5494c3a6a0
The memory freeing report wasn't very useful for figuring out which parts of the kernel image were being freed. Add the details for clearer reporting in dmesg. Before: Freeing unused kernel image memory: 1348K Write protecting the kernel read-only data: 20480k Freeing unused kernel image memory: 2040K Freeing unused kernel image memory: 172K After: Freeing unused kernel image (initmem) memory: 1348K Write protecting the kernel read-only data: 20480k Freeing unused kernel image (text/rodata gap) memory: 2040K Freeing unused kernel image (rodata/data gap) memory: 172K Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-alpha@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-ia64@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Segher Boessenkool <segher@kernel.crashing.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: x86-ml <x86@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20191029211351.13243-28-keescook@chromium.org
992 lines
25 KiB
C
992 lines
25 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_PROCESSOR_H
|
|
#define _ASM_X86_PROCESSOR_H
|
|
|
|
#include <asm/processor-flags.h>
|
|
|
|
/* Forward declaration, a strange C thing */
|
|
struct task_struct;
|
|
struct mm_struct;
|
|
struct vm86;
|
|
|
|
#include <asm/math_emu.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/types.h>
|
|
#include <uapi/asm/sigcontext.h>
|
|
#include <asm/current.h>
|
|
#include <asm/cpufeatures.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc_defs.h>
|
|
#include <asm/nops.h>
|
|
#include <asm/special_insns.h>
|
|
#include <asm/fpu/types.h>
|
|
#include <asm/unwind_hints.h>
|
|
|
|
#include <linux/personality.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
/*
|
|
* We handle most unaligned accesses in hardware. On the other hand
|
|
* unaligned DMA can be quite expensive on some Nehalem processors.
|
|
*
|
|
* Based on this we disable the IP header alignment in network drivers.
|
|
*/
|
|
#define NET_IP_ALIGN 0
|
|
|
|
#define HBP_NUM 4
|
|
|
|
/*
|
|
* These alignment constraints are for performance in the vSMP case,
|
|
* but in the task_struct case we must also meet hardware imposed
|
|
* alignment requirements of the FPU state:
|
|
*/
|
|
#ifdef CONFIG_X86_VSMP
|
|
# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
#else
|
|
# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN 0
|
|
#endif
|
|
|
|
enum tlb_infos {
|
|
ENTRIES,
|
|
NR_INFO
|
|
};
|
|
|
|
extern u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
/*
|
|
* CPU type and hardware bug flags. Kept separately for each CPU.
|
|
* Members of this structure are referenced in head_32.S, so think twice
|
|
* before touching them. [mj]
|
|
*/
|
|
|
|
struct cpuinfo_x86 {
|
|
__u8 x86; /* CPU family */
|
|
__u8 x86_vendor; /* CPU vendor */
|
|
__u8 x86_model;
|
|
__u8 x86_stepping;
|
|
#ifdef CONFIG_X86_64
|
|
/* Number of 4K pages in DTLB/ITLB combined(in pages): */
|
|
int x86_tlbsize;
|
|
#endif
|
|
__u8 x86_virt_bits;
|
|
__u8 x86_phys_bits;
|
|
/* CPUID returned core id bits: */
|
|
__u8 x86_coreid_bits;
|
|
__u8 cu_id;
|
|
/* Max extended CPUID function supported: */
|
|
__u32 extended_cpuid_level;
|
|
/* Maximum supported CPUID level, -1=no CPUID: */
|
|
int cpuid_level;
|
|
__u32 x86_capability[NCAPINTS + NBUGINTS];
|
|
char x86_vendor_id[16];
|
|
char x86_model_id[64];
|
|
/* in KB - valid for CPUS which support this call: */
|
|
unsigned int x86_cache_size;
|
|
int x86_cache_alignment; /* In bytes */
|
|
/* Cache QoS architectural values: */
|
|
int x86_cache_max_rmid; /* max index */
|
|
int x86_cache_occ_scale; /* scale to bytes */
|
|
int x86_power;
|
|
unsigned long loops_per_jiffy;
|
|
/* cpuid returned max cores value: */
|
|
u16 x86_max_cores;
|
|
u16 apicid;
|
|
u16 initial_apicid;
|
|
u16 x86_clflush_size;
|
|
/* number of cores as seen by the OS: */
|
|
u16 booted_cores;
|
|
/* Physical processor id: */
|
|
u16 phys_proc_id;
|
|
/* Logical processor id: */
|
|
u16 logical_proc_id;
|
|
/* Core id: */
|
|
u16 cpu_core_id;
|
|
u16 cpu_die_id;
|
|
u16 logical_die_id;
|
|
/* Index into per_cpu list: */
|
|
u16 cpu_index;
|
|
u32 microcode;
|
|
/* Address space bits used by the cache internally */
|
|
u8 x86_cache_bits;
|
|
unsigned initialized : 1;
|
|
} __randomize_layout;
|
|
|
|
struct cpuid_regs {
|
|
u32 eax, ebx, ecx, edx;
|
|
};
|
|
|
|
enum cpuid_regs_idx {
|
|
CPUID_EAX = 0,
|
|
CPUID_EBX,
|
|
CPUID_ECX,
|
|
CPUID_EDX,
|
|
};
|
|
|
|
#define X86_VENDOR_INTEL 0
|
|
#define X86_VENDOR_CYRIX 1
|
|
#define X86_VENDOR_AMD 2
|
|
#define X86_VENDOR_UMC 3
|
|
#define X86_VENDOR_CENTAUR 5
|
|
#define X86_VENDOR_TRANSMETA 7
|
|
#define X86_VENDOR_NSC 8
|
|
#define X86_VENDOR_HYGON 9
|
|
#define X86_VENDOR_ZHAOXIN 10
|
|
#define X86_VENDOR_NUM 11
|
|
|
|
#define X86_VENDOR_UNKNOWN 0xff
|
|
|
|
/*
|
|
* capabilities of CPUs
|
|
*/
|
|
extern struct cpuinfo_x86 boot_cpu_data;
|
|
extern struct cpuinfo_x86 new_cpu_data;
|
|
|
|
extern struct x86_hw_tss doublefault_tss;
|
|
extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
|
|
extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
|
|
|
|
#ifdef CONFIG_SMP
|
|
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
|
|
#define cpu_data(cpu) per_cpu(cpu_info, cpu)
|
|
#else
|
|
#define cpu_info boot_cpu_data
|
|
#define cpu_data(cpu) boot_cpu_data
|
|
#endif
|
|
|
|
extern const struct seq_operations cpuinfo_op;
|
|
|
|
#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
|
|
|
|
extern void cpu_detect(struct cpuinfo_x86 *c);
|
|
|
|
static inline unsigned long long l1tf_pfn_limit(void)
|
|
{
|
|
return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
|
|
}
|
|
|
|
extern void early_cpu_init(void);
|
|
extern void identify_boot_cpu(void);
|
|
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
|
|
extern void print_cpu_info(struct cpuinfo_x86 *);
|
|
void print_cpu_msr(struct cpuinfo_x86 *);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
extern int have_cpuid_p(void);
|
|
#else
|
|
static inline int have_cpuid_p(void)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
/* ecx is often an input as well as an output. */
|
|
asm volatile("cpuid"
|
|
: "=a" (*eax),
|
|
"=b" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "0" (*eax), "2" (*ecx)
|
|
: "memory");
|
|
}
|
|
|
|
#define native_cpuid_reg(reg) \
|
|
static inline unsigned int native_cpuid_##reg(unsigned int op) \
|
|
{ \
|
|
unsigned int eax = op, ebx, ecx = 0, edx; \
|
|
\
|
|
native_cpuid(&eax, &ebx, &ecx, &edx); \
|
|
\
|
|
return reg; \
|
|
}
|
|
|
|
/*
|
|
* Native CPUID functions returning a single datum.
|
|
*/
|
|
native_cpuid_reg(eax)
|
|
native_cpuid_reg(ebx)
|
|
native_cpuid_reg(ecx)
|
|
native_cpuid_reg(edx)
|
|
|
|
/*
|
|
* Friendlier CR3 helpers.
|
|
*/
|
|
static inline unsigned long read_cr3_pa(void)
|
|
{
|
|
return __read_cr3() & CR3_ADDR_MASK;
|
|
}
|
|
|
|
static inline unsigned long native_read_cr3_pa(void)
|
|
{
|
|
return __native_read_cr3() & CR3_ADDR_MASK;
|
|
}
|
|
|
|
static inline void load_cr3(pgd_t *pgdir)
|
|
{
|
|
write_cr3(__sme_pa(pgdir));
|
|
}
|
|
|
|
/*
|
|
* Note that while the legacy 'TSS' name comes from 'Task State Segment',
|
|
* on modern x86 CPUs the TSS also holds information important to 64-bit mode,
|
|
* unrelated to the task-switch mechanism:
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
/* This is the TSS defined by the hardware. */
|
|
struct x86_hw_tss {
|
|
unsigned short back_link, __blh;
|
|
unsigned long sp0;
|
|
unsigned short ss0, __ss0h;
|
|
unsigned long sp1;
|
|
|
|
/*
|
|
* We don't use ring 1, so ss1 is a convenient scratch space in
|
|
* the same cacheline as sp0. We use ss1 to cache the value in
|
|
* MSR_IA32_SYSENTER_CS. When we context switch
|
|
* MSR_IA32_SYSENTER_CS, we first check if the new value being
|
|
* written matches ss1, and, if it's not, then we wrmsr the new
|
|
* value and update ss1.
|
|
*
|
|
* The only reason we context switch MSR_IA32_SYSENTER_CS is
|
|
* that we set it to zero in vm86 tasks to avoid corrupting the
|
|
* stack if we were to go through the sysenter path from vm86
|
|
* mode.
|
|
*/
|
|
unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
|
|
|
|
unsigned short __ss1h;
|
|
unsigned long sp2;
|
|
unsigned short ss2, __ss2h;
|
|
unsigned long __cr3;
|
|
unsigned long ip;
|
|
unsigned long flags;
|
|
unsigned long ax;
|
|
unsigned long cx;
|
|
unsigned long dx;
|
|
unsigned long bx;
|
|
unsigned long sp;
|
|
unsigned long bp;
|
|
unsigned long si;
|
|
unsigned long di;
|
|
unsigned short es, __esh;
|
|
unsigned short cs, __csh;
|
|
unsigned short ss, __ssh;
|
|
unsigned short ds, __dsh;
|
|
unsigned short fs, __fsh;
|
|
unsigned short gs, __gsh;
|
|
unsigned short ldt, __ldth;
|
|
unsigned short trace;
|
|
unsigned short io_bitmap_base;
|
|
|
|
} __attribute__((packed));
|
|
#else
|
|
struct x86_hw_tss {
|
|
u32 reserved1;
|
|
u64 sp0;
|
|
|
|
/*
|
|
* We store cpu_current_top_of_stack in sp1 so it's always accessible.
|
|
* Linux does not use ring 1, so sp1 is not otherwise needed.
|
|
*/
|
|
u64 sp1;
|
|
|
|
/*
|
|
* Since Linux does not use ring 2, the 'sp2' slot is unused by
|
|
* hardware. entry_SYSCALL_64 uses it as scratch space to stash
|
|
* the user RSP value.
|
|
*/
|
|
u64 sp2;
|
|
|
|
u64 reserved2;
|
|
u64 ist[7];
|
|
u32 reserved3;
|
|
u32 reserved4;
|
|
u16 reserved5;
|
|
u16 io_bitmap_base;
|
|
|
|
} __attribute__((packed));
|
|
#endif
|
|
|
|
/*
|
|
* IO-bitmap sizes:
|
|
*/
|
|
#define IO_BITMAP_BITS 65536
|
|
#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
|
|
#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
|
|
#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
|
|
#define INVALID_IO_BITMAP_OFFSET 0x8000
|
|
|
|
struct entry_stack {
|
|
unsigned long words[64];
|
|
};
|
|
|
|
struct entry_stack_page {
|
|
struct entry_stack stack;
|
|
} __aligned(PAGE_SIZE);
|
|
|
|
struct tss_struct {
|
|
/*
|
|
* The fixed hardware portion. This must not cross a page boundary
|
|
* at risk of violating the SDM's advice and potentially triggering
|
|
* errata.
|
|
*/
|
|
struct x86_hw_tss x86_tss;
|
|
|
|
/*
|
|
* The extra 1 is there because the CPU will access an
|
|
* additional byte beyond the end of the IO permission
|
|
* bitmap. The extra byte must be all 1 bits, and must
|
|
* be within the limit.
|
|
*/
|
|
unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
|
|
} __aligned(PAGE_SIZE);
|
|
|
|
DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
|
|
|
|
/*
|
|
* sizeof(unsigned long) coming from an extra "long" at the end
|
|
* of the iobitmap.
|
|
*
|
|
* -1? seg base+limit should be pointing to the address of the
|
|
* last valid byte
|
|
*/
|
|
#define __KERNEL_TSS_LIMIT \
|
|
(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
|
|
|
|
/* Per CPU interrupt stacks */
|
|
struct irq_stack {
|
|
char stack[IRQ_STACK_SIZE];
|
|
} __aligned(IRQ_STACK_SIZE);
|
|
|
|
DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
|
|
#else
|
|
/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
|
|
#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
struct fixed_percpu_data {
|
|
/*
|
|
* GCC hardcodes the stack canary as %gs:40. Since the
|
|
* irq_stack is the object at %gs:0, we reserve the bottom
|
|
* 48 bytes of the irq stack for the canary.
|
|
*/
|
|
char gs_base[40];
|
|
unsigned long stack_canary;
|
|
};
|
|
|
|
DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
|
|
DECLARE_INIT_PER_CPU(fixed_percpu_data);
|
|
|
|
static inline unsigned long cpu_kernelmode_gs_base(int cpu)
|
|
{
|
|
return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
|
|
}
|
|
|
|
DECLARE_PER_CPU(unsigned int, irq_count);
|
|
extern asmlinkage void ignore_sysret(void);
|
|
|
|
#if IS_ENABLED(CONFIG_KVM)
|
|
/* Save actual FS/GS selectors and bases to current->thread */
|
|
void save_fsgs_for_kvm(void);
|
|
#endif
|
|
#else /* X86_64 */
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
/*
|
|
* Make sure stack canary segment base is cached-aligned:
|
|
* "For Intel Atom processors, avoid non zero segment base address
|
|
* that is not aligned to cache line boundary at all cost."
|
|
* (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
|
|
*/
|
|
struct stack_canary {
|
|
char __pad[20]; /* canary at %gs:20 */
|
|
unsigned long canary;
|
|
};
|
|
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
/* Per CPU softirq stack pointer */
|
|
DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
|
|
#endif /* X86_64 */
|
|
|
|
extern unsigned int fpu_kernel_xstate_size;
|
|
extern unsigned int fpu_user_xstate_size;
|
|
|
|
struct perf_event;
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
struct thread_struct {
|
|
/* Cached TLS descriptors: */
|
|
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long sp0;
|
|
#endif
|
|
unsigned long sp;
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long sysenter_cs;
|
|
#else
|
|
unsigned short es;
|
|
unsigned short ds;
|
|
unsigned short fsindex;
|
|
unsigned short gsindex;
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
unsigned long fsbase;
|
|
unsigned long gsbase;
|
|
#else
|
|
/*
|
|
* XXX: this could presumably be unsigned short. Alternatively,
|
|
* 32-bit kernels could be taught to use fsindex instead.
|
|
*/
|
|
unsigned long fs;
|
|
unsigned long gs;
|
|
#endif
|
|
|
|
/* Save middle states of ptrace breakpoints */
|
|
struct perf_event *ptrace_bps[HBP_NUM];
|
|
/* Debug status used for traps, single steps, etc... */
|
|
unsigned long debugreg6;
|
|
/* Keep track of the exact dr7 value set by the user */
|
|
unsigned long ptrace_dr7;
|
|
/* Fault info: */
|
|
unsigned long cr2;
|
|
unsigned long trap_nr;
|
|
unsigned long error_code;
|
|
#ifdef CONFIG_VM86
|
|
/* Virtual 86 mode info */
|
|
struct vm86 *vm86;
|
|
#endif
|
|
/* IO permissions: */
|
|
unsigned long *io_bitmap_ptr;
|
|
unsigned long iopl;
|
|
/* Max allowed port in the bitmap, in bytes: */
|
|
unsigned io_bitmap_max;
|
|
|
|
mm_segment_t addr_limit;
|
|
|
|
unsigned int sig_on_uaccess_err:1;
|
|
unsigned int uaccess_err:1; /* uaccess failed */
|
|
|
|
/* Floating point and extended processor state */
|
|
struct fpu fpu;
|
|
/*
|
|
* WARNING: 'fpu' is dynamically-sized. It *MUST* be at
|
|
* the end.
|
|
*/
|
|
};
|
|
|
|
/* Whitelist the FPU state from the task_struct for hardened usercopy. */
|
|
static inline void arch_thread_struct_whitelist(unsigned long *offset,
|
|
unsigned long *size)
|
|
{
|
|
*offset = offsetof(struct thread_struct, fpu.state);
|
|
*size = fpu_kernel_xstate_size;
|
|
}
|
|
|
|
/*
|
|
* Thread-synchronous status.
|
|
*
|
|
* This is different from the flags in that nobody else
|
|
* ever touches our thread-synchronous status, so we don't
|
|
* have to worry about atomic accesses.
|
|
*/
|
|
#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
|
|
|
|
/*
|
|
* Set IOPL bits in EFLAGS from given mask
|
|
*/
|
|
static inline void native_set_iopl_mask(unsigned mask)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned int reg;
|
|
|
|
asm volatile ("pushfl;"
|
|
"popl %0;"
|
|
"andl %1, %0;"
|
|
"orl %2, %0;"
|
|
"pushl %0;"
|
|
"popfl"
|
|
: "=&r" (reg)
|
|
: "i" (~X86_EFLAGS_IOPL), "r" (mask));
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
native_load_sp0(unsigned long sp0)
|
|
{
|
|
this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
|
|
}
|
|
|
|
static inline void native_swapgs(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
asm volatile("swapgs" ::: "memory");
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long current_top_of_stack(void)
|
|
{
|
|
/*
|
|
* We can't read directly from tss.sp0: sp0 on x86_32 is special in
|
|
* and around vm86 mode and sp0 on x86_64 is special because of the
|
|
* entry trampoline.
|
|
*/
|
|
return this_cpu_read_stable(cpu_current_top_of_stack);
|
|
}
|
|
|
|
static inline bool on_thread_stack(void)
|
|
{
|
|
return (unsigned long)(current_top_of_stack() -
|
|
current_stack_pointer) < THREAD_SIZE;
|
|
}
|
|
|
|
#ifdef CONFIG_PARAVIRT_XXL
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
#define __cpuid native_cpuid
|
|
|
|
static inline void load_sp0(unsigned long sp0)
|
|
{
|
|
native_load_sp0(sp0);
|
|
}
|
|
|
|
#define set_iopl_mask native_set_iopl_mask
|
|
#endif /* CONFIG_PARAVIRT_XXL */
|
|
|
|
/* Free all resources held by a thread. */
|
|
extern void release_thread(struct task_struct *);
|
|
|
|
unsigned long get_wchan(struct task_struct *p);
|
|
|
|
/*
|
|
* Generic CPUID function
|
|
* clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
|
|
* resulting in stale register contents being returned.
|
|
*/
|
|
static inline void cpuid(unsigned int op,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = 0;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/* Some CPUID calls want 'count' to be placed in ecx */
|
|
static inline void cpuid_count(unsigned int op, int count,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = count;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/*
|
|
* CPUID functions returning a single datum
|
|
*/
|
|
static inline unsigned int cpuid_eax(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return eax;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ebx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ebx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ecx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ecx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_edx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return edx;
|
|
}
|
|
|
|
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
|
|
static __always_inline void rep_nop(void)
|
|
{
|
|
asm volatile("rep; nop" ::: "memory");
|
|
}
|
|
|
|
static __always_inline void cpu_relax(void)
|
|
{
|
|
rep_nop();
|
|
}
|
|
|
|
/*
|
|
* This function forces the icache and prefetched instruction stream to
|
|
* catch up with reality in two very specific cases:
|
|
*
|
|
* a) Text was modified using one virtual address and is about to be executed
|
|
* from the same physical page at a different virtual address.
|
|
*
|
|
* b) Text was modified on a different CPU, may subsequently be
|
|
* executed on this CPU, and you want to make sure the new version
|
|
* gets executed. This generally means you're calling this in a IPI.
|
|
*
|
|
* If you're calling this for a different reason, you're probably doing
|
|
* it wrong.
|
|
*/
|
|
static inline void sync_core(void)
|
|
{
|
|
/*
|
|
* There are quite a few ways to do this. IRET-to-self is nice
|
|
* because it works on every CPU, at any CPL (so it's compatible
|
|
* with paravirtualization), and it never exits to a hypervisor.
|
|
* The only down sides are that it's a bit slow (it seems to be
|
|
* a bit more than 2x slower than the fastest options) and that
|
|
* it unmasks NMIs. The "push %cs" is needed because, in
|
|
* paravirtual environments, __KERNEL_CS may not be a valid CS
|
|
* value when we do IRET directly.
|
|
*
|
|
* In case NMI unmasking or performance ever becomes a problem,
|
|
* the next best option appears to be MOV-to-CR2 and an
|
|
* unconditional jump. That sequence also works on all CPUs,
|
|
* but it will fault at CPL3 (i.e. Xen PV).
|
|
*
|
|
* CPUID is the conventional way, but it's nasty: it doesn't
|
|
* exist on some 486-like CPUs, and it usually exits to a
|
|
* hypervisor.
|
|
*
|
|
* Like all of Linux's memory ordering operations, this is a
|
|
* compiler barrier as well.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
asm volatile (
|
|
"pushfl\n\t"
|
|
"pushl %%cs\n\t"
|
|
"pushl $1f\n\t"
|
|
"iret\n\t"
|
|
"1:"
|
|
: ASM_CALL_CONSTRAINT : : "memory");
|
|
#else
|
|
unsigned int tmp;
|
|
|
|
asm volatile (
|
|
UNWIND_HINT_SAVE
|
|
"mov %%ss, %0\n\t"
|
|
"pushq %q0\n\t"
|
|
"pushq %%rsp\n\t"
|
|
"addq $8, (%%rsp)\n\t"
|
|
"pushfq\n\t"
|
|
"mov %%cs, %0\n\t"
|
|
"pushq %q0\n\t"
|
|
"pushq $1f\n\t"
|
|
"iretq\n\t"
|
|
UNWIND_HINT_RESTORE
|
|
"1:"
|
|
: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
|
|
#endif
|
|
}
|
|
|
|
extern void select_idle_routine(const struct cpuinfo_x86 *c);
|
|
extern void amd_e400_c1e_apic_setup(void);
|
|
|
|
extern unsigned long boot_option_idle_override;
|
|
|
|
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
|
|
IDLE_POLL};
|
|
|
|
extern void enable_sep_cpu(void);
|
|
extern int sysenter_setup(void);
|
|
|
|
|
|
/* Defined in head.S */
|
|
extern struct desc_ptr early_gdt_descr;
|
|
|
|
extern void switch_to_new_gdt(int);
|
|
extern void load_direct_gdt(int);
|
|
extern void load_fixmap_gdt(int);
|
|
extern void load_percpu_segment(int);
|
|
extern void cpu_init(void);
|
|
extern void cr4_init(void);
|
|
|
|
static inline unsigned long get_debugctlmsr(void)
|
|
{
|
|
unsigned long debugctlmsr = 0;
|
|
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return 0;
|
|
#endif
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
|
|
return debugctlmsr;
|
|
}
|
|
|
|
static inline void update_debugctlmsr(unsigned long debugctlmsr)
|
|
{
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return;
|
|
#endif
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
}
|
|
|
|
extern void set_task_blockstep(struct task_struct *task, bool on);
|
|
|
|
/* Boot loader type from the setup header: */
|
|
extern int bootloader_type;
|
|
extern int bootloader_version;
|
|
|
|
extern char ignore_fpu_irq;
|
|
|
|
#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
|
|
#define ARCH_HAS_PREFETCHW
|
|
#define ARCH_HAS_SPINLOCK_PREFETCH
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# define BASE_PREFETCH ""
|
|
# define ARCH_HAS_PREFETCH
|
|
#else
|
|
# define BASE_PREFETCH "prefetcht0 %P1"
|
|
#endif
|
|
|
|
/*
|
|
* Prefetch instructions for Pentium III (+) and AMD Athlon (+)
|
|
*
|
|
* It's not worth to care about 3dnow prefetches for the K6
|
|
* because they are microcoded there and very slow.
|
|
*/
|
|
static inline void prefetch(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchnta %P1",
|
|
X86_FEATURE_XMM,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
/*
|
|
* 3dnow prefetch to get an exclusive cache line.
|
|
* Useful for spinlocks to avoid one state transition in the
|
|
* cache coherency protocol:
|
|
*/
|
|
static inline void prefetchw(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchw %P1",
|
|
X86_FEATURE_3DNOWPREFETCH,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
static inline void spin_lock_prefetch(const void *x)
|
|
{
|
|
prefetchw(x);
|
|
}
|
|
|
|
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
|
|
TOP_OF_KERNEL_STACK_PADDING)
|
|
|
|
#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
|
|
|
|
#define task_pt_regs(task) \
|
|
({ \
|
|
unsigned long __ptr = (unsigned long)task_stack_page(task); \
|
|
__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
|
|
((struct pt_regs *)__ptr) - 1; \
|
|
})
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* User space process size: 3GB (default).
|
|
*/
|
|
#define IA32_PAGE_OFFSET PAGE_OFFSET
|
|
#define TASK_SIZE PAGE_OFFSET
|
|
#define TASK_SIZE_LOW TASK_SIZE
|
|
#define TASK_SIZE_MAX TASK_SIZE
|
|
#define DEFAULT_MAP_WINDOW TASK_SIZE
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX STACK_TOP
|
|
|
|
#define INIT_THREAD { \
|
|
.sp0 = TOP_OF_INIT_STACK, \
|
|
.sysenter_cs = __KERNEL_CS, \
|
|
.io_bitmap_ptr = NULL, \
|
|
.addr_limit = KERNEL_DS, \
|
|
}
|
|
|
|
#define KSTK_ESP(task) (task_pt_regs(task)->sp)
|
|
|
|
#else
|
|
/*
|
|
* User space process size. This is the first address outside the user range.
|
|
* There are a few constraints that determine this:
|
|
*
|
|
* On Intel CPUs, if a SYSCALL instruction is at the highest canonical
|
|
* address, then that syscall will enter the kernel with a
|
|
* non-canonical return address, and SYSRET will explode dangerously.
|
|
* We avoid this particular problem by preventing anything executable
|
|
* from being mapped at the maximum canonical address.
|
|
*
|
|
* On AMD CPUs in the Ryzen family, there's a nasty bug in which the
|
|
* CPUs malfunction if they execute code from the highest canonical page.
|
|
* They'll speculate right off the end of the canonical space, and
|
|
* bad things happen. This is worked around in the same way as the
|
|
* Intel problem.
|
|
*
|
|
* With page table isolation enabled, we map the LDT in ... [stay tuned]
|
|
*/
|
|
#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
|
|
|
|
#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
|
|
0xc0000000 : 0xFFFFe000)
|
|
|
|
#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
|
|
IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
|
|
#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
|
|
#define STACK_TOP TASK_SIZE_LOW
|
|
#define STACK_TOP_MAX TASK_SIZE_MAX
|
|
|
|
#define INIT_THREAD { \
|
|
.addr_limit = KERNEL_DS, \
|
|
}
|
|
|
|
extern unsigned long KSTK_ESP(struct task_struct *task);
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp);
|
|
|
|
/*
|
|
* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
|
|
#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
|
|
|
|
#define KSTK_EIP(task) (task_pt_regs(task)->ip)
|
|
|
|
/* Get/set a process' ability to use the timestamp counter instruction */
|
|
#define GET_TSC_CTL(adr) get_tsc_mode((adr))
|
|
#define SET_TSC_CTL(val) set_tsc_mode((val))
|
|
|
|
extern int get_tsc_mode(unsigned long adr);
|
|
extern int set_tsc_mode(unsigned int val);
|
|
|
|
DECLARE_PER_CPU(u64, msr_misc_features_shadow);
|
|
|
|
/* Register/unregister a process' MPX related resource */
|
|
#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
|
|
#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
|
|
|
|
#ifdef CONFIG_X86_INTEL_MPX
|
|
extern int mpx_enable_management(void);
|
|
extern int mpx_disable_management(void);
|
|
#else
|
|
static inline int mpx_enable_management(void)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
static inline int mpx_disable_management(void)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_X86_INTEL_MPX */
|
|
|
|
#ifdef CONFIG_CPU_SUP_AMD
|
|
extern u16 amd_get_nb_id(int cpu);
|
|
extern u32 amd_get_nodes_per_socket(void);
|
|
#else
|
|
static inline u16 amd_get_nb_id(int cpu) { return 0; }
|
|
static inline u32 amd_get_nodes_per_socket(void) { return 0; }
|
|
#endif
|
|
|
|
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
|
|
{
|
|
uint32_t base, eax, signature[3];
|
|
|
|
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
|
|
cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
|
|
|
|
if (!memcmp(sig, signature, 12) &&
|
|
(leaves == 0 || ((eax - base) >= leaves)))
|
|
return base;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern unsigned long arch_align_stack(unsigned long sp);
|
|
void free_init_pages(const char *what, unsigned long begin, unsigned long end);
|
|
extern void free_kernel_image_pages(const char *what, void *begin, void *end);
|
|
|
|
void default_idle(void);
|
|
#ifdef CONFIG_XEN
|
|
bool xen_set_default_idle(void);
|
|
#else
|
|
#define xen_set_default_idle 0
|
|
#endif
|
|
|
|
void stop_this_cpu(void *dummy);
|
|
void df_debug(struct pt_regs *regs, long error_code);
|
|
void microcode_check(void);
|
|
|
|
enum l1tf_mitigations {
|
|
L1TF_MITIGATION_OFF,
|
|
L1TF_MITIGATION_FLUSH_NOWARN,
|
|
L1TF_MITIGATION_FLUSH,
|
|
L1TF_MITIGATION_FLUSH_NOSMT,
|
|
L1TF_MITIGATION_FULL,
|
|
L1TF_MITIGATION_FULL_FORCE
|
|
};
|
|
|
|
extern enum l1tf_mitigations l1tf_mitigation;
|
|
|
|
enum mds_mitigations {
|
|
MDS_MITIGATION_OFF,
|
|
MDS_MITIGATION_FULL,
|
|
MDS_MITIGATION_VMWERV,
|
|
};
|
|
|
|
#endif /* _ASM_X86_PROCESSOR_H */
|