluster(ci);
|
|
}
|
|
}
|
|
|
|
static void swap_discard_work(struct work_struct *work)
|
|
{
|
|
struct swap_info_struct *si;
|
|
|
|
si = container_of(work, struct swap_info_struct, discard_work);
|
|
|
|
spin_lock(&si->lock);
|
|
swap_do_scheduled_discard(si);
|
|
spin_unlock(&si->lock);
|
|
}
|
|
|
|
/*
|
|
* The cluster corresponding to page_nr will be used. The cluster will be
|
|
* removed from free cluster list and its usage counter will be increased.
|
|
*/
|
|
static void inc_cluster_info_page(struct swap_info_struct *p,
|
|
struct swap_cluster_info *cluster_info, unsigned long page_nr)
|
|
{
|
|
unsigned long idx = page_nr / SWAPFILE_CLUSTER;
|
|
|
|
if (!cluster_info)
|
|
return;
|
|
if (cluster_is_free(&cluster_info[idx])) {
|
|
VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
|
|
cluster_list_del_first(&p->free_clusters, cluster_info);
|
|
cluster_set_count_flag(&cluster_info[idx], 0, 0);
|
|
}
|
|
|
|
VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
|
|
cluster_set_count(&cluster_info[idx],
|
|
cluster_count(&cluster_info[idx]) + 1);
|
|
}
|
|
|
|
/*
|
|
* The cluster corresponding to page_nr decreases one usage. If the usage
|
|
* counter becomes 0, which means no page in the cluster is in using, we can
|
|
* optionally discard the cluster and add it to free cluster list.
|
|
*/
|
|
static void dec_cluster_info_page(struct swap_info_struct *p,
|
|
struct swap_cluster_info *cluster_info, unsigned long page_nr)
|
|
{
|
|
unsigned long idx = page_nr / SWAPFILE_CLUSTER;
|
|
|
|
if (!cluster_info)
|
|
return;
|
|
|
|
VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
|
|
cluster_set_count(&cluster_info[idx],
|
|
cluster_count(&cluster_info[idx]) - 1);
|
|
|
|
if (cluster_count(&cluster_info[idx]) == 0) {
|
|
/*
|
|
* If the swap is discardable, prepare discard the cluster
|
|
* instead of free it immediately. The cluster will be freed
|
|
* after discard.
|
|
*/
|
|
if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
|
|
(SWP_WRITEOK | SWP_PAGE_DISCARD)) {
|
|
swap_cluster_schedule_discard(p, idx);
|
|
return;
|
|
}
|
|
|
|
cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
|
|
cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It's possible scan_swap_map() uses a free cluster in the middle of free
|
|
* cluster list. Avoiding such abuse to avoid list corruption.
|
|
*/
|
|
static bool
|
|
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
|
|
unsigned long offset)
|
|
{
|
|
struct percpu_cluster *percpu_cluster;
|
|
bool conflict;
|
|
|
|
offset /= SWAPFILE_CLUSTER;
|
|
conflict = !cluster_list_empty(&si->free_clusters) &&
|
|
offset != cluster_list_first(&si->free_clusters) &&
|
|
cluster_is_free(&si->cluster_info[offset]);
|
|
|
|
if (!conflict)
|
|
return false;
|
|
|
|
percpu_cluster = this_cpu_ptr(si->percpu_cluster);
|
|
cluster_set_null(&percpu_cluster->index);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Try to get a swap entry from current cpu's swap entry pool (a cluster). This
|
|
* might involve allocating a new cluster for current CPU too.
|
|
*/
|
|
static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
|
|
unsigned long *offset, unsigned long *scan_base)
|
|
{
|
|
struct percpu_cluster *cluster;
|
|
struct swap_cluster_info *ci;
|
|
bool found_free;
|
|
unsigned long tmp, max;
|
|
|
|
new_cluster:
|
|
cluster = this_cpu_ptr(si->percpu_cluster);
|
|
if (cluster_is_null(&cluster->index)) {
|
|
if (!cluster_list_empty(&si->free_clusters)) {
|
|
cluster->index = si->free_clusters.head;
|
|
cluster->next = cluster_next(&cluster->index) *
|
|
SWAPFILE_CLUSTER;
|
|
} else if (!cluster_list_empty(&si->discard_clusters)) {
|
|
/*
|
|
* we don't have free cluster but have some clusters in
|
|
* discarding, do discard now and reclaim them
|
|
*/
|
|
swap_do_scheduled_discard(si);
|
|
*scan_base = *offset = si->cluster_next;
|
|
goto new_cluster;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
found_free = false;
|
|
|
|
/*
|
|
* Other CPUs can use our cluster if they can't find a free cluster,
|
|
* check if there is still free entry in the cluster
|
|
*/
|
|
tmp = cluster->next;
|
|
max = min_t(unsigned long, si->max,
|
|
(cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
|
|
if (tmp >= max) {
|
|
cluster_set_null(&cluster->index);
|
|
goto new_cluster;
|
|
}
|
|
ci = lock_cluster(si, tmp);
|
|
while (tmp < max) {
|
|
if (!si->swap_map[tmp]) {
|
|
found_free = true;
|
|
break;
|
|
}
|
|
tmp++;
|
|
}
|
|
unlock_cluster(ci);
|
|
if (!found_free) {
|
|
cluster_set_null(&cluster->index);
|
|
goto new_cluster;
|
|
}
|
|
cluster->next = tmp + 1;
|
|
*offset = tmp;
|
|
*scan_base = tmp;
|
|
return found_free;
|
|
}
|
|
|
|
static int scan_swap_map_slots(struct swap_info_struct *si,
|
|
unsigned char usage, int nr,
|
|
swp_entry_t slots[])
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
unsigned long offset;
|
|
unsigned long scan_base;
|
|
unsigned long last_in_cluster = 0;
|
|
int latency_ration = LATENCY_LIMIT;
|
|
int n_ret = 0;
|
|
|
|
if (nr > SWAP_BATCH)
|
|
nr = SWAP_BATCH;
|
|
|
|
/*
|
|
* We try to cluster swap pages by allocating them sequentially
|
|
* in swap. Once we've allocated SWAPFILE_CLUSTER pages this
|
|
* way, however, we resort to first-free allocation, starting
|
|
* a new cluster. This prevents us from scattering swap pages
|
|
* all over the entire swap partition, so that we reduce
|
|
* overall disk seek times between swap pages. -- sct
|
|
* But we do now try to find an empty cluster. -Andrea
|
|
* And we let swap pages go all over an SSD partition. Hugh
|
|
*/
|
|
|
|
si->flags += SWP_SCANNING;
|
|
scan_base = offset = si->cluster_next;
|
|
|
|
/* SSD algorithm */
|
|
if (si->cluster_info) {
|
|
if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
|
|
goto checks;
|
|
else
|
|
goto scan;
|
|
}
|
|
|
|
if (unlikely(!si->cluster_nr--)) {
|
|
if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
|
|
si->cluster_nr = SWAPFILE_CLUSTER - 1;
|
|
goto checks;
|
|
}
|
|
|
|
spin_unlock(&si->lock);
|
|
|
|
/*
|
|
* If seek is expensive, start searching for new cluster from
|
|
* start of partition, to minimize the span of allocated swap.
|
|
* If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
|
|
* case, just handled by scan_swap_map_try_ssd_cluster() above.
|
|
*/
|
|
scan_base = offset = si->lowest_bit;
|
|
last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
|
|
|
|
/* Locate the first empty (unaligned) cluster */
|
|
for (; last_in_cluster <= si->highest_bit; offset++) {
|
|
if (si->swap_map[offset])
|
|
last_in_cluster = offset + SWAPFILE_CLUSTER;
|
|
else if (offset == last_in_cluster) {
|
|
spin_lock(&si->lock);
|
|
offset -= SWAPFILE_CLUSTER - 1;
|
|
si->cluster_next = offset;
|
|
si->cluster_nr = SWAPFILE_CLUSTER - 1;
|
|
goto checks;
|
|
}
|
|
if (unlikely(--latency_ration < 0)) {
|
|
cond_resched();
|
|
latency_ration = LATENCY_LIMIT;
|
|
}
|
|
}
|
|
|
|
offset = scan_base;
|
|
spin_lock(&si->lock);
|
|
si->cluster_nr = SWAPFILE_CLUSTER - 1;
|
|
}
|
|
|
|
checks:
|
|
if (si->cluster_info) {
|
|
while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
|
|
/* take a break if we already got some slots */
|
|
if (n_ret)
|
|
goto done;
|
|
if (!scan_swap_map_try_ssd_cluster(si, &offset,
|
|
&scan_base))
|
|
goto scan;
|
|
}
|
|
}
|
|
if (!(si->flags & SWP_WRITEOK))
|
|
goto no_page;
|
|
if (!si->highest_bit)
|
|
goto no_page;
|
|
if (offset > si->highest_bit)
|
|
scan_base = offset = si->lowest_bit;
|
|
|
|
ci = lock_cluster(si, offset);
|
|
/* reuse swap entry of cache-only swap if not busy. */
|
|
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
|
|
int swap_was_freed;
|
|
unlock_cluster(ci);
|
|
spin_unlock(&si->lock);
|
|
swap_was_freed = __try_to_reclaim_swap(si, offset);
|
|
spin_lock(&si->lock);
|
|
/* entry was freed successfully, try to use this again */
|
|
if (swap_was_freed)
|
|
goto checks;
|
|
goto scan; /* check next one */
|
|
}
|
|
|
|
if (si->swap_map[offset]) {
|
|
unlock_cluster(ci);
|
|
if (!n_ret)
|
|
goto scan;
|
|
else
|
|
goto done;
|
|
}
|
|
si->swap_map[offset] = usage;
|
|
inc_cluster_info_page(si, si->cluster_info, offset);
|
|
unlock_cluster(ci);
|
|
|
|
if (offset == si->lowest_bit)
|
|
si->lowest_bit++;
|
|
if (offset == si->highest_bit)
|
|
si->highest_bit--;
|
|
si->inuse_pages++;
|
|
if (si->inuse_pages == si->pages) {
|
|
si->lowest_bit = si->max;
|
|
si->highest_bit = 0;
|
|
spin_lock(&swap_avail_lock);
|
|
plist_del(&si->avail_list, &swap_avail_head);
|
|
spin_unlock(&swap_avail_lock);
|
|
}
|
|
si->cluster_next = offset + 1;
|
|
slots[n_ret++] = swp_entry(si->type, offset);
|
|
|
|
/* got enough slots or reach max slots? */
|
|
if ((n_ret == nr) || (offset >= si->highest_bit))
|
|
goto done;
|
|
|
|
/* search for next available slot */
|
|
|
|
/* time to take a break? */
|
|
if (unlikely(--latency_ration < 0)) {
|
|
if (n_ret)
|
|
goto done;
|
|
spin_unlock(&si->lock);
|
|
cond_resched();
|
|
spin_lock(&si->lock);
|
|
latency_ration = LATENCY_LIMIT;
|
|
}
|
|
|
|
/* try to get more slots in cluster */
|
|
if (si->cluster_info) {
|
|
if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
|
|
goto checks;
|
|
else
|
|
goto done;
|
|
}
|
|
/* non-ssd case */
|
|
++offset;
|
|
|
|
/* non-ssd case, still more slots in cluster? */
|
|
if (si->cluster_nr && !si->swap_map[offset]) {
|
|
--si->cluster_nr;
|
|
goto checks;
|
|
}
|
|
|
|
done:
|
|
si->flags -= SWP_SCANNING;
|
|
return n_ret;
|
|
|
|
scan:
|
|
spin_unlock(&si->lock);
|
|
while (++offset <= si->highest_bit) {
|
|
if (!si->swap_map[offset]) {
|
|
spin_lock(&si->lock);
|
|
goto checks;
|
|
}
|
|
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
|
|
spin_lock(&si->lock);
|
|
goto checks;
|
|
}
|
|
if (unlikely(--latency_ration < 0)) {
|
|
cond_resched();
|
|
latency_ration = LATENCY_LIMIT;
|
|
}
|
|
}
|
|
offset = si->lowest_bit;
|
|
while (offset < scan_base) {
|
|
if (!si->swap_map[offset]) {
|
|
spin_lock(&si->lock);
|
|
goto checks;
|
|
}
|
|
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
|
|
spin_lock(&si->lock);
|
|
goto checks;
|
|
}
|
|
if (unlikely(--latency_ration < 0)) {
|
|
cond_resched();
|
|
latency_ration = LATENCY_LIMIT;
|
|
}
|
|
offset++;
|
|
}
|
|
spin_lock(&si->lock);
|
|
|
|
no_page:
|
|
si->flags -= SWP_SCANNING;
|
|
return n_ret;
|
|
}
|
|
|
|
static unsigned long scan_swap_map(struct swap_info_struct *si,
|
|
unsigned char usage)
|
|
{
|
|
swp_entry_t entry;
|
|
int n_ret;
|
|
|
|
n_ret = scan_swap_map_slots(si, usage, 1, &entry);
|
|
|
|
if (n_ret)
|
|
return swp_offset(entry);
|
|
else
|
|
return 0;
|
|
|
|
}
|
|
|
|
int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
|
|
{
|
|
struct swap_info_struct *si, *next;
|
|
long avail_pgs;
|
|
int n_ret = 0;
|
|
|
|
avail_pgs = atomic_long_read(&nr_swap_pages);
|
|
if (avail_pgs <= 0)
|
|
goto noswap;
|
|
|
|
if (n_goal > SWAP_BATCH)
|
|
n_goal = SWAP_BATCH;
|
|
|
|
if (n_goal > avail_pgs)
|
|
n_goal = avail_pgs;
|
|
|
|
atomic_long_sub(n_goal, &nr_swap_pages);
|
|
|
|
spin_lock(&swap_avail_lock);
|
|
|
|
start_over:
|
|
plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
|
|
/* requeue si to after same-priority siblings */
|
|
plist_requeue(&si->avail_list, &swap_avail_head);
|
|
spin_unlock(&swap_avail_lock);
|
|
spin_lock(&si->lock);
|
|
if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
|
|
spin_lock(&swap_avail_lock);
|
|
if (plist_node_empty(&si->avail_list)) {
|
|
spin_unlock(&si->lock);
|
|
goto nextsi;
|
|
}
|
|
WARN(!si->highest_bit,
|
|
"swap_info %d in list but !highest_bit\n",
|
|
si->type);
|
|
WARN(!(si->flags & SWP_WRITEOK),
|
|
"swap_info %d in list but !SWP_WRITEOK\n",
|
|
si->type);
|
|
plist_del(&si->avail_list, &swap_avail_head);
|
|
spin_unlock(&si->lock);
|
|
goto nextsi;
|
|
}
|
|
n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
|
|
n_goal, swp_entries);
|
|
spin_unlock(&si->lock);
|
|
if (n_ret)
|
|
goto check_out;
|
|
pr_debug("scan_swap_map of si %d failed to find offset\n",
|
|
si->type);
|
|
|
|
spin_lock(&swap_avail_lock);
|
|
nextsi:
|
|
/*
|
|
* if we got here, it's likely that si was almost full before,
|
|
* and since scan_swap_map() can drop the si->lock, multiple
|
|
* callers probably all tried to get a page from the same si
|
|
* and it filled up before we could get one; or, the si filled
|
|
* up between us dropping swap_avail_lock and taking si->lock.
|
|
* Since we dropped the swap_avail_lock, the swap_avail_head
|
|
* list may have been modified; so if next is still in the
|
|
* swap_avail_head list then try it, otherwise start over
|
|
* if we have not gotten any slots.
|
|
*/
|
|
if (plist_node_empty(&next->avail_list))
|
|
goto start_over;
|
|
}
|
|
|
|
spin_unlock(&swap_avail_lock);
|
|
|
|
check_out:
|
|
if (n_ret < n_goal)
|
|
atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
|
|
noswap:
|
|
return n_ret;
|
|
}
|
|
|
|
/* The only caller of this function is now suspend routine */
|
|
swp_entry_t get_swap_page_of_type(int type)
|
|
{
|
|
struct swap_info_struct *si;
|
|
pgoff_t offset;
|
|
|
|
si = swap_info[type];
|
|
spin_lock(&si->lock);
|
|
if (si && (si->flags & SWP_WRITEOK)) {
|
|
atomic_long_dec(&nr_swap_pages);
|
|
/* This is called for allocating swap entry, not cache */
|
|
offset = scan_swap_map(si, 1);
|
|
if (offset) {
|
|
spin_unlock(&si->lock);
|
|
return swp_entry(type, offset);
|
|
}
|
|
atomic_long_inc(&nr_swap_pages);
|
|
}
|
|
spin_unlock(&si->lock);
|
|
return (swp_entry_t) {0};
|
|
}
|
|
|
|
static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
unsigned long offset, type;
|
|
|
|
if (!entry.val)
|
|
goto out;
|
|
type = swp_type(entry);
|
|
if (type >= nr_swapfiles)
|
|
goto bad_nofile;
|
|
p = swap_info[type];
|
|
if (!(p->flags & SWP_USED))
|
|
goto bad_device;
|
|
offset = swp_offset(entry);
|
|
if (offset >= p->max)
|
|
goto bad_offset;
|
|
return p;
|
|
|
|
bad_offset:
|
|
pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
|
|
goto out;
|
|
bad_device:
|
|
pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
|
|
goto out;
|
|
bad_nofile:
|
|
pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
|
|
p = __swap_info_get(entry);
|
|
if (!p)
|
|
goto out;
|
|
if (!p->swap_map[swp_offset(entry)])
|
|
goto bad_free;
|
|
return p;
|
|
|
|
bad_free:
|
|
pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
|
|
goto out;
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
static struct swap_info_struct *swap_info_get(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
|
|
p = _swap_info_get(entry);
|
|
if (p)
|
|
spin_lock(&p->lock);
|
|
return p;
|
|
}
|
|
|
|
static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
|
|
struct swap_info_struct *q)
|
|
{
|
|
struct swap_info_struct *p;
|
|
|
|
p = _swap_info_get(entry);
|
|
|
|
if (p != q) {
|
|
if (q != NULL)
|
|
spin_unlock(&q->lock);
|
|
if (p != NULL)
|
|
spin_lock(&p->lock);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static unsigned char __swap_entry_free(struct swap_info_struct *p,
|
|
swp_entry_t entry, unsigned char usage)
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
unsigned long offset = swp_offset(entry);
|
|
unsigned char count;
|
|
unsigned char has_cache;
|
|
|
|
ci = lock_cluster_or_swap_info(p, offset);
|
|
|
|
count = p->swap_map[offset];
|
|
|
|
has_cache = count & SWAP_HAS_CACHE;
|
|
count &= ~SWAP_HAS_CACHE;
|
|
|
|
if (usage == SWAP_HAS_CACHE) {
|
|
VM_BUG_ON(!has_cache);
|
|
has_cache = 0;
|
|
} else if (count == SWAP_MAP_SHMEM) {
|
|
/*
|
|
* Or we could insist on shmem.c using a special
|
|
* swap_shmem_free() and free_shmem_swap_and_cache()...
|
|
*/
|
|
count = 0;
|
|
} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
|
|
if (count == COUNT_CONTINUED) {
|
|
if (swap_count_continued(p, offset, count))
|
|
count = SWAP_MAP_MAX | COUNT_CONTINUED;
|
|
else
|
|
count = SWAP_MAP_MAX;
|
|
} else
|
|
count--;
|
|
}
|
|
|
|
usage = count | has_cache;
|
|
p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
|
|
|
|
unlock_cluster_or_swap_info(p, ci);
|
|
|
|
return usage;
|
|
}
|
|
|
|
static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
unsigned long offset = swp_offset(entry);
|
|
unsigned char count;
|
|
|
|
ci = lock_cluster(p, offset);
|
|
count = p->swap_map[offset];
|
|
VM_BUG_ON(count != SWAP_HAS_CACHE);
|
|
p->swap_map[offset] = 0;
|
|
dec_cluster_info_page(p, p->cluster_info, offset);
|
|
unlock_cluster(ci);
|
|
|
|
mem_cgroup_uncharge_swap(entry);
|
|
if (offset < p->lowest_bit)
|
|
p->lowest_bit = offset;
|
|
if (offset > p->highest_bit) {
|
|
bool was_full = !p->highest_bit;
|
|
|
|
p->highest_bit = offset;
|
|
if (was_full && (p->flags & SWP_WRITEOK)) {
|
|
spin_lock(&swap_avail_lock);
|
|
WARN_ON(!plist_node_empty(&p->avail_list));
|
|
if (plist_node_empty(&p->avail_list))
|
|
plist_add(&p->avail_list,
|
|
&swap_avail_head);
|
|
spin_unlock(&swap_avail_lock);
|
|
}
|
|
}
|
|
atomic_long_inc(&nr_swap_pages);
|
|
p->inuse_pages--;
|
|
frontswap_invalidate_page(p->type, offset);
|
|
if (p->flags & SWP_BLKDEV) {
|
|
struct gendisk *disk = p->bdev->bd_disk;
|
|
|
|
if (disk->fops->swap_slot_free_notify)
|
|
disk->fops->swap_slot_free_notify(p->bdev,
|
|
offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Caller has made sure that the swap device corresponding to entry
|
|
* is still around or has not been recycled.
|
|
*/
|
|
void swap_free(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
|
|
p = _swap_info_get(entry);
|
|
if (p) {
|
|
if (!__swap_entry_free(p, entry, 1))
|
|
free_swap_slot(entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after dropping swapcache to decrease refcnt to swap entries.
|
|
*/
|
|
void swapcache_free(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
|
|
p = _swap_info_get(entry);
|
|
if (p) {
|
|
if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
|
|
free_swap_slot(entry);
|
|
}
|
|
}
|
|
|
|
void swapcache_free_entries(swp_entry_t *entries, int n)
|
|
{
|
|
struct swap_info_struct *p, *prev;
|
|
int i;
|
|
|
|
if (n <= 0)
|
|
return;
|
|
|
|
prev = NULL;
|
|
p = NULL;
|
|
for (i = 0; i < n; ++i) {
|
|
p = swap_info_get_cont(entries[i], prev);
|
|
if (p)
|
|
swap_entry_free(p, entries[i]);
|
|
prev = p;
|
|
}
|
|
if (p)
|
|
spin_unlock(&p->lock);
|
|
}
|
|
|
|
/*
|
|
* How many references to page are currently swapped out?
|
|
* This does not give an exact answer when swap count is continued,
|
|
* but does include the high COUNT_CONTINUED flag to allow for that.
|
|
*/
|
|
int page_swapcount(struct page *page)
|
|
{
|
|
int count = 0;
|
|
struct swap_info_struct *p;
|
|
struct swap_cluster_info *ci;
|
|
swp_entry_t entry;
|
|
unsigned long offset;
|
|
|
|
entry.val = page_private(page);
|
|
p = _swap_info_get(entry);
|
|
if (p) {
|
|
offset = swp_offset(entry);
|
|
ci = lock_cluster_or_swap_info(p, offset);
|
|
count = swap_count(p->swap_map[offset]);
|
|
unlock_cluster_or_swap_info(p, ci);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
|
|
{
|
|
int count = 0;
|
|
pgoff_t offset = swp_offset(entry);
|
|
struct swap_cluster_info *ci;
|
|
|
|
ci = lock_cluster_or_swap_info(si, offset);
|
|
count = swap_count(si->swap_map[offset]);
|
|
unlock_cluster_or_swap_info(si, ci);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* How many references to @entry are currently swapped out?
|
|
* This does not give an exact answer when swap count is continued,
|
|
* but does include the high COUNT_CONTINUED flag to allow for that.
|
|
*/
|
|
int __swp_swapcount(swp_entry_t entry)
|
|
{
|
|
int count = 0;
|
|
struct swap_info_struct *si;
|
|
|
|
si = __swap_info_get(entry);
|
|
if (si)
|
|
count = swap_swapcount(si, entry);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* How many references to @entry are currently swapped out?
|
|
* This considers COUNT_CONTINUED so it returns exact answer.
|
|
*/
|
|
int swp_swapcount(swp_entry_t entry)
|
|
{
|
|
int count, tmp_count, n;
|
|
struct swap_info_struct *p;
|
|
struct swap_cluster_info *ci;
|
|
struct page *page;
|
|
pgoff_t offset;
|
|
unsigned char *map;
|
|
|
|
p = _swap_info_get(entry);
|
|
if (!p)
|
|
return 0;
|
|
|
|
offset = swp_offset(entry);
|
|
|
|
ci = lock_cluster_or_swap_info(p, offset);
|
|
|
|
count = swap_count(p->swap_map[offset]);
|
|
if (!(count & COUNT_CONTINUED))
|
|
goto out;
|
|
|
|
count &= ~COUNT_CONTINUED;
|
|
n = SWAP_MAP_MAX + 1;
|
|
|
|
page = vmalloc_to_page(p->swap_map + offset);
|
|
offset &= ~PAGE_MASK;
|
|
VM_BUG_ON(page_private(page) != SWP_CONTINUED);
|
|
|
|
do {
|
|
page = list_next_entry(page, lru);
|
|
map = kmap_atomic(page);
|
|
tmp_count = map[offset];
|
|
kunmap_atomic(map);
|
|
|
|
count += (tmp_count & ~COUNT_CONTINUED) * n;
|
|
n *= (SWAP_CONT_MAX + 1);
|
|
} while (tmp_count & COUNT_CONTINUED);
|
|
out:
|
|
unlock_cluster_or_swap_info(p, ci);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* We can write to an anon page without COW if there are no other references
|
|
* to it. And as a side-effect, free up its swap: because the old content
|
|
* on disk will never be read, and seeking back there to write new content
|
|
* later would only waste time away from clustering.
|
|
*
|
|
* NOTE: total_mapcount should not be relied upon by the caller if
|
|
* reuse_swap_page() returns false, but it may be always overwritten
|
|
* (see the other implementation for CONFIG_SWAP=n).
|
|
*/
|
|
bool reuse_swap_page(struct page *page, int *total_mapcount)
|
|
{
|
|
int count;
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
if (unlikely(PageKsm(page)))
|
|
return false;
|
|
count = page_trans_huge_mapcount(page, total_mapcount);
|
|
if (count <= 1 && PageSwapCache(page)) {
|
|
count += page_swapcount(page);
|
|
if (count != 1)
|
|
goto out;
|
|
if (!PageWriteback(page)) {
|
|
delete_from_swap_cache(page);
|
|
SetPageDirty(page);
|
|
} else {
|
|
swp_entry_t entry;
|
|
struct swap_info_struct *p;
|
|
|
|
entry.val = page_private(page);
|
|
p = swap_info_get(entry);
|
|
if (p->flags & SWP_STABLE_WRITES) {
|
|
spin_unlock(&p->lock);
|
|
return false;
|
|
}
|
|
spin_unlock(&p->lock);
|
|
}
|
|
}
|
|
out:
|
|
return count <= 1;
|
|
}
|
|
|
|
/*
|
|
* If swap is getting full, or if there are no more mappings of this page,
|
|
* then try_to_free_swap is called to free its swap space.
|
|
*/
|
|
int try_to_free_swap(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
|
|
if (!PageSwapCache(page))
|
|
return 0;
|
|
if (PageWriteback(page))
|
|
return 0;
|
|
if (page_swapcount(page))
|
|
return 0;
|
|
|
|
/*
|
|
* Once hibernation has begun to create its image of memory,
|
|
* there's a danger that one of the calls to try_to_free_swap()
|
|
* - most probably a call from __try_to_reclaim_swap() while
|
|
* hibernation is allocating its own swap pages for the image,
|
|
* but conceivably even a call from memory reclaim - will free
|
|
* the swap from a page which has already been recorded in the
|
|
* image as a clean swapcache page, and then reuse its swap for
|
|
* another page of the image. On waking from hibernation, the
|
|
* original page might be freed under memory pressure, then
|
|
* later read back in from swap, now with the wrong data.
|
|
*
|
|
* Hibernation suspends storage while it is writing the image
|
|
* to disk so check that here.
|
|
*/
|
|
if (pm_suspended_storage())
|
|
return 0;
|
|
|
|
delete_from_swap_cache(page);
|
|
SetPageDirty(page);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Free the swap entry like above, but also try to
|
|
* free the page cache entry if it is the last user.
|
|
*/
|
|
int free_swap_and_cache(swp_entry_t entry)
|
|
{
|
|
struct swap_info_struct *p;
|
|
struct page *page = NULL;
|
|
unsigned char count;
|
|
|
|
if (non_swap_entry(entry))
|
|
return 1;
|
|
|
|
p = _swap_info_get(entry);
|
|
if (p) {
|
|
count = __swap_entry_free(p, entry, 1);
|
|
if (count == SWAP_HAS_CACHE) {
|
|
page = find_get_page(swap_address_space(entry),
|
|
swp_offset(entry));
|
|
if (page && !trylock_page(page)) {
|
|
put_page(page);
|
|
page = NULL;
|
|
}
|
|
} else if (!count)
|
|
free_swap_slot(entry);
|
|
}
|
|
if (page) {
|
|
/*
|
|
* Not mapped elsewhere, or swap space full? Free it!
|
|
* Also recheck PageSwapCache now page is locked (above).
|
|
*/
|
|
if (PageSwapCache(page) && !PageWriteback(page) &&
|
|
(!page_mapped(page) || mem_cgroup_swap_full(page)) &&
|
|
!swap_swapcount(p, entry)) {
|
|
delete_from_swap_cache(page);
|
|
SetPageDirty(page);
|
|
}
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
return p != NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
/*
|
|
* Find the swap type that corresponds to given device (if any).
|
|
*
|
|
* @offset - number of the PAGE_SIZE-sized block of the device, starting
|
|
* from 0, in which the swap header is expected to be located.
|
|
*
|
|
* This is needed for the suspend to disk (aka swsusp).
|
|
*/
|
|
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
|
|
{
|
|
struct block_device *bdev = NULL;
|
|
int type;
|
|
|
|
if (device)
|
|
bdev = bdget(device);
|
|
|
|
spin_lock(&swap_lock);
|
|
for (type = 0; type < nr_swapfiles; type++) {
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
|
|
if (!(sis->flags & SWP_WRITEOK))
|
|
continue;
|
|
|
|
if (!bdev) {
|
|
if (bdev_p)
|
|
*bdev_p = bdgrab(sis->bdev);
|
|
|
|
spin_unlock(&swap_lock);
|
|
return type;
|
|
}
|
|
if (bdev == sis->bdev) {
|
|
struct swap_extent *se = &sis->first_swap_extent;
|
|
|
|
if (se->start_block == offset) {
|
|
if (bdev_p)
|
|
*bdev_p = bdgrab(sis->bdev);
|
|
|
|
spin_unlock(&swap_lock);
|
|
bdput(bdev);
|
|
return type;
|
|
}
|
|
}
|
|
}
|
|
spin_unlock(&swap_lock);
|
|
if (bdev)
|
|
bdput(bdev);
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
|
|
* corresponding to given index in swap_info (swap type).
|
|
*/
|
|
sector_t swapdev_block(int type, pgoff_t offset)
|
|
{
|
|
struct block_device *bdev;
|
|
|
|
if ((unsigned int)type >= nr_swapfiles)
|
|
return 0;
|
|
if (!(swap_info[type]->flags & SWP_WRITEOK))
|
|
return 0;
|
|
return map_swap_entry(swp_entry(type, offset), &bdev);
|
|
}
|
|
|
|
/*
|
|
* Return either the total number of swap pages of given type, or the number
|
|
* of free pages of that type (depending on @free)
|
|
*
|
|
* This is needed for software suspend
|
|
*/
|
|
unsigned int count_swap_pages(int type, int free)
|
|
{
|
|
unsigned int n = 0;
|
|
|
|
spin_lock(&swap_lock);
|
|
if ((unsigned int)type < nr_swapfiles) {
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
|
|
spin_lock(&sis->lock);
|
|
if (sis->flags & SWP_WRITEOK) {
|
|
n = sis->pages;
|
|
if (free)
|
|
n -= sis->inuse_pages;
|
|
}
|
|
spin_unlock(&sis->lock);
|
|
}
|
|
spin_unlock(&swap_lock);
|
|
return n;
|
|
}
|
|
#endif /* CONFIG_HIBERNATION */
|
|
|
|
static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
|
|
{
|
|
return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
|
|
}
|
|
|
|
/*
|
|
* No need to decide whether this PTE shares the swap entry with others,
|
|
* just let do_wp_page work it out if a write is requested later - to
|
|
* force COW, vm_page_prot omits write permission from any private vma.
|
|
*/
|
|
static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, swp_entry_t entry, struct page *page)
|
|
{
|
|
struct page *swapcache;
|
|
struct mem_cgroup *memcg;
|
|
spinlock_t *ptl;
|
|
pte_t *pte;
|
|
int ret = 1;
|
|
|
|
swapcache = page;
|
|
page = ksm_might_need_to_copy(page, vma, addr);
|
|
if (unlikely(!page))
|
|
return -ENOMEM;
|
|
|
|
if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
|
|
&memcg, false)) {
|
|
ret = -ENOMEM;
|
|
goto out_nolock;
|
|
}
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
|
|
mem_cgroup_cancel_charge(page, memcg, false);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
|
|
inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
|
|
get_page(page);
|
|
set_pte_at(vma->vm_mm, addr, pte,
|
|
pte_mkold(mk_pte(page, vma->vm_page_prot)));
|
|
if (page == swapcache) {
|
|
page_add_anon_rmap(page, vma, addr, false);
|
|
mem_cgroup_commit_charge(page, memcg, true, false);
|
|
} else { /* ksm created a completely new copy */
|
|
page_add_new_anon_rmap(page, vma, addr, false);
|
|
mem_cgroup_commit_charge(page, memcg, false, false);
|
|
lru_cache_add_active_or_unevictable(page, vma);
|
|
}
|
|
swap_free(entry);
|
|
/*
|
|
* Move the page to the active list so it is not
|
|
* immediately swapped out again after swapon.
|
|
*/
|
|
activate_page(page);
|
|
out:
|
|
pte_unmap_unlock(pte, ptl);
|
|
out_nolock:
|
|
if (page != swapcache) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
pte_t swp_pte = swp_entry_to_pte(entry);
|
|
pte_t *pte;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We don't actually need pte lock while scanning for swp_pte: since
|
|
* we hold page lock and mmap_sem, swp_pte cannot be inserted into the
|
|
* page table while we're scanning; though it could get zapped, and on
|
|
* some architectures (e.g. x86_32 with PAE) we might catch a glimpse
|
|
* of unmatched parts which look like swp_pte, so unuse_pte must
|
|
* recheck under pte lock. Scanning without pte lock lets it be
|
|
* preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
|
|
*/
|
|
pte = pte_offset_map(pmd, addr);
|
|
do {
|
|
/*
|
|
* swapoff spends a _lot_ of time in this loop!
|
|
* Test inline before going to call unuse_pte.
|
|
*/
|
|
if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
|
|
pte_unmap(pte);
|
|
ret = unuse_pte(vma, pmd, addr, entry, page);
|
|
if (ret)
|
|
goto out;
|
|
pte = pte_offset_map(pmd, addr);
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap(pte - 1);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
int ret;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
cond_resched();
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
|
|
continue;
|
|
ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
|
|
if (ret)
|
|
return ret;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
|
|
unsigned long addr, unsigned long end,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
int ret;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
|
|
if (ret)
|
|
return ret;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
int ret;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
continue;
|
|
ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
|
|
if (ret)
|
|
return ret;
|
|
} while (p4d++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int unuse_vma(struct vm_area_struct *vma,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long addr, end, next;
|
|
int ret;
|
|
|
|
if (page_anon_vma(page)) {
|
|
addr = page_address_in_vma(page, vma);
|
|
if (addr == -EFAULT)
|
|
return 0;
|
|
else
|
|
end = addr + PAGE_SIZE;
|
|
} else {
|
|
addr = vma->vm_start;
|
|
end = vma->vm_end;
|
|
}
|
|
|
|
pgd = pgd_offset(vma->vm_mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
|
|
if (ret)
|
|
return ret;
|
|
} while (pgd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int unuse_mm(struct mm_struct *mm,
|
|
swp_entry_t entry, struct page *page)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int ret = 0;
|
|
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
/*
|
|
* Activate page so shrink_inactive_list is unlikely to unmap
|
|
* its ptes while lock is dropped, so swapoff can make progress.
|
|
*/
|
|
activate_page(page);
|
|
unlock_page(page);
|
|
down_read(&mm->mmap_sem);
|
|
lock_page(page);
|
|
}
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
return (ret < 0)? ret: 0;
|
|
}
|
|
|
|
/*
|
|
* Scan swap_map (or frontswap_map if frontswap parameter is true)
|
|
* from current position to next entry still in use.
|
|
* Recycle to start on reaching the end, returning 0 when empty.
|
|
*/
|
|
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
|
|
unsigned int prev, bool frontswap)
|
|
{
|
|
unsigned int max = si->max;
|
|
unsigned int i = prev;
|
|
unsigned char count;
|
|
|
|
/*
|
|
* No need for swap_lock here: we're just looking
|
|
* for whether an entry is in use, not modifying it; false
|
|
* hits are okay, and sys_swapoff() has already prevented new
|
|
* allocations from this area (while holding swap_lock).
|
|
*/
|
|
for (;;) {
|
|
if (++i >= max) {
|
|
if (!prev) {
|
|
i = 0;
|
|
break;
|
|
}
|
|
/*
|
|
* No entries in use at top of swap_map,
|
|
* loop back to start and recheck there.
|
|
*/
|
|
max = prev + 1;
|
|
prev = 0;
|
|
i = 1;
|
|
}
|
|
count = READ_ONCE(si->swap_map[i]);
|
|
if (count && swap_count(count) != SWAP_MAP_BAD)
|
|
if (!frontswap || frontswap_test(si, i))
|
|
break;
|
|
if ((i % LATENCY_LIMIT) == 0)
|
|
cond_resched();
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* We completely avoid races by reading each swap page in advance,
|
|
* and then search for the process using it. All the necessary
|
|
* page table adjustments can then be made atomically.
|
|
*
|
|
* if the boolean frontswap is true, only unuse pages_to_unuse pages;
|
|
* pages_to_unuse==0 means all pages; ignored if frontswap is false
|
|
*/
|
|
int try_to_unuse(unsigned int type, bool frontswap,
|
|
unsigned long pages_to_unuse)
|
|
{
|
|
struct swap_info_struct *si = swap_info[type];
|
|
struct mm_struct *start_mm;
|
|
volatile unsigned char *swap_map; /* swap_map is accessed without
|
|
* locking. Mark it as volatile
|
|
* to prevent compiler doing
|
|
* something odd.
|
|
*/
|
|
unsigned char swcount;
|
|
struct page *page;
|
|
swp_entry_t entry;
|
|
unsigned int i = 0;
|
|
int retval = 0;
|
|
|
|
/*
|
|
* When searching mms for an entry, a good strategy is to
|
|
* start at the first mm we freed the previous entry from
|
|
* (though actually we don't notice whether we or coincidence
|
|
* freed the entry). Initialize this start_mm with a hold.
|
|
*
|
|
* A simpler strategy would be to start at the last mm we
|
|
* freed the previous entry from; but that would take less
|
|
* advantage of mmlist ordering, which clusters forked mms
|
|
* together, child after parent. If we race with dup_mmap(), we
|
|
* prefer to resolve parent before child, lest we miss entries
|
|
* duplicated after we scanned child: using last mm would invert
|
|
* that.
|
|
*/
|
|
start_mm = &init_mm;
|
|
mmget(&init_mm);
|
|
|
|
/*
|
|
* Keep on scanning until all entries have gone. Usually,
|
|
* one pass through swap_map is enough, but not necessarily:
|
|
* there are races when an instance of an entry might be missed.
|
|
*/
|
|
while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
|
|
if (signal_pending(current)) {
|
|
retval = -EINTR;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Get a page for the entry, using the existing swap
|
|
* cache page if there is one. Otherwise, get a clean
|
|
* page and read the swap into it.
|
|
*/
|
|
swap_map = &si->swap_map[i];
|
|
entry = swp_entry(type, i);
|
|
page = read_swap_cache_async(entry,
|
|
GFP_HIGHUSER_MOVABLE, NULL, 0);
|
|
if (!page) {
|
|
/*
|
|
* Either swap_duplicate() failed because entry
|
|
* has been freed independently, and will not be
|
|
* reused since sys_swapoff() already disabled
|
|
* allocation from here, or alloc_page() failed.
|
|
*/
|
|
swcount = *swap_map;
|
|
/*
|
|
* We don't hold lock here, so the swap entry could be
|
|
* SWAP_MAP_BAD (when the cluster is discarding).
|
|
* Instead of fail out, We can just skip the swap
|
|
* entry because swapoff will wait for discarding
|
|
* finish anyway.
|
|
*/
|
|
if (!swcount || swcount == SWAP_MAP_BAD)
|
|
continue;
|
|
retval = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Don't hold on to start_mm if it looks like exiting.
|
|
*/
|
|
if (atomic_read(&start_mm->mm_users) == 1) {
|
|
mmput(start_mm);
|
|
start_mm = &init_mm;
|
|
mmget(&init_mm);
|
|
}
|
|
|
|
/*
|
|
* Wait for and lock page. When do_swap_page races with
|
|
* try_to_unuse, do_swap_page can handle the fault much
|
|
* faster than try_to_unuse can locate the entry. This
|
|
* apparently redundant "wait_on_page_locked" lets try_to_unuse
|
|
* defer to do_swap_page in such a case - in some tests,
|
|
* do_swap_page and try_to_unuse repeatedly compete.
|
|
*/
|
|
wait_on_page_locked(page);
|
|
wait_on_page_writeback(page);
|
|
lock_page(page);
|
|
wait_on_page_writeback(page);
|
|
|
|
/*
|
|
* Remove all references to entry.
|
|
*/
|
|
swcount = *swap_map;
|
|
if (swap_count(swcount) == SWAP_MAP_SHMEM) {
|
|
retval = shmem_unuse(entry, page);
|
|
/* page has already been unlocked and released */
|
|
if (retval < 0)
|
|
break;
|
|
continue;
|
|
}
|
|
if (swap_count(swcount) && start_mm != &init_mm)
|
|
retval = unuse_mm(start_mm, entry, page);
|
|
|
|
if (swap_count(*swap_map)) {
|
|
int set_start_mm = (*swap_map >= swcount);
|
|
struct list_head *p = &start_mm->mmlist;
|
|
struct mm_struct *new_start_mm = start_mm;
|
|
struct mm_struct *prev_mm = start_mm;
|
|
struct mm_struct *mm;
|
|
|
|
mmget(new_start_mm);
|
|
mmget(prev_mm);
|
|
spin_lock(&mmlist_lock);
|
|
while (swap_count(*swap_map) && !retval &&
|
|
(p = p->next) != &start_mm->mmlist) {
|
|
mm = list_entry(p, struct mm_struct, mmlist);
|
|
if (!mmget_not_zero(mm))
|
|
continue;
|
|
spin_unlock(&mmlist_lock);
|
|
mmput(prev_mm);
|
|
prev_mm = mm;
|
|
|
|
cond_resched();
|
|
|
|
swcount = *swap_map;
|
|
if (!swap_count(swcount)) /* any usage ? */
|
|
;
|
|
else if (mm == &init_mm)
|
|
set_start_mm = 1;
|
|
else
|
|
retval = unuse_mm(mm, entry, page);
|
|
|
|
if (set_start_mm && *swap_map < swcount) {
|
|
mmput(new_start_mm);
|
|
mmget(mm);
|
|
new_start_mm = mm;
|
|
set_start_mm = 0;
|
|
}
|
|
spin_lock(&mmlist_lock);
|
|
}
|
|
spin_unlock(&mmlist_lock);
|
|
mmput(prev_mm);
|
|
mmput(start_mm);
|
|
start_mm = new_start_mm;
|
|
}
|
|
if (retval) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If a reference remains (rare), we would like to leave
|
|
* the page in the swap cache; but try_to_unmap could
|
|
* then re-duplicate the entry once we drop page lock,
|
|
* so we might loop indefinitely; also, that page could
|
|
* not be swapped out to other storage meanwhile. So:
|
|
* delete from cache even if there's another reference,
|
|
* after ensuring that the data has been saved to disk -
|
|
* since if the reference remains (rarer), it will be
|
|
* read from disk into another page. Splitting into two
|
|
* pages would be incorrect if swap supported "shared
|
|
* private" pages, but they are handled by tmpfs files.
|
|
*
|
|
* Given how unuse_vma() targets one particular offset
|
|
* in an anon_vma, once the anon_vma has been determined,
|
|
* this splitting happens to be just what is needed to
|
|
* handle where KSM pages have been swapped out: re-reading
|
|
* is unnecessarily slow, but we can fix that later on.
|
|
*/
|
|
if (swap_count(*swap_map) &&
|
|
PageDirty(page) && PageSwapCache(page)) {
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
};
|
|
|
|
swap_writepage(page, &wbc);
|
|
lock_page(page);
|
|
wait_on_page_writeback(page);
|
|
}
|
|
|
|
/*
|
|
* It is conceivable that a racing task removed this page from
|
|
* swap cache just before we acquired the page lock at the top,
|
|
* or while we dropped it in unuse_mm(). The page might even
|
|
* be back in swap cache on another swap area: that we must not
|
|
* delete, since it may not have been written out to swap yet.
|
|
*/
|
|
if (PageSwapCache(page) &&
|
|
likely(page_private(page) == entry.val))
|
|
delete_from_swap_cache(page);
|
|
|
|
/*
|
|
* So we could skip searching mms once swap count went
|
|
* to 1, we did not mark any present ptes as dirty: must
|
|
* mark page dirty so shrink_page_list will preserve it.
|
|
*/
|
|
SetPageDirty(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
|
|
/*
|
|
* Make sure that we aren't completely killing
|
|
* interactive performance.
|
|
*/
|
|
cond_resched();
|
|
if (frontswap && pages_to_unuse > 0) {
|
|
if (!--pages_to_unuse)
|
|
break;
|
|
}
|
|
}
|
|
|
|
mmput(start_mm);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* After a successful try_to_unuse, if no swap is now in use, we know
|
|
* we can empty the mmlist. swap_lock must be held on entry and exit.
|
|
* Note that mmlist_lock nests inside swap_lock, and an mm must be
|
|
* added to the mmlist just after page_duplicate - before would be racy.
|
|
*/
|
|
static void drain_mmlist(void)
|
|
{
|
|
struct list_head *p, *next;
|
|
unsigned int type;
|
|
|
|
for (type = 0; type < nr_swapfiles; type++)
|
|
if (swap_info[type]->inuse_pages)
|
|
return;
|
|
spin_lock(&mmlist_lock);
|
|
list_for_each_safe(p, next, &init_mm.mmlist)
|
|
list_del_init(p);
|
|
spin_unlock(&mmlist_lock);
|
|
}
|
|
|
|
/*
|
|
* Use this swapdev's extent info to locate the (PAGE_SIZE) block which
|
|
* corresponds to page offset for the specified swap entry.
|
|
* Note that the type of this function is sector_t, but it returns page offset
|
|
* into the bdev, not sector offset.
|
|
*/
|
|
static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
|
|
{
|
|
struct swap_info_struct *sis;
|
|
struct swap_extent *start_se;
|
|
struct swap_extent *se;
|
|
pgoff_t offset;
|
|
|
|
sis = swap_info[swp_type(entry)];
|
|
*bdev = sis->bdev;
|
|
|
|
offset = swp_offset(entry);
|
|
start_se = sis->curr_swap_extent;
|
|
se = start_se;
|
|
|
|
for ( ; ; ) {
|
|
if (se->start_page <= offset &&
|
|
offset < (se->start_page + se->nr_pages)) {
|
|
return se->start_block + (offset - se->start_page);
|
|
}
|
|
se = list_next_entry(se, list);
|
|
sis->curr_swap_extent = se;
|
|
BUG_ON(se == start_se); /* It *must* be present */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the page offset into bdev for the specified page's swap entry.
|
|
*/
|
|
sector_t map_swap_page(struct page *page, struct block_device **bdev)
|
|
{
|
|
swp_entry_t entry;
|
|
entry.val = page_private(page);
|
|
return map_swap_entry(entry, bdev);
|
|
}
|
|
|
|
/*
|
|
* Free all of a swapdev's extent information
|
|
*/
|
|
static void destroy_swap_extents(struct swap_info_struct *sis)
|
|
{
|
|
while (!list_empty(&sis->first_swap_extent.list)) {
|
|
struct swap_extent *se;
|
|
|
|
se = list_first_entry(&sis->first_swap_extent.list,
|
|
struct swap_extent, list);
|
|
list_del(&se->list);
|
|
kfree(se);
|
|
}
|
|
|
|
if (sis->flags & SWP_FILE) {
|
|
struct file *swap_file = sis->swap_file;
|
|
struct address_space *mapping = swap_file->f_mapping;
|
|
|
|
sis->flags &= ~SWP_FILE;
|
|
mapping->a_ops->swap_deactivate(swap_file);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a block range (and the corresponding page range) into this swapdev's
|
|
* extent list. The extent list is kept sorted in page order.
|
|
*
|
|
* This function rather assumes that it is called in ascending page order.
|
|
*/
|
|
int
|
|
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
|
|
unsigned long nr_pages, sector_t start_block)
|
|
{
|
|
struct swap_extent *se;
|
|
struct swap_extent *new_se;
|
|
struct list_head *lh;
|
|
|
|
if (start_page == 0) {
|
|
se = &sis->first_swap_extent;
|
|
sis->curr_swap_extent = se;
|
|
se->start_page = 0;
|
|
se->nr_pages = nr_pages;
|
|
se->start_block = start_block;
|
|
return 1;
|
|
} else {
|
|
lh = sis->first_swap_extent.list.prev; /* Highest extent */
|
|
se = list_entry(lh, struct swap_extent, list);
|
|
BUG_ON(se->start_page + se->nr_pages != start_page);
|
|
if (se->start_block + se->nr_pages == start_block) {
|
|
/* Merge it */
|
|
se->nr_pages += nr_pages;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No merge. Insert a new extent, preserving ordering.
|
|
*/
|
|
new_se = kmalloc(sizeof(*se), GFP_KERNEL);
|
|
if (new_se == NULL)
|
|
return -ENOMEM;
|
|
new_se->start_page = start_page;
|
|
new_se->nr_pages = nr_pages;
|
|
new_se->start_block = start_block;
|
|
|
|
list_add_tail(&new_se->list, &sis->first_swap_extent.list);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A `swap extent' is a simple thing which maps a contiguous range of pages
|
|
* onto a contiguous range of disk blocks. An ordered list of swap extents
|
|
* is built at swapon time and is then used at swap_writepage/swap_readpage
|
|
* time for locating where on disk a page belongs.
|
|
*
|
|
* If the swapfile is an S_ISBLK block device, a single extent is installed.
|
|
* This is done so that the main operating code can treat S_ISBLK and S_ISREG
|
|
* swap files identically.
|
|
*
|
|
* Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
|
|
* extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
|
|
* swapfiles are handled *identically* after swapon time.
|
|
*
|
|
* For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
|
|
* and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
|
|
* some stray blocks are found which do not fall within the PAGE_SIZE alignment
|
|
* requirements, they are simply tossed out - we will never use those blocks
|
|
* for swapping.
|
|
*
|
|
* For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
|
|
* prevents root from shooting her foot off by ftruncating an in-use swapfile,
|
|
* which will scribble on the fs.
|
|
*
|
|
* The amount of disk space which a single swap extent represents varies.
|
|
* Typically it is in the 1-4 megabyte range. So we can have hundreds of
|
|
* extents in the list. To avoid much list walking, we cache the previous
|
|
* search location in `curr_swap_extent', and start new searches from there.
|
|
* This is extremely effective. The average number of iterations in
|
|
* map_swap_page() has been measured at about 0.3 per page. - akpm.
|
|
*/
|
|
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
|
|
{
|
|
struct file *swap_file = sis->swap_file;
|
|
struct address_space *mapping = swap_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
int ret;
|
|
|
|
if (S_ISBLK(inode->i_mode)) {
|
|
ret = add_swap_extent(sis, 0, sis->max, 0);
|
|
*span = sis->pages;
|
|
return ret;
|
|
}
|
|
|
|
if (mapping->a_ops->swap_activate) {
|
|
ret = mapping->a_ops->swap_activate(sis, swap_file, span);
|
|
if (!ret) {
|
|
sis->flags |= SWP_FILE;
|
|
ret = add_swap_extent(sis, 0, sis->max, 0);
|
|
*span = sis->pages;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
return generic_swapfile_activate(sis, swap_file, span);
|
|
}
|
|
|
|
static void _enable_swap_info(struct swap_info_struct *p, int prio,
|
|
unsigned char *swap_map,
|
|
struct swap_cluster_info *cluster_info)
|
|
{
|
|
if (prio >= 0)
|
|
p->prio = prio;
|
|
else
|
|
p->prio = --least_priority;
|
|
/*
|
|
* the plist prio is negated because plist ordering is
|
|
* low-to-high, while swap ordering is high-to-low
|
|
*/
|
|
p->list.prio = -p->prio;
|
|
p->avail_list.prio = -p->prio;
|
|
p->swap_map = swap_map;
|
|
p->cluster_info = cluster_info;
|
|
p->flags |= SWP_WRITEOK;
|
|
atomic_long_add(p->pages, &nr_swap_pages);
|
|
total_swap_pages += p->pages;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
/*
|
|
* both lists are plists, and thus priority ordered.
|
|
* swap_active_head needs to be priority ordered for swapoff(),
|
|
* which on removal of any swap_info_struct with an auto-assigned
|
|
* (i.e. negative) priority increments the auto-assigned priority
|
|
* of any lower-priority swap_info_structs.
|
|
* swap_avail_head needs to be priority ordered for get_swap_page(),
|
|
* which allocates swap pages from the highest available priority
|
|
* swap_info_struct.
|
|
*/
|
|
plist_add(&p->list, &swap_active_head);
|
|
spin_lock(&swap_avail_lock);
|
|
plist_add(&p->avail_list, &swap_avail_head);
|
|
spin_unlock(&swap_avail_lock);
|
|
}
|
|
|
|
static void enable_swap_info(struct swap_info_struct *p, int prio,
|
|
unsigned char *swap_map,
|
|
struct swap_cluster_info *cluster_info,
|
|
unsigned long *frontswap_map)
|
|
{
|
|
frontswap_init(p->type, frontswap_map);
|
|
spin_lock(&swap_lock);
|
|
spin_lock(&p->lock);
|
|
_enable_swap_info(p, prio, swap_map, cluster_info);
|
|
spin_unlock(&p->lock);
|
|
spin_unlock(&swap_lock);
|
|
}
|
|
|
|
static void reinsert_swap_info(struct swap_info_struct *p)
|
|
{
|
|
spin_lock(&swap_lock);
|
|
spin_lock(&p->lock);
|
|
_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
|
|
spin_unlock(&p->lock);
|
|
spin_unlock(&swap_lock);
|
|
}
|
|
|
|
bool has_usable_swap(void)
|
|
{
|
|
bool ret = true;
|
|
|
|
spin_lock(&swap_lock);
|
|
if (plist_head_empty(&swap_active_head))
|
|
ret = false;
|
|
spin_unlock(&swap_lock);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
|
|
{
|
|
struct swap_info_struct *p = NULL;
|
|
unsigned char *swap_map;
|
|
struct swap_cluster_info *cluster_info;
|
|
unsigned long *frontswap_map;
|
|
struct file *swap_file, *victim;
|
|
struct address_space *mapping;
|
|
struct inode *inode;
|
|
struct filename *pathname;
|
|
int err, found = 0;
|
|
unsigned int old_block_size;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
BUG_ON(!current->mm);
|
|
|
|
pathname = getname(specialfile);
|
|
if (IS_ERR(pathname))
|
|
return PTR_ERR(pathname);
|
|
|
|
victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
|
|
err = PTR_ERR(victim);
|
|
if (IS_ERR(victim))
|
|
goto out;
|
|
|
|
mapping = victim->f_mapping;
|
|
spin_lock(&swap_lock);
|
|
plist_for_each_entry(p, &swap_active_head, list) {
|
|
if (p->flags & SWP_WRITEOK) {
|
|
if (p->swap_file->f_mapping == mapping) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found) {
|
|
err = -EINVAL;
|
|
spin_unlock(&swap_lock);
|
|
goto out_dput;
|
|
}
|
|
if (!security_vm_enough_memory_mm(current->mm, p->pages))
|
|
vm_unacct_memory(p->pages);
|
|
else {
|
|
err = -ENOMEM;
|
|
spin_unlock(&swap_lock);
|
|
goto out_dput;
|
|
}
|
|
spin_lock(&swap_avail_lock);
|
|
plist_del(&p->avail_list, &swap_avail_head);
|
|
spin_unlock(&swap_avail_lock);
|
|
spin_lock(&p->lock);
|
|
if (p->prio < 0) {
|
|
struct swap_info_struct *si = p;
|
|
|
|
plist_for_each_entry_continue(si, &swap_active_head, list) {
|
|
si->prio++;
|
|
si->list.prio--;
|
|
si->avail_list.prio--;
|
|
}
|
|
least_priority++;
|
|
}
|
|
plist_del(&p->list, &swap_active_head);
|
|
atomic_long_sub(p->pages, &nr_swap_pages);
|
|
total_swap_pages -= p->pages;
|
|
p->flags &= ~SWP_WRITEOK;
|
|
spin_unlock(&p->lock);
|
|
spin_unlock(&swap_lock);
|
|
|
|
disable_swap_slots_cache_lock();
|
|
|
|
set_current_oom_origin();
|
|
err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
|
|
clear_current_oom_origin();
|
|
|
|
if (err) {
|
|
/* re-insert swap space back into swap_list */
|
|
reinsert_swap_info(p);
|
|
reenable_swap_slots_cache_unlock();
|
|
goto out_dput;
|
|
}
|
|
|
|
reenable_swap_slots_cache_unlock();
|
|
|
|
flush_work(&p->discard_work);
|
|
|
|
destroy_swap_extents(p);
|
|
if (p->flags & SWP_CONTINUED)
|
|
free_swap_count_continuations(p);
|
|
|
|
mutex_lock(&swapon_mutex);
|
|
spin_lock(&swap_lock);
|
|
spin_lock(&p->lock);
|
|
drain_mmlist();
|
|
|
|
/* wait for anyone still in scan_swap_map */
|
|
p->highest_bit = 0; /* cuts scans short */
|
|
while (p->flags >= SWP_SCANNING) {
|
|
spin_unlock(&p->lock);
|
|
spin_unlock(&swap_lock);
|
|
schedule_timeout_uninterruptible(1);
|
|
spin_lock(&swap_lock);
|
|
spin_lock(&p->lock);
|
|
}
|
|
|
|
swap_file = p->swap_file;
|
|
old_block_size = p->old_block_size;
|
|
p->swap_file = NULL;
|
|
p->max = 0;
|
|
swap_map = p->swap_map;
|
|
p->swap_map = NULL;
|
|
cluster_info = p->cluster_info;
|
|
p->cluster_info = NULL;
|
|
frontswap_map = frontswap_map_get(p);
|
|
spin_unlock(&p->lock);
|
|
spin_unlock(&swap_lock);
|
|
frontswap_invalidate_area(p->type);
|
|
frontswap_map_set(p, NULL);
|
|
mutex_unlock(&swapon_mutex);
|
|
free_percpu(p->percpu_cluster);
|
|
p->percpu_cluster = NULL;
|
|
vfree(swap_map);
|
|
kvfree(cluster_info);
|
|
kvfree(frontswap_map);
|
|
/* Destroy swap account information */
|
|
swap_cgroup_swapoff(p->type);
|
|
exit_swap_address_space(p->type);
|
|
|
|
inode = mapping->host;
|
|
if (S_ISBLK(inode->i_mode)) {
|
|
struct block_device *bdev = I_BDEV(inode);
|
|
set_blocksize(bdev, old_block_size);
|
|
blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
|
|
} else {
|
|
inode_lock(inode);
|
|
inode->i_flags &= ~S_SWAPFILE;
|
|
inode_unlock(inode);
|
|
}
|
|
filp_close(swap_file, NULL);
|
|
|
|
/*
|
|
* Clear the SWP_USED flag after all resources are freed so that swapon
|
|
* can reuse this swap_info in alloc_swap_info() safely. It is ok to
|
|
* not hold p->lock after we cleared its SWP_WRITEOK.
|
|
*/
|
|
spin_lock(&swap_lock);
|
|
p->flags = 0;
|
|
spin_unlock(&swap_lock);
|
|
|
|
err = 0;
|
|
atomic_inc(&proc_poll_event);
|
|
wake_up_interruptible(&proc_poll_wait);
|
|
|
|
out_dput:
|
|
filp_close(victim, NULL);
|
|
out:
|
|
putname(pathname);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static unsigned swaps_poll(struct file *file, poll_table *wait)
|
|
{
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
poll_wait(file, &proc_poll_wait, wait);
|
|
|
|
if (seq->poll_event != atomic_read(&proc_poll_event)) {
|
|
seq->poll_event = atomic_read(&proc_poll_event);
|
|
return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
|
|
}
|
|
|
|
return POLLIN | POLLRDNORM;
|
|
}
|
|
|
|
/* iterator */
|
|
static void *swap_start(struct seq_file *swap, loff_t *pos)
|
|
{
|
|
struct swap_info_struct *si;
|
|
int type;
|
|
loff_t l = *pos;
|
|
|
|
mutex_lock(&swapon_mutex);
|
|
|
|
if (!l)
|
|
return SEQ_START_TOKEN;
|
|
|
|
for (type = 0; type < nr_swapfiles; type++) {
|
|
smp_rmb(); /* read nr_swapfiles before swap_info[type] */
|
|
si = swap_info[type];
|
|
if (!(si->flags & SWP_USED) || !si->swap_map)
|
|
continue;
|
|
if (!--l)
|
|
return si;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
|
|
{
|
|
struct swap_info_struct *si = v;
|
|
int type;
|
|
|
|
if (v == SEQ_START_TOKEN)
|
|
type = 0;
|
|
else
|
|
type = si->type + 1;
|
|
|
|
for (; type < nr_swapfiles; type++) {
|
|
smp_rmb(); /* read nr_swapfiles before swap_info[type] */
|
|
si = swap_info[type];
|
|
if (!(si->flags & SWP_USED) || !si->swap_map)
|
|
continue;
|
|
++*pos;
|
|
return si;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void swap_stop(struct seq_file *swap, void *v)
|
|
{
|
|
mutex_unlock(&swapon_mutex);
|
|
}
|
|
|
|
static int swap_show(struct seq_file *swap, void *v)
|
|
{
|
|
struct swap_info_struct *si = v;
|
|
struct file *file;
|
|
int len;
|
|
|
|
if (si == SEQ_START_TOKEN) {
|
|
seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
|
|
return 0;
|
|
}
|
|
|
|
file = si->swap_file;
|
|
len = seq_file_path(swap, file, " \t\n\\");
|
|
seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
|
|
len < 40 ? 40 - len : 1, " ",
|
|
S_ISBLK(file_inode(file)->i_mode) ?
|
|
"partition" : "file\t",
|
|
si->pages << (PAGE_SHIFT - 10),
|
|
si->inuse_pages << (PAGE_SHIFT - 10),
|
|
si->prio);
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations swaps_op = {
|
|
.start = swap_start,
|
|
.next = swap_next,
|
|
.stop = swap_stop,
|
|
.show = swap_show
|
|
};
|
|
|
|
static int swaps_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq;
|
|
int ret;
|
|
|
|
ret = seq_open(file, &swaps_op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
seq = file->private_data;
|
|
seq->poll_event = atomic_read(&proc_poll_event);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations proc_swaps_operations = {
|
|
.open = swaps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
.poll = swaps_poll,
|
|
};
|
|
|
|
static int __init procswaps_init(void)
|
|
{
|
|
proc_create("swaps", 0, NULL, &proc_swaps_operations);
|
|
return 0;
|
|
}
|
|
__initcall(procswaps_init);
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef MAX_SWAPFILES_CHECK
|
|
static int __init max_swapfiles_check(void)
|
|
{
|
|
MAX_SWAPFILES_CHECK();
|
|
return 0;
|
|
}
|
|
late_initcall(max_swapfiles_check);
|
|
#endif
|
|
|
|
static struct swap_info_struct *alloc_swap_info(void)
|
|
{
|
|
struct swap_info_struct *p;
|
|
unsigned int type;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock(&swap_lock);
|
|
for (type = 0; type < nr_swapfiles; type++) {
|
|
if (!(swap_info[type]->flags & SWP_USED))
|
|
break;
|
|
}
|
|
if (type >= MAX_SWAPFILES) {
|
|
spin_unlock(&swap_lock);
|
|
kfree(p);
|
|
return ERR_PTR(-EPERM);
|
|
}
|
|
if (type >= nr_swapfiles) {
|
|
p->type = type;
|
|
swap_info[type] = p;
|
|
/*
|
|
* Write swap_info[type] before nr_swapfiles, in case a
|
|
* racing procfs swap_start() or swap_next() is reading them.
|
|
* (We never shrink nr_swapfiles, we never free this entry.)
|
|
*/
|
|
smp_wmb();
|
|
nr_swapfiles++;
|
|
} else {
|
|
kfree(p);
|
|
p = swap_info[type];
|
|
/*
|
|
* Do not memset this entry: a racing procfs swap_next()
|
|
* would be relying on p->type to remain valid.
|
|
*/
|
|
}
|
|
INIT_LIST_HEAD(&p->first_swap_extent.list);
|
|
plist_node_init(&p->list, 0);
|
|
plist_node_init(&p->avail_list, 0);
|
|
p->flags = SWP_USED;
|
|
spin_unlock(&swap_lock);
|
|
spin_lock_init(&p->lock);
|
|
|
|
return p;
|
|
}
|
|
|
|
static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
|
|
{
|
|
int error;
|
|
|
|
if (S_ISBLK(inode->i_mode)) {
|
|
p->bdev = bdgrab(I_BDEV(inode));
|
|
error = blkdev_get(p->bdev,
|
|
FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
|
|
if (error < 0) {
|
|
p->bdev = NULL;
|
|
return error;
|
|
}
|
|
p->old_block_size = block_size(p->bdev);
|
|
error = set_blocksize(p->bdev, PAGE_SIZE);
|
|
if (error < 0)
|
|
return error;
|
|
p->flags |= SWP_BLKDEV;
|
|
} else if (S_ISREG(inode->i_mode)) {
|
|
p->bdev = inode->i_sb->s_bdev;
|
|
inode_lock(inode);
|
|
if (IS_SWAPFILE(inode))
|
|
return -EBUSY;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long read_swap_header(struct swap_info_struct *p,
|
|
union swap_header *swap_header,
|
|
struct inode *inode)
|
|
{
|
|
int i;
|
|
unsigned long maxpages;
|
|
unsigned long swapfilepages;
|
|
unsigned long last_page;
|
|
|
|
if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
|
|
pr_err("Unable to find swap-space signature\n");
|
|
return 0;
|
|
}
|
|
|
|
/* swap partition endianess hack... */
|
|
if (swab32(swap_header->info.version) == 1) {
|
|
swab32s(&swap_header->info.version);
|
|
swab32s(&swap_header->info.last_page);
|
|
swab32s(&swap_header->info.nr_badpages);
|
|
if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
|
|
return 0;
|
|
for (i = 0; i < swap_header->info.nr_badpages; i++)
|
|
swab32s(&swap_header->info.badpages[i]);
|
|
}
|
|
/* Check the swap header's sub-version */
|
|
if (swap_header->info.version != 1) {
|
|
pr_warn("Unable to handle swap header version %d\n",
|
|
swap_header->info.version);
|
|
return 0;
|
|
}
|
|
|
|
p->lowest_bit = 1;
|
|
p->cluster_next = 1;
|
|
p->cluster_nr = 0;
|
|
|
|
/*
|
|
* Find out how many pages are allowed for a single swap
|
|
* device. There are two limiting factors: 1) the number
|
|
* of bits for the swap offset in the swp_entry_t type, and
|
|
* 2) the number of bits in the swap pte as defined by the
|
|
* different architectures. In order to find the
|
|
* largest possible bit mask, a swap entry with swap type 0
|
|
* and swap offset ~0UL is created, encoded to a swap pte,
|
|
* decoded to a swp_entry_t again, and finally the swap
|
|
* offset is extracted. This will mask all the bits from
|
|
* the initial ~0UL mask that can't be encoded in either
|
|
* the swp_entry_t or the architecture definition of a
|
|
* swap pte.
|
|
*/
|
|
maxpages = swp_offset(pte_to_swp_entry(
|
|
swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
|
|
last_page = swap_header->info.last_page;
|
|
if (last_page > maxpages) {
|
|
pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
|
|
maxpages << (PAGE_SHIFT - 10),
|
|
last_page << (PAGE_SHIFT - 10));
|
|
}
|
|
if (maxpages > last_page) {
|
|
maxpages = last_page + 1;
|
|
/* p->max is an unsigned int: don't overflow it */
|
|
if ((unsigned int)maxpages == 0)
|
|
maxpages = UINT_MAX;
|
|
}
|
|
p->highest_bit = maxpages - 1;
|
|
|
|
if (!maxpages)
|
|
return 0;
|
|
swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
|
|
if (swapfilepages && maxpages > swapfilepages) {
|
|
pr_warn("Swap area shorter than signature indicates\n");
|
|
return 0;
|
|
}
|
|
if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
|
|
return 0;
|
|
if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
|
|
return 0;
|
|
|
|
return maxpages;
|
|
}
|
|
|
|
#define SWAP_CLUSTER_INFO_COLS \
|
|
DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
|
|
#define SWAP_CLUSTER_SPACE_COLS \
|
|
DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
|
|
#define SWAP_CLUSTER_COLS \
|
|
max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
|
|
|
|
static int setup_swap_map_and_extents(struct swap_info_struct *p,
|
|
union swap_header *swap_header,
|
|
unsigned char *swap_map,
|
|
struct swap_cluster_info *cluster_info,
|
|
unsigned long maxpages,
|
|
sector_t *span)
|
|
{
|
|
unsigned int j, k;
|
|
unsigned int nr_good_pages;
|
|
int nr_extents;
|
|
unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
|
|
unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
|
|
unsigned long i, idx;
|
|
|
|
nr_good_pages = maxpages - 1; /* omit header page */
|
|
|
|
cluster_list_init(&p->free_clusters);
|
|
cluster_list_init(&p->discard_clusters);
|
|
|
|
for (i = 0; i < swap_header->info.nr_badpages; i++) {
|
|
unsigned int page_nr = swap_header->info.badpages[i];
|
|
if (page_nr == 0 || page_nr > swap_header->info.last_page)
|
|
return -EINVAL;
|
|
if (page_nr < maxpages) {
|
|
swap_map[page_nr] = SWAP_MAP_BAD;
|
|
nr_good_pages--;
|
|
/*
|
|
* Haven't marked the cluster free yet, no list
|
|
* operation involved
|
|
*/
|
|
inc_cluster_info_page(p, cluster_info, page_nr);
|
|
}
|
|
}
|
|
|
|
/* Haven't marked the cluster free yet, no list operation involved */
|
|
for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
|
|
inc_cluster_info_page(p, cluster_info, i);
|
|
|
|
if (nr_good_pages) {
|
|
swap_map[0] = SWAP_MAP_BAD;
|
|
/*
|
|
* Not mark the cluster free yet, no list
|
|
* operation involved
|
|
*/
|
|
inc_cluster_info_page(p, cluster_info, 0);
|
|
p->max = maxpages;
|
|
p->pages = nr_good_pages;
|
|
nr_extents = setup_swap_extents(p, span);
|
|
if (nr_extents < 0)
|
|
return nr_extents;
|
|
nr_good_pages = p->pages;
|
|
}
|
|
if (!nr_good_pages) {
|
|
pr_warn("Empty swap-file\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cluster_info)
|
|
return nr_extents;
|
|
|
|
|
|
/*
|
|
* Reduce false cache line sharing between cluster_info and
|
|
* sharing same address space.
|
|
*/
|
|
for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
|
|
j = (k + col) % SWAP_CLUSTER_COLS;
|
|
for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
|
|
idx = i * SWAP_CLUSTER_COLS + j;
|
|
if (idx >= nr_clusters)
|
|
continue;
|
|
if (cluster_count(&cluster_info[idx]))
|
|
continue;
|
|
cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
|
|
cluster_list_add_tail(&p->free_clusters, cluster_info,
|
|
idx);
|
|
}
|
|
}
|
|
return nr_extents;
|
|
}
|
|
|
|
/*
|
|
* Helper to sys_swapon determining if a given swap
|
|
* backing device queue supports DISCARD operations.
|
|
*/
|
|
static bool swap_discardable(struct swap_info_struct *si)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(si->bdev);
|
|
|
|
if (!q || !blk_queue_discard(q))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
|
|
{
|
|
struct swap_info_struct *p;
|
|
struct filename *name;
|
|
struct file *swap_file = NULL;
|
|
struct address_space *mapping;
|
|
int prio;
|
|
int error;
|
|
union swap_header *swap_header;
|
|
int nr_extents;
|
|
sector_t span;
|
|
unsigned long maxpages;
|
|
unsigned char *swap_map = NULL;
|
|
struct swap_cluster_info *cluster_info = NULL;
|
|
unsigned long *frontswap_map = NULL;
|
|
struct page *page = NULL;
|
|
struct inode *inode = NULL;
|
|
|
|
if (swap_flags & ~SWAP_FLAGS_VALID)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
p = alloc_swap_info();
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
INIT_WORK(&p->discard_work, swap_discard_work);
|
|
|
|
name = getname(specialfile);
|
|
if (IS_ERR(name)) {
|
|
error = PTR_ERR(name);
|
|
name = NULL;
|
|
goto bad_swap;
|
|
}
|
|
swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
|
|
if (IS_ERR(swap_file)) {
|
|
error = PTR_ERR(swap_file);
|
|
swap_file = NULL;
|
|
goto bad_swap;
|
|
}
|
|
|
|
p->swap_file = swap_file;
|
|
mapping = swap_file->f_mapping;
|
|
inode = mapping->host;
|
|
|
|
/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
|
|
error = claim_swapfile(p, inode);
|
|
if (unlikely(error))
|
|
goto bad_swap;
|
|
|
|
/*
|
|
* Read the swap header.
|
|
*/
|
|
if (!mapping->a_ops->readpage) {
|
|
error = -EINVAL;
|
|
goto bad_swap;
|
|
}
|
|
page = read_mapping_page(mapping, 0, swap_file);
|
|
if (IS_ERR(page)) {
|
|
error = PTR_ERR(page);
|
|
goto bad_swap;
|
|
}
|
|
swap_header = kmap(page);
|
|
|
|
maxpages = read_swap_header(p, swap_header, inode);
|
|
if (unlikely(!maxpages)) {
|
|
error = -EINVAL;
|
|
goto bad_swap;
|
|
}
|
|
|
|
/* OK, set up the swap map and apply the bad block list */
|
|
swap_map = vzalloc(maxpages);
|
|
if (!swap_map) {
|
|
error = -ENOMEM;
|
|
goto bad_swap;
|
|
}
|
|
|
|
if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
|
|
p->flags |= SWP_STABLE_WRITES;
|
|
|
|
if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
|
|
int cpu;
|
|
unsigned long ci, nr_cluster;
|
|
|
|
p->flags |= SWP_SOLIDSTATE;
|
|
/*
|
|
* select a random position to start with to help wear leveling
|
|
* SSD
|
|
*/
|
|
p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
|
|
nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
|
|
|
|
cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
|
|
GFP_KERNEL);
|
|
if (!cluster_info) {
|
|
error = -ENOMEM;
|
|
goto bad_swap;
|
|
}
|
|
|
|
for (ci = 0; ci < nr_cluster; ci++)
|
|
spin_lock_init(&((cluster_info + ci)->lock));
|
|
|
|
p->percpu_cluster = alloc_percpu(struct percpu_cluster);
|
|
if (!p->percpu_cluster) {
|
|
error = -ENOMEM;
|
|
goto bad_swap;
|
|
}
|
|
for_each_possible_cpu(cpu) {
|
|
struct percpu_cluster *cluster;
|
|
cluster = per_cpu_ptr(p->percpu_cluster, cpu);
|
|
cluster_set_null(&cluster->index);
|
|
}
|
|
}
|
|
|
|
error = swap_cgroup_swapon(p->type, maxpages);
|
|
if (error)
|
|
goto bad_swap;
|
|
|
|
nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
|
|
cluster_info, maxpages, &span);
|
|
if (unlikely(nr_extents < 0)) {
|
|
error = nr_extents;
|
|
goto bad_swap;
|
|
}
|
|
/* frontswap enabled? set up bit-per-page map for frontswap */
|
|
if (IS_ENABLED(CONFIG_FRONTSWAP))
|
|
frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
|
|
GFP_KERNEL);
|
|
|
|
if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
|
|
/*
|
|
* When discard is enabled for swap with no particular
|
|
* policy flagged, we set all swap discard flags here in
|
|
* order to sustain backward compatibility with older
|
|
* swapon(8) releases.
|
|
*/
|
|
p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
|
|
SWP_PAGE_DISCARD);
|
|
|
|
/*
|
|
* By flagging sys_swapon, a sysadmin can tell us to
|
|
* either do single-time area discards only, or to just
|
|
* perform discards for released swap page-clusters.
|
|
* Now it's time to adjust the p->flags accordingly.
|
|
*/
|
|
if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
|
|
p->flags &= ~SWP_PAGE_DISCARD;
|
|
else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
|
|
p->flags &= ~SWP_AREA_DISCARD;
|
|
|
|
/* issue a swapon-time discard if it's still required */
|
|
if (p->flags & SWP_AREA_DISCARD) {
|
|
int err = discard_swap(p);
|
|
if (unlikely(err))
|
|
pr_err("swapon: discard_swap(%p): %d\n",
|
|
p, err);
|
|
}
|
|
}
|
|
|
|
error = init_swap_address_space(p->type, maxpages);
|
|
if (error)
|
|
goto bad_swap;
|
|
|
|
mutex_lock(&swapon_mutex);
|
|
prio = -1;
|
|
if (swap_flags & SWAP_FLAG_PREFER)
|
|
prio =
|
|
(swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
|
|
enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
|
|
|
|
pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
|
|
p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
|
|
nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
|
|
(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
|
|
(p->flags & SWP_DISCARDABLE) ? "D" : "",
|
|
(p->flags & SWP_AREA_DISCARD) ? "s" : "",
|
|
(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
|
|
(frontswap_map) ? "FS" : "");
|
|
|
|
mutex_unlock(&swapon_mutex);
|
|
atomic_inc(&proc_poll_event);
|
|
wake_up_interruptible(&proc_poll_wait);
|
|
|
|
if (S_ISREG(inode->i_mode))
|
|
inode->i_flags |= S_SWAPFILE;
|
|
error = 0;
|
|
goto out;
|
|
bad_swap:
|
|
free_percpu(p->percpu_cluster);
|
|
p->percpu_cluster = NULL;
|
|
if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
|
|
set_blocksize(p->bdev, p->old_block_size);
|
|
blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
|
|
}
|
|
destroy_swap_extents(p);
|
|
swap_cgroup_swapoff(p->type);
|
|
spin_lock(&swap_lock);
|
|
p->swap_file = NULL;
|
|
p->flags = 0;
|
|
spin_unlock(&swap_lock);
|
|
vfree(swap_map);
|
|
vfree(cluster_info);
|
|
if (swap_file) {
|
|
if (inode && S_ISREG(inode->i_mode)) {
|
|
inode_unlock(inode);
|
|
inode = NULL;
|
|
}
|
|
filp_close(swap_file, NULL);
|
|
}
|
|
out:
|
|
if (page && !IS_ERR(page)) {
|
|
kunmap(page);
|
|
put_page(page);
|
|
}
|
|
if (name)
|
|
putname(name);
|
|
if (inode && S_ISREG(inode->i_mode))
|
|
inode_unlock(inode);
|
|
if (!error)
|
|
enable_swap_slots_cache();
|
|
return error;
|
|
}
|
|
|
|
void si_swapinfo(struct sysinfo *val)
|
|
{
|
|
unsigned int type;
|
|
unsigned long nr_to_be_unused = 0;
|
|
|
|
spin_lock(&swap_lock);
|
|
for (type = 0; type < nr_swapfiles; type++) {
|
|
struct swap_info_struct *si = swap_info[type];
|
|
|
|
if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
|
|
nr_to_be_unused += si->inuse_pages;
|
|
}
|
|
val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
|
|
val->totalswap = total_swap_pages + nr_to_be_unused;
|
|
spin_unlock(&swap_lock);
|
|
}
|
|
|
|
/*
|
|
* Verify that a swap entry is valid and increment its swap map count.
|
|
*
|
|
* Returns error code in following case.
|
|
* - success -> 0
|
|
* - swp_entry is invalid -> EINVAL
|
|
* - swp_entry is migration entry -> EINVAL
|
|
* - swap-cache reference is requested but there is already one. -> EEXIST
|
|
* - swap-cache reference is requested but the entry is not used. -> ENOENT
|
|
* - swap-mapped reference requested but needs continued swap count. -> ENOMEM
|
|
*/
|
|
static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
|
|
{
|
|
struct swap_info_struct *p;
|
|
struct swap_cluster_info *ci;
|
|
unsigned long offset, type;
|
|
unsigned char count;
|
|
unsigned char has_cache;
|
|
int err = -EINVAL;
|
|
|
|
if (non_swap_entry(entry))
|
|
goto out;
|
|
|
|
type = swp_type(entry);
|
|
if (type >= nr_swapfiles)
|
|
goto bad_file;
|
|
p = swap_info[type];
|
|
offset = swp_offset(entry);
|
|
if (unlikely(offset >= p->max))
|
|
goto out;
|
|
|
|
ci = lock_cluster_or_swap_info(p, offset);
|
|
|
|
count = p->swap_map[offset];
|
|
|
|
/*
|
|
* swapin_readahead() doesn't check if a swap entry is valid, so the
|
|
* swap entry could be SWAP_MAP_BAD. Check here with lock held.
|
|
*/
|
|
if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
|
|
err = -ENOENT;
|
|
goto unlock_out;
|
|
}
|
|
|
|
has_cache = count & SWAP_HAS_CACHE;
|
|
count &= ~SWAP_HAS_CACHE;
|
|
err = 0;
|
|
|
|
if (usage == SWAP_HAS_CACHE) {
|
|
|
|
/* set SWAP_HAS_CACHE if there is no cache and entry is used */
|
|
if (!has_cache && count)
|
|
has_cache = SWAP_HAS_CACHE;
|
|
else if (has_cache) /* someone else added cache */
|
|
err = -EEXIST;
|
|
else /* no users remaining */
|
|
err = -ENOENT;
|
|
|
|
} else if (count || has_cache) {
|
|
|
|
if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
|
|
count += usage;
|
|
else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
|
|
err = -EINVAL;
|
|
else if (swap_count_continued(p, offset, count))
|
|
count = COUNT_CONTINUED;
|
|
else
|
|
err = -ENOMEM;
|
|
} else
|
|
err = -ENOENT; /* unused swap entry */
|
|
|
|
p->swap_map[offset] = count | has_cache;
|
|
|
|
unlock_out:
|
|
unlock_cluster_or_swap_info(p, ci);
|
|
out:
|
|
return err;
|
|
|
|
bad_file:
|
|
pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Help swapoff by noting that swap entry belongs to shmem/tmpfs
|
|
* (in which case its reference count is never incremented).
|
|
*/
|
|
void swap_shmem_alloc(swp_entry_t entry)
|
|
{
|
|
__swap_duplicate(entry, SWAP_MAP_SHMEM);
|
|
}
|
|
|
|
/*
|
|
* Increase reference count of swap entry by 1.
|
|
* Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
|
|
* but could not be atomically allocated. Returns 0, just as if it succeeded,
|
|
* if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
|
|
* might occur if a page table entry has got corrupted.
|
|
*/
|
|
int swap_duplicate(swp_entry_t entry)
|
|
{
|
|
int err = 0;
|
|
|
|
while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
|
|
err = add_swap_count_continuation(entry, GFP_ATOMIC);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* @entry: swap entry for which we allocate swap cache.
|
|
*
|
|
* Called when allocating swap cache for existing swap entry,
|
|
* This can return error codes. Returns 0 at success.
|
|
* -EBUSY means there is a swap cache.
|
|
* Note: return code is different from swap_duplicate().
|
|
*/
|
|
int swapcache_prepare(swp_entry_t entry)
|
|
{
|
|
return __swap_duplicate(entry, SWAP_HAS_CACHE);
|
|
}
|
|
|
|
struct swap_info_struct *page_swap_info(struct page *page)
|
|
{
|
|
swp_entry_t swap = { .val = page_private(page) };
|
|
return swap_info[swp_type(swap)];
|
|
}
|
|
|
|
/*
|
|
* out-of-line __page_file_ methods to avoid include hell.
|
|
*/
|
|
struct address_space *__page_file_mapping(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
|
|
return page_swap_info(page)->swap_file->f_mapping;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__page_file_mapping);
|
|
|
|
pgoff_t __page_file_index(struct page *page)
|
|
{
|
|
swp_entry_t swap = { .val = page_private(page) };
|
|
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
|
|
return swp_offset(swap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__page_file_index);
|
|
|
|
/*
|
|
* add_swap_count_continuation - called when a swap count is duplicated
|
|
* beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
|
|
* page of the original vmalloc'ed swap_map, to hold the continuation count
|
|
* (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
|
|
* again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
|
|
*
|
|
* These continuation pages are seldom referenced: the common paths all work
|
|
* on the original swap_map, only referring to a continuation page when the
|
|
* low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
|
|
*
|
|
* add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
|
|
* page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
|
|
* can be called after dropping locks.
|
|
*/
|
|
int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
|
|
{
|
|
struct swap_info_struct *si;
|
|
struct swap_cluster_info *ci;
|
|
struct page *head;
|
|
struct page *page;
|
|
struct page *list_page;
|
|
pgoff_t offset;
|
|
unsigned char count;
|
|
|
|
/*
|
|
* When debugging, it's easier to use __GFP_ZERO here; but it's better
|
|
* for latency not to zero a page while GFP_ATOMIC and holding locks.
|
|
*/
|
|
page = alloc_page(gfp_mask | __GFP_HIGHMEM);
|
|
|
|
si = swap_info_get(entry);
|
|
if (!si) {
|
|
/*
|
|
* An acceptable race has occurred since the failing
|
|
* __swap_duplicate(): the swap entry has been freed,
|
|
* perhaps even the whole swap_map cleared for swapoff.
|
|
*/
|
|
goto outer;
|
|
}
|
|
|
|
offset = swp_offset(entry);
|
|
|
|
ci = lock_cluster(si, offset);
|
|
|
|
count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
|
|
|
|
if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
|
|
/*
|
|
* The higher the swap count, the more likely it is that tasks
|
|
* will race to add swap count continuation: we need to avoid
|
|
* over-provisioning.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
if (!page) {
|
|
unlock_cluster(ci);
|
|
spin_unlock(&si->lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* We are fortunate that although vmalloc_to_page uses pte_offset_map,
|
|
* no architecture is using highmem pages for kernel page tables: so it
|
|
* will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
|
|
*/
|
|
head = vmalloc_to_page(si->swap_map + offset);
|
|
offset &= ~PAGE_MASK;
|
|
|
|
/*
|
|
* Page allocation does not initialize the page's lru field,
|
|
* but it does always reset its private field.
|
|
*/
|
|
if (!page_private(head)) {
|
|
BUG_ON(count & COUNT_CONTINUED);
|
|
INIT_LIST_HEAD(&head->lru);
|
|
set_page_private(head, SWP_CONTINUED);
|
|
si->flags |= SWP_CONTINUED;
|
|
}
|
|
|
|
list_for_each_entry(list_page, &head->lru, lru) {
|
|
unsigned char *map;
|
|
|
|
/*
|
|
* If the previous map said no continuation, but we've found
|
|
* a continuation page, free our allocation and use this one.
|
|
*/
|
|
if (!(count & COUNT_CONTINUED))
|
|
goto out;
|
|
|
|
map = kmap_atomic(list_page) + offset;
|
|
count = *map;
|
|
kunmap_atomic(map);
|
|
|
|
/*
|
|
* If this continuation count now has some space in it,
|
|
* free our allocation and use this one.
|
|
*/
|
|
if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
|
|
goto out;
|
|
}
|
|
|
|
list_add_tail(&page->lru, &head->lru);
|
|
page = NULL; /* now it's attached, don't free it */
|
|
out:
|
|
unlock_cluster(ci);
|
|
spin_unlock(&si->lock);
|
|
outer:
|
|
if (page)
|
|
__free_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* swap_count_continued - when the original swap_map count is incremented
|
|
* from SWAP_MAP_MAX, check if there is already a continuation page to carry
|
|
* into, carry if so, or else fail until a new continuation page is allocated;
|
|
* when the original swap_map count is decremented from 0 with continuation,
|
|
* borrow from the continuation and report whether it still holds more.
|
|
* Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
|
|
* lock.
|
|
*/
|
|
static bool swap_count_continued(struct swap_info_struct *si,
|
|
pgoff_t offset, unsigned char count)
|
|
{
|
|
struct page *head;
|
|
struct page *page;
|
|
unsigned char *map;
|
|
|
|
head = vmalloc_to_page(si->swap_map + offset);
|
|
if (page_private(head) != SWP_CONTINUED) {
|
|
BUG_ON(count & COUNT_CONTINUED);
|
|
return false; /* need to add count continuation */
|
|
}
|
|
|
|
offset &= ~PAGE_MASK;
|
|
page = list_entry(head->lru.next, struct page, lru);
|
|
map = kmap_atomic(page) + offset;
|
|
|
|
if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
|
|
goto init_map; /* jump over SWAP_CONT_MAX checks */
|
|
|
|
if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
|
|
/*
|
|
* Think of how you add 1 to 999
|
|
*/
|
|
while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.next, struct page, lru);
|
|
BUG_ON(page == head);
|
|
map = kmap_atomic(page) + offset;
|
|
}
|
|
if (*map == SWAP_CONT_MAX) {
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.next, struct page, lru);
|
|
if (page == head)
|
|
return false; /* add count continuation */
|
|
map = kmap_atomic(page) + offset;
|
|
init_map: *map = 0; /* we didn't zero the page */
|
|
}
|
|
*map += 1;
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.prev, struct page, lru);
|
|
while (page != head) {
|
|
map = kmap_atomic(page) + offset;
|
|
*map = COUNT_CONTINUED;
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.prev, struct page, lru);
|
|
}
|
|
return true; /* incremented */
|
|
|
|
} else { /* decrementing */
|
|
/*
|
|
* Think of how you subtract 1 from 1000
|
|
*/
|
|
BUG_ON(count != COUNT_CONTINUED);
|
|
while (*map == COUNT_CONTINUED) {
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.next, struct page, lru);
|
|
BUG_ON(page == head);
|
|
map = kmap_atomic(page) + offset;
|
|
}
|
|
BUG_ON(*map == 0);
|
|
*map -= 1;
|
|
if (*map == 0)
|
|
count = 0;
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.prev, struct page, lru);
|
|
while (page != head) {
|
|
map = kmap_atomic(page) + offset;
|
|
*map = SWAP_CONT_MAX | count;
|
|
count = COUNT_CONTINUED;
|
|
kunmap_atomic(map);
|
|
page = list_entry(page->lru.prev, struct page, lru);
|
|
}
|
|
return count == COUNT_CONTINUED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free_swap_count_continuations - swapoff free all the continuation pages
|
|
* appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
|
|
*/
|
|
static void free_swap_count_continuations(struct swap_info_struct *si)
|
|
{
|
|
pgoff_t offset;
|
|
|
|
for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
|
|
struct page *head;
|
|
head = vmalloc_to_page(si->swap_map + offset);
|
|
if (page_private(head)) {
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, &head->lru, lru) {
|
|
list_del(&page->lru);
|
|
__free_page(page);
|
|
}
|
|
}
|
|
}
|
|
}
|