linux/kernel/dma/direct.c
Christoph Hellwig efa70f2fdc dma-mapping: add a new dma_alloc_pages API
This API is the equivalent of alloc_pages, except that the returned memory
is guaranteed to be DMA addressable by the passed in device.  The
implementation will also be used to provide a more sensible replacement
for DMA_ATTR_NON_CONSISTENT flag.

Additionally dma_alloc_noncoherent is switched over to use dma_alloc_pages
as its backend.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> (MIPS part)
2020-09-25 06:20:47 +02:00

561 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <linux/dma-contiguous.h>
#include <linux/pfn.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
unsigned int zone_dma_bits __ro_after_init = 24;
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return phys_to_dma_unencrypted(dev, phys);
return phys_to_dma(dev, phys);
}
static inline struct page *dma_direct_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
u64 *phys_limit)
{
u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
*phys_limit = dma_to_phys(dev, dma_limit);
if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
if (dma_addr == DMA_MAPPING_ERROR)
return false;
return dma_addr + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
/*
* Decrypting memory is allowed to block, so if this device requires
* unencrypted memory it must come from atomic pools.
*/
static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
return false;
if (gfpflags_allow_blocking(gfp))
return false;
if (force_dma_unencrypted(dev))
return true;
if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
return false;
if (dma_alloc_need_uncached(dev, attrs))
return true;
return false;
}
static inline bool dma_should_free_from_pool(struct device *dev,
unsigned long attrs)
{
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
return true;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev))
return false;
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
return true;
return false;
}
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp_t gfp)
{
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_limit;
WARN_ON_ONCE(!PAGE_ALIGNED(size));
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_limit);
page = dma_alloc_contiguous(dev, size, gfp);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
struct page *page;
void *ret;
int err;
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs))
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
size = PAGE_ALIGN(size);
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
u64 phys_mask;
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask);
page = dma_alloc_from_pool(dev, size, &ret, gfp,
dma_coherent_ok);
if (!page)
return NULL;
goto done;
}
/* we always manually zero the memory once we are done */
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
if (!page)
return NULL;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
ret = page;
goto done;
}
if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs)) ||
(IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size,
dma_pgprot(dev, PAGE_KERNEL, attrs),
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
if (force_dma_unencrypted(dev)) {
err = set_memory_decrypted((unsigned long)ret,
1 << get_order(size));
if (err)
goto out_free_pages;
}
memset(ret, 0, size);
goto done;
}
if (PageHighMem(page)) {
/*
* Depending on the cma= arguments and per-arch setup
* dma_alloc_contiguous could return highmem pages.
* Without remapping there is no way to return them here,
* so log an error and fail.
*/
dev_info(dev, "Rejecting highmem page from CMA.\n");
goto out_free_pages;
}
ret = page_address(page);
if (force_dma_unencrypted(dev)) {
err = set_memory_decrypted((unsigned long)ret,
1 << get_order(size));
if (err)
goto out_free_pages;
}
memset(ret, 0, size);
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
dma_alloc_need_uncached(dev, attrs)) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
done:
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
if (force_dma_unencrypted(dev)) {
err = set_memory_encrypted((unsigned long)page_address(page),
1 << get_order(size));
/* If memory cannot be re-encrypted, it must be leaked */
if (err)
return NULL;
}
out_free_pages:
dma_free_contiguous(dev, page, size);
return NULL;
}
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs)) {
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
return;
}
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (dma_should_free_from_pool(dev, attrs) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
if (force_dma_unencrypted(dev))
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
vunmap(cpu_addr);
else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
arch_dma_clear_uncached(cpu_addr, size);
dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
}
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
struct page *page;
void *ret;
if (dma_should_alloc_from_pool(dev, gfp, 0)) {
page = dma_alloc_from_pool(dev, size, &ret, gfp,
dma_coherent_ok);
if (!page)
return NULL;
goto done;
}
page = __dma_direct_alloc_pages(dev, size, gfp);
if (!page)
return NULL;
ret = page_address(page);
if (force_dma_unencrypted(dev)) {
if (set_memory_decrypted((unsigned long)ret,
1 << get_order(size)))
goto out_free_pages;
}
memset(ret, 0, size);
done:
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
out_free_pages:
dma_free_contiguous(dev, page, size);
return NULL;
}
void dma_direct_free_pages(struct device *dev, size_t size,
struct page *page, dma_addr_t dma_addr,
enum dma_data_direction dir)
{
unsigned int page_order = get_order(size);
void *vaddr = page_address(page);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (dma_should_free_from_pool(dev, 0) &&
dma_free_from_pool(dev, vaddr, size))
return;
if (force_dma_unencrypted(dev))
set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
dma_free_contiguous(dev, page, size);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length,
dir, SYNC_FOR_DEVICE);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
dir);
}
}
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
SYNC_FOR_CPU);
if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all();
}
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
#endif
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return 0;
}
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
dev_err_once(dev,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
WARN_ON_ONCE(1);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page = dma_direct_to_page(dev, dma_addr);
int ret;
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
bool dma_direct_can_mmap(struct device *dev)
{
return dev_is_dma_coherent(dev) ||
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
}
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*/
if (mask >= DMA_BIT_MASK(32))
return 1;
/*
* This check needs to be against the actual bit mask value, so use
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active() &&
(dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
}
/**
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
* @dev: device pointer; needed to "own" the alloced memory.
* @cpu_start: beginning of memory region covered by this offset.
* @dma_start: beginning of DMA/PCI region covered by this offset.
* @size: size of the region.
*
* This is for the simple case of a uniform offset which cannot
* be discovered by "dma-ranges".
*
* It returns -ENOMEM if out of memory, -EINVAL if a map
* already exists, 0 otherwise.
*
* Note: any call to this from a driver is a bug. The mapping needs
* to be described by the device tree or other firmware interfaces.
*/
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
dma_addr_t dma_start, u64 size)
{
struct bus_dma_region *map;
u64 offset = (u64)cpu_start - (u64)dma_start;
if (dev->dma_range_map) {
dev_err(dev, "attempt to add DMA range to existing map\n");
return -EINVAL;
}
if (!offset)
return 0;
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
map[0].cpu_start = cpu_start;
map[0].dma_start = dma_start;
map[0].offset = offset;
map[0].size = size;
dev->dma_range_map = map;
return 0;
}
EXPORT_SYMBOL_GPL(dma_direct_set_offset);