5993b75d0b
If create_qp does not fully succeed it is possible for qp cleanup code to attempt to drain the send or recv work queues before the queues have been created causing a seg fault. This patch checks to see if the queues exist before attempting to drain them. Link: https://lore.kernel.org/r/20230620135519.9365-3-rpearsonhpe@gmail.com Reported-by: syzbot+2da1965168e7dbcba136@syzkaller.appspotmail.com Closes: https://lore.kernel.org/linux-rdma/00000000000012d89205fe7cfe00@google.com/raw Fixes: 49dc9c1f0c7e ("RDMA/rxe: Cleanup reset state handling in rxe_resp.c") Fixes: fbdeb828a21f ("RDMA/rxe: Cleanup error state handling in rxe_comp.c") Signed-off-by: Bob Pearson <rpearsonhpe@gmail.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
1692 lines
40 KiB
C
1692 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
|
|
/*
|
|
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
|
|
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include "rxe.h"
|
|
#include "rxe_loc.h"
|
|
#include "rxe_queue.h"
|
|
|
|
static char *resp_state_name[] = {
|
|
[RESPST_NONE] = "NONE",
|
|
[RESPST_GET_REQ] = "GET_REQ",
|
|
[RESPST_CHK_PSN] = "CHK_PSN",
|
|
[RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ",
|
|
[RESPST_CHK_OP_VALID] = "CHK_OP_VALID",
|
|
[RESPST_CHK_RESOURCE] = "CHK_RESOURCE",
|
|
[RESPST_CHK_LENGTH] = "CHK_LENGTH",
|
|
[RESPST_CHK_RKEY] = "CHK_RKEY",
|
|
[RESPST_EXECUTE] = "EXECUTE",
|
|
[RESPST_READ_REPLY] = "READ_REPLY",
|
|
[RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY",
|
|
[RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY",
|
|
[RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH",
|
|
[RESPST_COMPLETE] = "COMPLETE",
|
|
[RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE",
|
|
[RESPST_CLEANUP] = "CLEANUP",
|
|
[RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST",
|
|
[RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE",
|
|
[RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE",
|
|
[RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC",
|
|
[RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ",
|
|
[RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST",
|
|
[RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C",
|
|
[RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E",
|
|
[RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ",
|
|
[RESPST_ERR_RNR] = "ERR_RNR",
|
|
[RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION",
|
|
[RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION",
|
|
[RESPST_ERR_LENGTH] = "ERR_LENGTH",
|
|
[RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW",
|
|
[RESPST_ERROR] = "ERROR",
|
|
[RESPST_DONE] = "DONE",
|
|
[RESPST_EXIT] = "EXIT",
|
|
};
|
|
|
|
/* rxe_recv calls here to add a request packet to the input queue */
|
|
void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb)
|
|
{
|
|
int must_sched;
|
|
struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
|
|
|
|
skb_queue_tail(&qp->req_pkts, skb);
|
|
|
|
must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) ||
|
|
(skb_queue_len(&qp->req_pkts) > 1);
|
|
|
|
if (must_sched)
|
|
rxe_sched_task(&qp->resp.task);
|
|
else
|
|
rxe_run_task(&qp->resp.task);
|
|
}
|
|
|
|
static inline enum resp_states get_req(struct rxe_qp *qp,
|
|
struct rxe_pkt_info **pkt_p)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = skb_peek(&qp->req_pkts);
|
|
if (!skb)
|
|
return RESPST_EXIT;
|
|
|
|
*pkt_p = SKB_TO_PKT(skb);
|
|
|
|
return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
|
|
}
|
|
|
|
static enum resp_states check_psn(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
int diff = psn_compare(pkt->psn, qp->resp.psn);
|
|
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
|
|
|
|
switch (qp_type(qp)) {
|
|
case IB_QPT_RC:
|
|
if (diff > 0) {
|
|
if (qp->resp.sent_psn_nak)
|
|
return RESPST_CLEANUP;
|
|
|
|
qp->resp.sent_psn_nak = 1;
|
|
rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ);
|
|
return RESPST_ERR_PSN_OUT_OF_SEQ;
|
|
|
|
} else if (diff < 0) {
|
|
rxe_counter_inc(rxe, RXE_CNT_DUP_REQ);
|
|
return RESPST_DUPLICATE_REQUEST;
|
|
}
|
|
|
|
if (qp->resp.sent_psn_nak)
|
|
qp->resp.sent_psn_nak = 0;
|
|
|
|
break;
|
|
|
|
case IB_QPT_UC:
|
|
if (qp->resp.drop_msg || diff != 0) {
|
|
if (pkt->mask & RXE_START_MASK) {
|
|
qp->resp.drop_msg = 0;
|
|
return RESPST_CHK_OP_SEQ;
|
|
}
|
|
|
|
qp->resp.drop_msg = 1;
|
|
return RESPST_CLEANUP;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return RESPST_CHK_OP_SEQ;
|
|
}
|
|
|
|
static enum resp_states check_op_seq(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
switch (qp_type(qp)) {
|
|
case IB_QPT_RC:
|
|
switch (qp->resp.opcode) {
|
|
case IB_OPCODE_RC_SEND_FIRST:
|
|
case IB_OPCODE_RC_SEND_MIDDLE:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_RC_SEND_MIDDLE:
|
|
case IB_OPCODE_RC_SEND_LAST:
|
|
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
|
|
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
|
|
return RESPST_CHK_OP_VALID;
|
|
default:
|
|
return RESPST_ERR_MISSING_OPCODE_LAST_C;
|
|
}
|
|
|
|
case IB_OPCODE_RC_RDMA_WRITE_FIRST:
|
|
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
|
|
case IB_OPCODE_RC_RDMA_WRITE_LAST:
|
|
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
|
|
return RESPST_CHK_OP_VALID;
|
|
default:
|
|
return RESPST_ERR_MISSING_OPCODE_LAST_C;
|
|
}
|
|
|
|
default:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_RC_SEND_MIDDLE:
|
|
case IB_OPCODE_RC_SEND_LAST:
|
|
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
|
|
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
|
|
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
|
|
case IB_OPCODE_RC_RDMA_WRITE_LAST:
|
|
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
|
|
return RESPST_ERR_MISSING_OPCODE_FIRST;
|
|
default:
|
|
return RESPST_CHK_OP_VALID;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IB_QPT_UC:
|
|
switch (qp->resp.opcode) {
|
|
case IB_OPCODE_UC_SEND_FIRST:
|
|
case IB_OPCODE_UC_SEND_MIDDLE:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_UC_SEND_MIDDLE:
|
|
case IB_OPCODE_UC_SEND_LAST:
|
|
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
|
|
return RESPST_CHK_OP_VALID;
|
|
default:
|
|
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
|
|
}
|
|
|
|
case IB_OPCODE_UC_RDMA_WRITE_FIRST:
|
|
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
|
|
case IB_OPCODE_UC_RDMA_WRITE_LAST:
|
|
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
|
|
return RESPST_CHK_OP_VALID;
|
|
default:
|
|
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
|
|
}
|
|
|
|
default:
|
|
switch (pkt->opcode) {
|
|
case IB_OPCODE_UC_SEND_MIDDLE:
|
|
case IB_OPCODE_UC_SEND_LAST:
|
|
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
|
|
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
|
|
case IB_OPCODE_UC_RDMA_WRITE_LAST:
|
|
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
|
|
qp->resp.drop_msg = 1;
|
|
return RESPST_CLEANUP;
|
|
default:
|
|
return RESPST_CHK_OP_VALID;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return RESPST_CHK_OP_VALID;
|
|
}
|
|
}
|
|
|
|
static bool check_qp_attr_access(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
if (((pkt->mask & RXE_READ_MASK) &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
|
|
((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
|
|
((pkt->mask & RXE_ATOMIC_MASK) &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
|
|
return false;
|
|
|
|
if (pkt->mask & RXE_FLUSH_MASK) {
|
|
u32 flush_type = feth_plt(pkt);
|
|
|
|
if ((flush_type & IB_FLUSH_GLOBAL &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) ||
|
|
(flush_type & IB_FLUSH_PERSISTENT &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static enum resp_states check_op_valid(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
switch (qp_type(qp)) {
|
|
case IB_QPT_RC:
|
|
if (!check_qp_attr_access(qp, pkt))
|
|
return RESPST_ERR_UNSUPPORTED_OPCODE;
|
|
|
|
break;
|
|
|
|
case IB_QPT_UC:
|
|
if ((pkt->mask & RXE_WRITE_MASK) &&
|
|
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
|
|
qp->resp.drop_msg = 1;
|
|
return RESPST_CLEANUP;
|
|
}
|
|
|
|
break;
|
|
|
|
case IB_QPT_UD:
|
|
case IB_QPT_GSI:
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
return RESPST_CHK_RESOURCE;
|
|
}
|
|
|
|
static enum resp_states get_srq_wqe(struct rxe_qp *qp)
|
|
{
|
|
struct rxe_srq *srq = qp->srq;
|
|
struct rxe_queue *q = srq->rq.queue;
|
|
struct rxe_recv_wqe *wqe;
|
|
struct ib_event ev;
|
|
unsigned int count;
|
|
size_t size;
|
|
unsigned long flags;
|
|
|
|
if (srq->error)
|
|
return RESPST_ERR_RNR;
|
|
|
|
spin_lock_irqsave(&srq->rq.consumer_lock, flags);
|
|
|
|
wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT);
|
|
if (!wqe) {
|
|
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
|
|
return RESPST_ERR_RNR;
|
|
}
|
|
|
|
/* don't trust user space data */
|
|
if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) {
|
|
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
|
|
rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n");
|
|
return RESPST_ERR_MALFORMED_WQE;
|
|
}
|
|
size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge);
|
|
memcpy(&qp->resp.srq_wqe, wqe, size);
|
|
|
|
qp->resp.wqe = &qp->resp.srq_wqe.wqe;
|
|
queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT);
|
|
count = queue_count(q, QUEUE_TYPE_FROM_CLIENT);
|
|
|
|
if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) {
|
|
srq->limit = 0;
|
|
goto event;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
|
|
return RESPST_CHK_LENGTH;
|
|
|
|
event:
|
|
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.srq = qp->ibqp.srq;
|
|
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
|
|
srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
|
|
return RESPST_CHK_LENGTH;
|
|
}
|
|
|
|
static enum resp_states check_resource(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct rxe_srq *srq = qp->srq;
|
|
|
|
if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) {
|
|
/* it is the requesters job to not send
|
|
* too many read/atomic ops, we just
|
|
* recycle the responder resource queue
|
|
*/
|
|
if (likely(qp->attr.max_dest_rd_atomic > 0))
|
|
return RESPST_CHK_LENGTH;
|
|
else
|
|
return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
|
|
}
|
|
|
|
if (pkt->mask & RXE_RWR_MASK) {
|
|
if (srq)
|
|
return get_srq_wqe(qp);
|
|
|
|
qp->resp.wqe = queue_head(qp->rq.queue,
|
|
QUEUE_TYPE_FROM_CLIENT);
|
|
return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
|
|
}
|
|
|
|
return RESPST_CHK_LENGTH;
|
|
}
|
|
|
|
static enum resp_states rxe_resp_check_length(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
/*
|
|
* See IBA C9-92
|
|
* For UD QPs we only check if the packet will fit in the
|
|
* receive buffer later. For rmda operations additional
|
|
* length checks are performed in check_rkey.
|
|
*/
|
|
if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) ||
|
|
(qp_type(qp) == IB_QPT_UC))) {
|
|
unsigned int mtu = qp->mtu;
|
|
unsigned int payload = payload_size(pkt);
|
|
|
|
if ((pkt->mask & RXE_START_MASK) &&
|
|
(pkt->mask & RXE_END_MASK)) {
|
|
if (unlikely(payload > mtu)) {
|
|
rxe_dbg_qp(qp, "only packet too long");
|
|
return RESPST_ERR_LENGTH;
|
|
}
|
|
} else if ((pkt->mask & RXE_START_MASK) ||
|
|
(pkt->mask & RXE_MIDDLE_MASK)) {
|
|
if (unlikely(payload != mtu)) {
|
|
rxe_dbg_qp(qp, "first or middle packet not mtu");
|
|
return RESPST_ERR_LENGTH;
|
|
}
|
|
} else if (pkt->mask & RXE_END_MASK) {
|
|
if (unlikely((payload == 0) || (payload > mtu))) {
|
|
rxe_dbg_qp(qp, "last packet zero or too long");
|
|
return RESPST_ERR_LENGTH;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See IBA C9-94 */
|
|
if (pkt->mask & RXE_RETH_MASK) {
|
|
if (reth_len(pkt) > (1U << 31)) {
|
|
rxe_dbg_qp(qp, "dma length too long");
|
|
return RESPST_ERR_LENGTH;
|
|
}
|
|
}
|
|
|
|
if (pkt->mask & RXE_RDMA_OP_MASK)
|
|
return RESPST_CHK_RKEY;
|
|
else
|
|
return RESPST_EXECUTE;
|
|
}
|
|
|
|
/* if the reth length field is zero we can assume nothing
|
|
* about the rkey value and should not validate or use it.
|
|
* Instead set qp->resp.rkey to 0 which is an invalid rkey
|
|
* value since the minimum index part is 1.
|
|
*/
|
|
static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
|
|
{
|
|
unsigned int length = reth_len(pkt);
|
|
|
|
qp->resp.va = reth_va(pkt);
|
|
qp->resp.offset = 0;
|
|
qp->resp.resid = length;
|
|
qp->resp.length = length;
|
|
if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0)
|
|
qp->resp.rkey = 0;
|
|
else
|
|
qp->resp.rkey = reth_rkey(pkt);
|
|
}
|
|
|
|
static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
|
|
{
|
|
qp->resp.va = atmeth_va(pkt);
|
|
qp->resp.offset = 0;
|
|
qp->resp.rkey = atmeth_rkey(pkt);
|
|
qp->resp.resid = sizeof(u64);
|
|
}
|
|
|
|
/* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL
|
|
* if an invalid rkey is received or the rdma length is zero. For middle
|
|
* or last packets use the stored value of mr.
|
|
*/
|
|
static enum resp_states check_rkey(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct rxe_mr *mr = NULL;
|
|
struct rxe_mw *mw = NULL;
|
|
u64 va;
|
|
u32 rkey;
|
|
u32 resid;
|
|
u32 pktlen;
|
|
int mtu = qp->mtu;
|
|
enum resp_states state;
|
|
int access = 0;
|
|
|
|
/* parse RETH or ATMETH header for first/only packets
|
|
* for va, length, rkey, etc. or use current value for
|
|
* middle/last packets.
|
|
*/
|
|
if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
|
|
if (pkt->mask & RXE_RETH_MASK)
|
|
qp_resp_from_reth(qp, pkt);
|
|
|
|
access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
|
|
: IB_ACCESS_REMOTE_WRITE;
|
|
} else if (pkt->mask & RXE_FLUSH_MASK) {
|
|
u32 flush_type = feth_plt(pkt);
|
|
|
|
if (pkt->mask & RXE_RETH_MASK)
|
|
qp_resp_from_reth(qp, pkt);
|
|
|
|
if (flush_type & IB_FLUSH_GLOBAL)
|
|
access |= IB_ACCESS_FLUSH_GLOBAL;
|
|
if (flush_type & IB_FLUSH_PERSISTENT)
|
|
access |= IB_ACCESS_FLUSH_PERSISTENT;
|
|
} else if (pkt->mask & RXE_ATOMIC_MASK) {
|
|
qp_resp_from_atmeth(qp, pkt);
|
|
access = IB_ACCESS_REMOTE_ATOMIC;
|
|
} else {
|
|
/* shouldn't happen */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
/* A zero-byte read or write op is not required to
|
|
* set an addr or rkey. See C9-88
|
|
*/
|
|
if ((pkt->mask & RXE_READ_OR_WRITE_MASK) &&
|
|
(pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) {
|
|
qp->resp.mr = NULL;
|
|
return RESPST_EXECUTE;
|
|
}
|
|
|
|
va = qp->resp.va;
|
|
rkey = qp->resp.rkey;
|
|
resid = qp->resp.resid;
|
|
pktlen = payload_size(pkt);
|
|
|
|
if (rkey_is_mw(rkey)) {
|
|
mw = rxe_lookup_mw(qp, access, rkey);
|
|
if (!mw) {
|
|
rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey);
|
|
state = RESPST_ERR_RKEY_VIOLATION;
|
|
goto err;
|
|
}
|
|
|
|
mr = mw->mr;
|
|
if (!mr) {
|
|
rxe_dbg_qp(qp, "MW doesn't have an MR\n");
|
|
state = RESPST_ERR_RKEY_VIOLATION;
|
|
goto err;
|
|
}
|
|
|
|
if (mw->access & IB_ZERO_BASED)
|
|
qp->resp.offset = mw->addr;
|
|
|
|
rxe_get(mr);
|
|
rxe_put(mw);
|
|
mw = NULL;
|
|
} else {
|
|
mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE);
|
|
if (!mr) {
|
|
rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey);
|
|
state = RESPST_ERR_RKEY_VIOLATION;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (pkt->mask & RXE_FLUSH_MASK) {
|
|
/* FLUSH MR may not set va or resid
|
|
* no need to check range since we will flush whole mr
|
|
*/
|
|
if (feth_sel(pkt) == IB_FLUSH_MR)
|
|
goto skip_check_range;
|
|
}
|
|
|
|
if (mr_check_range(mr, va + qp->resp.offset, resid)) {
|
|
state = RESPST_ERR_RKEY_VIOLATION;
|
|
goto err;
|
|
}
|
|
|
|
skip_check_range:
|
|
if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
|
|
if (resid > mtu) {
|
|
if (pktlen != mtu || bth_pad(pkt)) {
|
|
state = RESPST_ERR_LENGTH;
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (pktlen != resid) {
|
|
state = RESPST_ERR_LENGTH;
|
|
goto err;
|
|
}
|
|
if ((bth_pad(pkt) != (0x3 & (-resid)))) {
|
|
/* This case may not be exactly that
|
|
* but nothing else fits.
|
|
*/
|
|
state = RESPST_ERR_LENGTH;
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
WARN_ON_ONCE(qp->resp.mr);
|
|
|
|
qp->resp.mr = mr;
|
|
return RESPST_EXECUTE;
|
|
|
|
err:
|
|
qp->resp.mr = NULL;
|
|
if (mr)
|
|
rxe_put(mr);
|
|
if (mw)
|
|
rxe_put(mw);
|
|
|
|
return state;
|
|
}
|
|
|
|
static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
|
|
int data_len)
|
|
{
|
|
int err;
|
|
|
|
err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
|
|
data_addr, data_len, RXE_TO_MR_OBJ);
|
|
if (unlikely(err))
|
|
return (err == -ENOSPC) ? RESPST_ERR_LENGTH
|
|
: RESPST_ERR_MALFORMED_WQE;
|
|
|
|
return RESPST_NONE;
|
|
}
|
|
|
|
static enum resp_states write_data_in(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
enum resp_states rc = RESPST_NONE;
|
|
int err;
|
|
int data_len = payload_size(pkt);
|
|
|
|
err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset,
|
|
payload_addr(pkt), data_len, RXE_TO_MR_OBJ);
|
|
if (err) {
|
|
rc = RESPST_ERR_RKEY_VIOLATION;
|
|
goto out;
|
|
}
|
|
|
|
qp->resp.va += data_len;
|
|
qp->resp.resid -= data_len;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static struct resp_res *rxe_prepare_res(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt,
|
|
int type)
|
|
{
|
|
struct resp_res *res;
|
|
u32 pkts;
|
|
|
|
res = &qp->resp.resources[qp->resp.res_head];
|
|
rxe_advance_resp_resource(qp);
|
|
free_rd_atomic_resource(res);
|
|
|
|
res->type = type;
|
|
res->replay = 0;
|
|
|
|
switch (type) {
|
|
case RXE_READ_MASK:
|
|
res->read.va = qp->resp.va + qp->resp.offset;
|
|
res->read.va_org = qp->resp.va + qp->resp.offset;
|
|
res->read.resid = qp->resp.resid;
|
|
res->read.length = qp->resp.resid;
|
|
res->read.rkey = qp->resp.rkey;
|
|
|
|
pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1);
|
|
res->first_psn = pkt->psn;
|
|
res->cur_psn = pkt->psn;
|
|
res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK;
|
|
|
|
res->state = rdatm_res_state_new;
|
|
break;
|
|
case RXE_ATOMIC_MASK:
|
|
case RXE_ATOMIC_WRITE_MASK:
|
|
res->first_psn = pkt->psn;
|
|
res->last_psn = pkt->psn;
|
|
res->cur_psn = pkt->psn;
|
|
break;
|
|
case RXE_FLUSH_MASK:
|
|
res->flush.va = qp->resp.va + qp->resp.offset;
|
|
res->flush.length = qp->resp.length;
|
|
res->flush.type = feth_plt(pkt);
|
|
res->flush.level = feth_sel(pkt);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static enum resp_states process_flush(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
u64 length, start;
|
|
struct rxe_mr *mr = qp->resp.mr;
|
|
struct resp_res *res = qp->resp.res;
|
|
|
|
/* oA19-14, oA19-15 */
|
|
if (res && res->replay)
|
|
return RESPST_ACKNOWLEDGE;
|
|
else if (!res) {
|
|
res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK);
|
|
qp->resp.res = res;
|
|
}
|
|
|
|
if (res->flush.level == IB_FLUSH_RANGE) {
|
|
start = res->flush.va;
|
|
length = res->flush.length;
|
|
} else { /* level == IB_FLUSH_MR */
|
|
start = mr->ibmr.iova;
|
|
length = mr->ibmr.length;
|
|
}
|
|
|
|
if (res->flush.type & IB_FLUSH_PERSISTENT) {
|
|
if (rxe_flush_pmem_iova(mr, start, length))
|
|
return RESPST_ERR_RKEY_VIOLATION;
|
|
/* Make data persistent. */
|
|
wmb();
|
|
} else if (res->flush.type & IB_FLUSH_GLOBAL) {
|
|
/* Make data global visibility. */
|
|
wmb();
|
|
}
|
|
|
|
qp->resp.msn++;
|
|
|
|
/* next expected psn, read handles this separately */
|
|
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
|
|
qp->resp.ack_psn = qp->resp.psn;
|
|
|
|
qp->resp.opcode = pkt->opcode;
|
|
qp->resp.status = IB_WC_SUCCESS;
|
|
|
|
return RESPST_ACKNOWLEDGE;
|
|
}
|
|
|
|
static enum resp_states atomic_reply(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct rxe_mr *mr = qp->resp.mr;
|
|
struct resp_res *res = qp->resp.res;
|
|
int err;
|
|
|
|
if (!res) {
|
|
res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK);
|
|
qp->resp.res = res;
|
|
}
|
|
|
|
if (!res->replay) {
|
|
u64 iova = qp->resp.va + qp->resp.offset;
|
|
|
|
err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode,
|
|
atmeth_comp(pkt),
|
|
atmeth_swap_add(pkt),
|
|
&res->atomic.orig_val);
|
|
if (err)
|
|
return err;
|
|
|
|
qp->resp.msn++;
|
|
|
|
/* next expected psn, read handles this separately */
|
|
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
|
|
qp->resp.ack_psn = qp->resp.psn;
|
|
|
|
qp->resp.opcode = pkt->opcode;
|
|
qp->resp.status = IB_WC_SUCCESS;
|
|
}
|
|
|
|
return RESPST_ACKNOWLEDGE;
|
|
}
|
|
|
|
static enum resp_states atomic_write_reply(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct resp_res *res = qp->resp.res;
|
|
struct rxe_mr *mr;
|
|
u64 value;
|
|
u64 iova;
|
|
int err;
|
|
|
|
if (!res) {
|
|
res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK);
|
|
qp->resp.res = res;
|
|
}
|
|
|
|
if (res->replay)
|
|
return RESPST_ACKNOWLEDGE;
|
|
|
|
mr = qp->resp.mr;
|
|
value = *(u64 *)payload_addr(pkt);
|
|
iova = qp->resp.va + qp->resp.offset;
|
|
|
|
err = rxe_mr_do_atomic_write(mr, iova, value);
|
|
if (err)
|
|
return err;
|
|
|
|
qp->resp.resid = 0;
|
|
qp->resp.msn++;
|
|
|
|
/* next expected psn, read handles this separately */
|
|
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
|
|
qp->resp.ack_psn = qp->resp.psn;
|
|
|
|
qp->resp.opcode = pkt->opcode;
|
|
qp->resp.status = IB_WC_SUCCESS;
|
|
|
|
return RESPST_ACKNOWLEDGE;
|
|
}
|
|
|
|
static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *ack,
|
|
int opcode,
|
|
int payload,
|
|
u32 psn,
|
|
u8 syndrome)
|
|
{
|
|
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
|
|
struct sk_buff *skb;
|
|
int paylen;
|
|
int pad;
|
|
int err;
|
|
|
|
/*
|
|
* allocate packet
|
|
*/
|
|
pad = (-payload) & 0x3;
|
|
paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
|
|
|
|
skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
ack->qp = qp;
|
|
ack->opcode = opcode;
|
|
ack->mask = rxe_opcode[opcode].mask;
|
|
ack->paylen = paylen;
|
|
ack->psn = psn;
|
|
|
|
bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL,
|
|
qp->attr.dest_qp_num, 0, psn);
|
|
|
|
if (ack->mask & RXE_AETH_MASK) {
|
|
aeth_set_syn(ack, syndrome);
|
|
aeth_set_msn(ack, qp->resp.msn);
|
|
}
|
|
|
|
if (ack->mask & RXE_ATMACK_MASK)
|
|
atmack_set_orig(ack, qp->resp.res->atomic.orig_val);
|
|
|
|
err = rxe_prepare(&qp->pri_av, ack, skb);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* rxe_recheck_mr - revalidate MR from rkey and get a reference
|
|
* @qp: the qp
|
|
* @rkey: the rkey
|
|
*
|
|
* This code allows the MR to be invalidated or deregistered or
|
|
* the MW if one was used to be invalidated or deallocated.
|
|
* It is assumed that the access permissions if originally good
|
|
* are OK and the mappings to be unchanged.
|
|
*
|
|
* TODO: If someone reregisters an MR to change its size or
|
|
* access permissions during the processing of an RDMA read
|
|
* we should kill the responder resource and complete the
|
|
* operation with an error.
|
|
*
|
|
* Return: mr on success else NULL
|
|
*/
|
|
static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey)
|
|
{
|
|
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
|
|
struct rxe_mr *mr;
|
|
struct rxe_mw *mw;
|
|
|
|
if (rkey_is_mw(rkey)) {
|
|
mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8);
|
|
if (!mw)
|
|
return NULL;
|
|
|
|
mr = mw->mr;
|
|
if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID ||
|
|
!mr || mr->state != RXE_MR_STATE_VALID) {
|
|
rxe_put(mw);
|
|
return NULL;
|
|
}
|
|
|
|
rxe_get(mr);
|
|
rxe_put(mw);
|
|
|
|
return mr;
|
|
}
|
|
|
|
mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8);
|
|
if (!mr)
|
|
return NULL;
|
|
|
|
if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) {
|
|
rxe_put(mr);
|
|
return NULL;
|
|
}
|
|
|
|
return mr;
|
|
}
|
|
|
|
/* RDMA read response. If res is not NULL, then we have a current RDMA request
|
|
* being processed or replayed.
|
|
*/
|
|
static enum resp_states read_reply(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *req_pkt)
|
|
{
|
|
struct rxe_pkt_info ack_pkt;
|
|
struct sk_buff *skb;
|
|
int mtu = qp->mtu;
|
|
enum resp_states state;
|
|
int payload;
|
|
int opcode;
|
|
int err;
|
|
struct resp_res *res = qp->resp.res;
|
|
struct rxe_mr *mr;
|
|
|
|
if (!res) {
|
|
res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK);
|
|
qp->resp.res = res;
|
|
}
|
|
|
|
if (res->state == rdatm_res_state_new) {
|
|
if (!res->replay || qp->resp.length == 0) {
|
|
/* if length == 0 mr will be NULL (is ok)
|
|
* otherwise qp->resp.mr holds a ref on mr
|
|
* which we transfer to mr and drop below.
|
|
*/
|
|
mr = qp->resp.mr;
|
|
qp->resp.mr = NULL;
|
|
} else {
|
|
mr = rxe_recheck_mr(qp, res->read.rkey);
|
|
if (!mr)
|
|
return RESPST_ERR_RKEY_VIOLATION;
|
|
}
|
|
|
|
if (res->read.resid <= mtu)
|
|
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
|
|
else
|
|
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
|
|
} else {
|
|
/* re-lookup mr from rkey on all later packets.
|
|
* length will be non-zero. This can fail if someone
|
|
* modifies or destroys the mr since the first packet.
|
|
*/
|
|
mr = rxe_recheck_mr(qp, res->read.rkey);
|
|
if (!mr)
|
|
return RESPST_ERR_RKEY_VIOLATION;
|
|
|
|
if (res->read.resid > mtu)
|
|
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
|
|
else
|
|
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
|
|
}
|
|
|
|
res->state = rdatm_res_state_next;
|
|
|
|
payload = min_t(int, res->read.resid, mtu);
|
|
|
|
skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload,
|
|
res->cur_psn, AETH_ACK_UNLIMITED);
|
|
if (!skb) {
|
|
state = RESPST_ERR_RNR;
|
|
goto err_out;
|
|
}
|
|
|
|
err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt),
|
|
payload, RXE_FROM_MR_OBJ);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
state = RESPST_ERR_RKEY_VIOLATION;
|
|
goto err_out;
|
|
}
|
|
|
|
if (bth_pad(&ack_pkt)) {
|
|
u8 *pad = payload_addr(&ack_pkt) + payload;
|
|
|
|
memset(pad, 0, bth_pad(&ack_pkt));
|
|
}
|
|
|
|
/* rxe_xmit_packet always consumes the skb */
|
|
err = rxe_xmit_packet(qp, &ack_pkt, skb);
|
|
if (err) {
|
|
state = RESPST_ERR_RNR;
|
|
goto err_out;
|
|
}
|
|
|
|
res->read.va += payload;
|
|
res->read.resid -= payload;
|
|
res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
|
|
|
|
if (res->read.resid > 0) {
|
|
state = RESPST_DONE;
|
|
} else {
|
|
qp->resp.res = NULL;
|
|
if (!res->replay)
|
|
qp->resp.opcode = -1;
|
|
if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
|
|
qp->resp.psn = res->cur_psn;
|
|
state = RESPST_CLEANUP;
|
|
}
|
|
|
|
err_out:
|
|
if (mr)
|
|
rxe_put(mr);
|
|
return state;
|
|
}
|
|
|
|
static int invalidate_rkey(struct rxe_qp *qp, u32 rkey)
|
|
{
|
|
if (rkey_is_mw(rkey))
|
|
return rxe_invalidate_mw(qp, rkey);
|
|
else
|
|
return rxe_invalidate_mr(qp, rkey);
|
|
}
|
|
|
|
/* Executes a new request. A retried request never reach that function (send
|
|
* and writes are discarded, and reads and atomics are retried elsewhere.
|
|
*/
|
|
static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
|
|
{
|
|
enum resp_states err;
|
|
struct sk_buff *skb = PKT_TO_SKB(pkt);
|
|
union rdma_network_hdr hdr;
|
|
|
|
if (pkt->mask & RXE_SEND_MASK) {
|
|
if (qp_type(qp) == IB_QPT_UD ||
|
|
qp_type(qp) == IB_QPT_GSI) {
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
memset(&hdr.reserved, 0,
|
|
sizeof(hdr.reserved));
|
|
memcpy(&hdr.roce4grh, ip_hdr(skb),
|
|
sizeof(hdr.roce4grh));
|
|
err = send_data_in(qp, &hdr, sizeof(hdr));
|
|
} else {
|
|
err = send_data_in(qp, ipv6_hdr(skb),
|
|
sizeof(hdr));
|
|
}
|
|
if (err)
|
|
return err;
|
|
}
|
|
err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
|
|
if (err)
|
|
return err;
|
|
} else if (pkt->mask & RXE_WRITE_MASK) {
|
|
err = write_data_in(qp, pkt);
|
|
if (err)
|
|
return err;
|
|
} else if (pkt->mask & RXE_READ_MASK) {
|
|
/* For RDMA Read we can increment the msn now. See C9-148. */
|
|
qp->resp.msn++;
|
|
return RESPST_READ_REPLY;
|
|
} else if (pkt->mask & RXE_ATOMIC_MASK) {
|
|
return RESPST_ATOMIC_REPLY;
|
|
} else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) {
|
|
return RESPST_ATOMIC_WRITE_REPLY;
|
|
} else if (pkt->mask & RXE_FLUSH_MASK) {
|
|
return RESPST_PROCESS_FLUSH;
|
|
} else {
|
|
/* Unreachable */
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
if (pkt->mask & RXE_IETH_MASK) {
|
|
u32 rkey = ieth_rkey(pkt);
|
|
|
|
err = invalidate_rkey(qp, rkey);
|
|
if (err)
|
|
return RESPST_ERR_INVALIDATE_RKEY;
|
|
}
|
|
|
|
if (pkt->mask & RXE_END_MASK)
|
|
/* We successfully processed this new request. */
|
|
qp->resp.msn++;
|
|
|
|
/* next expected psn, read handles this separately */
|
|
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
|
|
qp->resp.ack_psn = qp->resp.psn;
|
|
|
|
qp->resp.opcode = pkt->opcode;
|
|
qp->resp.status = IB_WC_SUCCESS;
|
|
|
|
if (pkt->mask & RXE_COMP_MASK)
|
|
return RESPST_COMPLETE;
|
|
else if (qp_type(qp) == IB_QPT_RC)
|
|
return RESPST_ACKNOWLEDGE;
|
|
else
|
|
return RESPST_CLEANUP;
|
|
}
|
|
|
|
static enum resp_states do_complete(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct rxe_cqe cqe;
|
|
struct ib_wc *wc = &cqe.ibwc;
|
|
struct ib_uverbs_wc *uwc = &cqe.uibwc;
|
|
struct rxe_recv_wqe *wqe = qp->resp.wqe;
|
|
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
|
|
unsigned long flags;
|
|
|
|
if (!wqe)
|
|
goto finish;
|
|
|
|
memset(&cqe, 0, sizeof(cqe));
|
|
|
|
if (qp->rcq->is_user) {
|
|
uwc->status = qp->resp.status;
|
|
uwc->qp_num = qp->ibqp.qp_num;
|
|
uwc->wr_id = wqe->wr_id;
|
|
} else {
|
|
wc->status = qp->resp.status;
|
|
wc->qp = &qp->ibqp;
|
|
wc->wr_id = wqe->wr_id;
|
|
}
|
|
|
|
if (wc->status == IB_WC_SUCCESS) {
|
|
rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV);
|
|
wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
|
|
pkt->mask & RXE_WRITE_MASK) ?
|
|
IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
|
|
wc->byte_len = (pkt->mask & RXE_IMMDT_MASK &&
|
|
pkt->mask & RXE_WRITE_MASK) ?
|
|
qp->resp.length : wqe->dma.length - wqe->dma.resid;
|
|
|
|
/* fields after byte_len are different between kernel and user
|
|
* space
|
|
*/
|
|
if (qp->rcq->is_user) {
|
|
uwc->wc_flags = IB_WC_GRH;
|
|
|
|
if (pkt->mask & RXE_IMMDT_MASK) {
|
|
uwc->wc_flags |= IB_WC_WITH_IMM;
|
|
uwc->ex.imm_data = immdt_imm(pkt);
|
|
}
|
|
|
|
if (pkt->mask & RXE_IETH_MASK) {
|
|
uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
|
|
uwc->ex.invalidate_rkey = ieth_rkey(pkt);
|
|
}
|
|
|
|
if (pkt->mask & RXE_DETH_MASK)
|
|
uwc->src_qp = deth_sqp(pkt);
|
|
|
|
uwc->port_num = qp->attr.port_num;
|
|
} else {
|
|
struct sk_buff *skb = PKT_TO_SKB(pkt);
|
|
|
|
wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
|
|
if (skb->protocol == htons(ETH_P_IP))
|
|
wc->network_hdr_type = RDMA_NETWORK_IPV4;
|
|
else
|
|
wc->network_hdr_type = RDMA_NETWORK_IPV6;
|
|
|
|
if (is_vlan_dev(skb->dev)) {
|
|
wc->wc_flags |= IB_WC_WITH_VLAN;
|
|
wc->vlan_id = vlan_dev_vlan_id(skb->dev);
|
|
}
|
|
|
|
if (pkt->mask & RXE_IMMDT_MASK) {
|
|
wc->wc_flags |= IB_WC_WITH_IMM;
|
|
wc->ex.imm_data = immdt_imm(pkt);
|
|
}
|
|
|
|
if (pkt->mask & RXE_IETH_MASK) {
|
|
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
|
|
wc->ex.invalidate_rkey = ieth_rkey(pkt);
|
|
}
|
|
|
|
if (pkt->mask & RXE_DETH_MASK)
|
|
wc->src_qp = deth_sqp(pkt);
|
|
|
|
wc->port_num = qp->attr.port_num;
|
|
}
|
|
} else {
|
|
if (wc->status != IB_WC_WR_FLUSH_ERR)
|
|
rxe_err_qp(qp, "non-flush error status = %d",
|
|
wc->status);
|
|
}
|
|
|
|
/* have copy for srq and reference for !srq */
|
|
if (!qp->srq)
|
|
queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT);
|
|
|
|
qp->resp.wqe = NULL;
|
|
|
|
if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
|
|
return RESPST_ERR_CQ_OVERFLOW;
|
|
|
|
finish:
|
|
spin_lock_irqsave(&qp->state_lock, flags);
|
|
if (unlikely(qp_state(qp) == IB_QPS_ERR)) {
|
|
spin_unlock_irqrestore(&qp->state_lock, flags);
|
|
return RESPST_CHK_RESOURCE;
|
|
}
|
|
spin_unlock_irqrestore(&qp->state_lock, flags);
|
|
|
|
if (unlikely(!pkt))
|
|
return RESPST_DONE;
|
|
if (qp_type(qp) == IB_QPT_RC)
|
|
return RESPST_ACKNOWLEDGE;
|
|
else
|
|
return RESPST_CLEANUP;
|
|
}
|
|
|
|
|
|
static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn,
|
|
int opcode, const char *msg)
|
|
{
|
|
int err;
|
|
struct rxe_pkt_info ack_pkt;
|
|
struct sk_buff *skb;
|
|
|
|
skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
err = rxe_xmit_packet(qp, &ack_pkt, skb);
|
|
if (err)
|
|
rxe_dbg_qp(qp, "Failed sending %s\n", msg);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
|
|
{
|
|
return send_common_ack(qp, syndrome, psn,
|
|
IB_OPCODE_RC_ACKNOWLEDGE, "ACK");
|
|
}
|
|
|
|
static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
|
|
{
|
|
int ret = send_common_ack(qp, syndrome, psn,
|
|
IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK");
|
|
|
|
/* have to clear this since it is used to trigger
|
|
* long read replies
|
|
*/
|
|
qp->resp.res = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
|
|
{
|
|
int ret = send_common_ack(qp, syndrome, psn,
|
|
IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY,
|
|
"RDMA READ response of length zero ACK");
|
|
|
|
/* have to clear this since it is used to trigger
|
|
* long read replies
|
|
*/
|
|
qp->resp.res = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static enum resp_states acknowledge(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
if (qp_type(qp) != IB_QPT_RC)
|
|
return RESPST_CLEANUP;
|
|
|
|
if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
|
|
send_ack(qp, qp->resp.aeth_syndrome, pkt->psn);
|
|
else if (pkt->mask & RXE_ATOMIC_MASK)
|
|
send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
|
|
else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK))
|
|
send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
|
|
else if (bth_ack(pkt))
|
|
send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
|
|
|
|
return RESPST_CLEANUP;
|
|
}
|
|
|
|
static enum resp_states cleanup(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
if (pkt) {
|
|
skb = skb_dequeue(&qp->req_pkts);
|
|
rxe_put(qp);
|
|
kfree_skb(skb);
|
|
ib_device_put(qp->ibqp.device);
|
|
}
|
|
|
|
if (qp->resp.mr) {
|
|
rxe_put(qp->resp.mr);
|
|
qp->resp.mr = NULL;
|
|
}
|
|
|
|
return RESPST_DONE;
|
|
}
|
|
|
|
static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) {
|
|
struct resp_res *res = &qp->resp.resources[i];
|
|
|
|
if (res->type == 0)
|
|
continue;
|
|
|
|
if (psn_compare(psn, res->first_psn) >= 0 &&
|
|
psn_compare(psn, res->last_psn) <= 0) {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static enum resp_states duplicate_request(struct rxe_qp *qp,
|
|
struct rxe_pkt_info *pkt)
|
|
{
|
|
enum resp_states rc;
|
|
u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK;
|
|
|
|
if (pkt->mask & RXE_SEND_MASK ||
|
|
pkt->mask & RXE_WRITE_MASK) {
|
|
/* SEND. Ack again and cleanup. C9-105. */
|
|
send_ack(qp, AETH_ACK_UNLIMITED, prev_psn);
|
|
return RESPST_CLEANUP;
|
|
} else if (pkt->mask & RXE_FLUSH_MASK) {
|
|
struct resp_res *res;
|
|
|
|
/* Find the operation in our list of responder resources. */
|
|
res = find_resource(qp, pkt->psn);
|
|
if (res) {
|
|
res->replay = 1;
|
|
res->cur_psn = pkt->psn;
|
|
qp->resp.res = res;
|
|
rc = RESPST_PROCESS_FLUSH;
|
|
goto out;
|
|
}
|
|
|
|
/* Resource not found. Class D error. Drop the request. */
|
|
rc = RESPST_CLEANUP;
|
|
goto out;
|
|
} else if (pkt->mask & RXE_READ_MASK) {
|
|
struct resp_res *res;
|
|
|
|
res = find_resource(qp, pkt->psn);
|
|
if (!res) {
|
|
/* Resource not found. Class D error. Drop the
|
|
* request.
|
|
*/
|
|
rc = RESPST_CLEANUP;
|
|
goto out;
|
|
} else {
|
|
/* Ensure this new request is the same as the previous
|
|
* one or a subset of it.
|
|
*/
|
|
u64 iova = reth_va(pkt);
|
|
u32 resid = reth_len(pkt);
|
|
|
|
if (iova < res->read.va_org ||
|
|
resid > res->read.length ||
|
|
(iova + resid) > (res->read.va_org +
|
|
res->read.length)) {
|
|
rc = RESPST_CLEANUP;
|
|
goto out;
|
|
}
|
|
|
|
if (reth_rkey(pkt) != res->read.rkey) {
|
|
rc = RESPST_CLEANUP;
|
|
goto out;
|
|
}
|
|
|
|
res->cur_psn = pkt->psn;
|
|
res->state = (pkt->psn == res->first_psn) ?
|
|
rdatm_res_state_new :
|
|
rdatm_res_state_replay;
|
|
res->replay = 1;
|
|
|
|
/* Reset the resource, except length. */
|
|
res->read.va_org = iova;
|
|
res->read.va = iova;
|
|
res->read.resid = resid;
|
|
|
|
/* Replay the RDMA read reply. */
|
|
qp->resp.res = res;
|
|
rc = RESPST_READ_REPLY;
|
|
goto out;
|
|
}
|
|
} else {
|
|
struct resp_res *res;
|
|
|
|
/* Find the operation in our list of responder resources. */
|
|
res = find_resource(qp, pkt->psn);
|
|
if (res) {
|
|
res->replay = 1;
|
|
res->cur_psn = pkt->psn;
|
|
qp->resp.res = res;
|
|
rc = pkt->mask & RXE_ATOMIC_MASK ?
|
|
RESPST_ATOMIC_REPLY :
|
|
RESPST_ATOMIC_WRITE_REPLY;
|
|
goto out;
|
|
}
|
|
|
|
/* Resource not found. Class D error. Drop the request. */
|
|
rc = RESPST_CLEANUP;
|
|
goto out;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Process a class A or C. Both are treated the same in this implementation. */
|
|
static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
|
|
enum ib_wc_status status)
|
|
{
|
|
qp->resp.aeth_syndrome = syndrome;
|
|
qp->resp.status = status;
|
|
|
|
/* indicate that we should go through the ERROR state */
|
|
qp->resp.goto_error = 1;
|
|
}
|
|
|
|
static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
|
|
{
|
|
/* UC */
|
|
if (qp->srq) {
|
|
/* Class E */
|
|
qp->resp.drop_msg = 1;
|
|
if (qp->resp.wqe) {
|
|
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
|
|
return RESPST_COMPLETE;
|
|
} else {
|
|
return RESPST_CLEANUP;
|
|
}
|
|
} else {
|
|
/* Class D1. This packet may be the start of a
|
|
* new message and could be valid. The previous
|
|
* message is invalid and ignored. reset the
|
|
* recv wr to its original state
|
|
*/
|
|
if (qp->resp.wqe) {
|
|
qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
|
|
qp->resp.wqe->dma.cur_sge = 0;
|
|
qp->resp.wqe->dma.sge_offset = 0;
|
|
qp->resp.opcode = -1;
|
|
}
|
|
|
|
if (qp->resp.mr) {
|
|
rxe_put(qp->resp.mr);
|
|
qp->resp.mr = NULL;
|
|
}
|
|
|
|
return RESPST_CLEANUP;
|
|
}
|
|
}
|
|
|
|
/* drain incoming request packet queue */
|
|
static void drain_req_pkts(struct rxe_qp *qp)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(&qp->req_pkts))) {
|
|
rxe_put(qp);
|
|
kfree_skb(skb);
|
|
ib_device_put(qp->ibqp.device);
|
|
}
|
|
}
|
|
|
|
/* complete receive wqe with flush error */
|
|
static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe)
|
|
{
|
|
struct rxe_cqe cqe = {};
|
|
struct ib_wc *wc = &cqe.ibwc;
|
|
struct ib_uverbs_wc *uwc = &cqe.uibwc;
|
|
int err;
|
|
|
|
if (qp->rcq->is_user) {
|
|
uwc->wr_id = wqe->wr_id;
|
|
uwc->status = IB_WC_WR_FLUSH_ERR;
|
|
uwc->qp_num = qp_num(qp);
|
|
} else {
|
|
wc->wr_id = wqe->wr_id;
|
|
wc->status = IB_WC_WR_FLUSH_ERR;
|
|
wc->qp = &qp->ibqp;
|
|
}
|
|
|
|
err = rxe_cq_post(qp->rcq, &cqe, 0);
|
|
if (err)
|
|
rxe_dbg_cq(qp->rcq, "post cq failed err = %d", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* drain and optionally complete the recive queue
|
|
* if unable to complete a wqe stop completing and
|
|
* just flush the remaining wqes
|
|
*/
|
|
static void flush_recv_queue(struct rxe_qp *qp, bool notify)
|
|
{
|
|
struct rxe_queue *q = qp->rq.queue;
|
|
struct rxe_recv_wqe *wqe;
|
|
int err;
|
|
|
|
if (qp->srq) {
|
|
if (notify && qp->ibqp.event_handler) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* recv queue not created. nothing to do. */
|
|
if (!qp->rq.queue)
|
|
return;
|
|
|
|
while ((wqe = queue_head(q, q->type))) {
|
|
if (notify) {
|
|
err = flush_recv_wqe(qp, wqe);
|
|
if (err)
|
|
notify = 0;
|
|
}
|
|
queue_advance_consumer(q, q->type);
|
|
}
|
|
|
|
qp->resp.wqe = NULL;
|
|
}
|
|
|
|
int rxe_responder(struct rxe_qp *qp)
|
|
{
|
|
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
|
|
enum resp_states state;
|
|
struct rxe_pkt_info *pkt = NULL;
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qp->state_lock, flags);
|
|
if (!qp->valid || qp_state(qp) == IB_QPS_ERR ||
|
|
qp_state(qp) == IB_QPS_RESET) {
|
|
bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR);
|
|
|
|
drain_req_pkts(qp);
|
|
flush_recv_queue(qp, notify);
|
|
spin_unlock_irqrestore(&qp->state_lock, flags);
|
|
goto exit;
|
|
}
|
|
spin_unlock_irqrestore(&qp->state_lock, flags);
|
|
|
|
qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
|
|
|
|
state = RESPST_GET_REQ;
|
|
|
|
while (1) {
|
|
rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]);
|
|
switch (state) {
|
|
case RESPST_GET_REQ:
|
|
state = get_req(qp, &pkt);
|
|
break;
|
|
case RESPST_CHK_PSN:
|
|
state = check_psn(qp, pkt);
|
|
break;
|
|
case RESPST_CHK_OP_SEQ:
|
|
state = check_op_seq(qp, pkt);
|
|
break;
|
|
case RESPST_CHK_OP_VALID:
|
|
state = check_op_valid(qp, pkt);
|
|
break;
|
|
case RESPST_CHK_RESOURCE:
|
|
state = check_resource(qp, pkt);
|
|
break;
|
|
case RESPST_CHK_LENGTH:
|
|
state = rxe_resp_check_length(qp, pkt);
|
|
break;
|
|
case RESPST_CHK_RKEY:
|
|
state = check_rkey(qp, pkt);
|
|
break;
|
|
case RESPST_EXECUTE:
|
|
state = execute(qp, pkt);
|
|
break;
|
|
case RESPST_COMPLETE:
|
|
state = do_complete(qp, pkt);
|
|
break;
|
|
case RESPST_READ_REPLY:
|
|
state = read_reply(qp, pkt);
|
|
break;
|
|
case RESPST_ATOMIC_REPLY:
|
|
state = atomic_reply(qp, pkt);
|
|
break;
|
|
case RESPST_ATOMIC_WRITE_REPLY:
|
|
state = atomic_write_reply(qp, pkt);
|
|
break;
|
|
case RESPST_PROCESS_FLUSH:
|
|
state = process_flush(qp, pkt);
|
|
break;
|
|
case RESPST_ACKNOWLEDGE:
|
|
state = acknowledge(qp, pkt);
|
|
break;
|
|
case RESPST_CLEANUP:
|
|
state = cleanup(qp, pkt);
|
|
break;
|
|
case RESPST_DUPLICATE_REQUEST:
|
|
state = duplicate_request(qp, pkt);
|
|
break;
|
|
case RESPST_ERR_PSN_OUT_OF_SEQ:
|
|
/* RC only - Class B. Drop packet. */
|
|
send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
|
|
state = RESPST_CLEANUP;
|
|
break;
|
|
|
|
case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
|
|
case RESPST_ERR_MISSING_OPCODE_FIRST:
|
|
case RESPST_ERR_MISSING_OPCODE_LAST_C:
|
|
case RESPST_ERR_UNSUPPORTED_OPCODE:
|
|
case RESPST_ERR_MISALIGNED_ATOMIC:
|
|
/* RC Only - Class C. */
|
|
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
|
|
IB_WC_REM_INV_REQ_ERR);
|
|
state = RESPST_COMPLETE;
|
|
break;
|
|
|
|
case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
|
|
state = do_class_d1e_error(qp);
|
|
break;
|
|
case RESPST_ERR_RNR:
|
|
if (qp_type(qp) == IB_QPT_RC) {
|
|
rxe_counter_inc(rxe, RXE_CNT_SND_RNR);
|
|
/* RC - class B */
|
|
send_ack(qp, AETH_RNR_NAK |
|
|
(~AETH_TYPE_MASK &
|
|
qp->attr.min_rnr_timer),
|
|
pkt->psn);
|
|
} else {
|
|
/* UD/UC - class D */
|
|
qp->resp.drop_msg = 1;
|
|
}
|
|
state = RESPST_CLEANUP;
|
|
break;
|
|
|
|
case RESPST_ERR_RKEY_VIOLATION:
|
|
if (qp_type(qp) == IB_QPT_RC) {
|
|
/* Class C */
|
|
do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
|
|
IB_WC_REM_ACCESS_ERR);
|
|
state = RESPST_COMPLETE;
|
|
} else {
|
|
qp->resp.drop_msg = 1;
|
|
if (qp->srq) {
|
|
/* UC/SRQ Class D */
|
|
qp->resp.status = IB_WC_REM_ACCESS_ERR;
|
|
state = RESPST_COMPLETE;
|
|
} else {
|
|
/* UC/non-SRQ Class E. */
|
|
state = RESPST_CLEANUP;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RESPST_ERR_INVALIDATE_RKEY:
|
|
/* RC - Class J. */
|
|
qp->resp.goto_error = 1;
|
|
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
|
|
state = RESPST_COMPLETE;
|
|
break;
|
|
|
|
case RESPST_ERR_LENGTH:
|
|
if (qp_type(qp) == IB_QPT_RC) {
|
|
/* Class C */
|
|
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
|
|
IB_WC_REM_INV_REQ_ERR);
|
|
state = RESPST_COMPLETE;
|
|
} else if (qp->srq) {
|
|
/* UC/UD - class E */
|
|
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
|
|
state = RESPST_COMPLETE;
|
|
} else {
|
|
/* UC/UD - class D */
|
|
qp->resp.drop_msg = 1;
|
|
state = RESPST_CLEANUP;
|
|
}
|
|
break;
|
|
|
|
case RESPST_ERR_MALFORMED_WQE:
|
|
/* All, Class A. */
|
|
do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
|
|
IB_WC_LOC_QP_OP_ERR);
|
|
state = RESPST_COMPLETE;
|
|
break;
|
|
|
|
case RESPST_ERR_CQ_OVERFLOW:
|
|
/* All - Class G */
|
|
state = RESPST_ERROR;
|
|
break;
|
|
|
|
case RESPST_DONE:
|
|
if (qp->resp.goto_error) {
|
|
state = RESPST_ERROR;
|
|
break;
|
|
}
|
|
|
|
goto done;
|
|
|
|
case RESPST_EXIT:
|
|
if (qp->resp.goto_error) {
|
|
state = RESPST_ERROR;
|
|
break;
|
|
}
|
|
|
|
goto exit;
|
|
|
|
case RESPST_ERROR:
|
|
qp->resp.goto_error = 0;
|
|
rxe_dbg_qp(qp, "moved to error state\n");
|
|
rxe_qp_error(qp);
|
|
goto exit;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
|
|
/* A non-zero return value will cause rxe_do_task to
|
|
* exit its loop and end the work item. A zero return
|
|
* will continue looping and return to rxe_responder
|
|
*/
|
|
done:
|
|
ret = 0;
|
|
goto out;
|
|
exit:
|
|
ret = -EAGAIN;
|
|
out:
|
|
return ret;
|
|
}
|