Jason Gunthorpe 9169cff168 vfio/mdev: Correct the function signatures for the mdev_type_attributes
The driver core standard is to pass in the properly typed object, the
properly typed attribute and the buffer data. It stems from the root
kobject method:

  ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,..)

Each subclass of kobject should provide their own function with the same
signature but more specific types, eg struct device uses:

  ssize_t (*show)(struct device *dev, struct device_attribute *attr,..)

In this case the existing signature is:

  ssize_t (*show)(struct kobject *kobj, struct device *dev,..)

Where kobj is a 'struct mdev_type *' and dev is 'mdev_type->parent->dev'.

Change the mdev_type related sysfs attribute functions to:

  ssize_t (*show)(struct mdev_type *mtype, struct mdev_type_attribute *attr,..)

In order to restore type safety and match the driver core standard

There are no current users of 'attr', but if it is ever needed it would be
hard to add in retroactively, so do it now.

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Message-Id: <18-v2-d36939638fc6+d54-vfio2_jgg@nvidia.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-04-12 10:36:00 -06:00

1456 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Mediated virtual PCI serial host device driver
*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
* Author: Neo Jia <cjia@nvidia.com>
* Kirti Wankhede <kwankhede@nvidia.com>
*
* Sample driver that creates mdev device that simulates serial port over PCI
* card.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/uuid.h>
#include <linux/vfio.h>
#include <linux/iommu.h>
#include <linux/sysfs.h>
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/mdev.h>
#include <linux/pci.h>
#include <linux/serial.h>
#include <uapi/linux/serial_reg.h>
#include <linux/eventfd.h>
/*
* #defines
*/
#define VERSION_STRING "0.1"
#define DRIVER_AUTHOR "NVIDIA Corporation"
#define MTTY_CLASS_NAME "mtty"
#define MTTY_NAME "mtty"
#define MTTY_STRING_LEN 16
#define MTTY_CONFIG_SPACE_SIZE 0xff
#define MTTY_IO_BAR_SIZE 0x8
#define MTTY_MMIO_BAR_SIZE 0x100000
#define STORE_LE16(addr, val) (*(u16 *)addr = val)
#define STORE_LE32(addr, val) (*(u32 *)addr = val)
#define MAX_FIFO_SIZE 16
#define CIRCULAR_BUF_INC_IDX(idx) (idx = (idx + 1) & (MAX_FIFO_SIZE - 1))
#define MTTY_VFIO_PCI_OFFSET_SHIFT 40
#define MTTY_VFIO_PCI_OFFSET_TO_INDEX(off) (off >> MTTY_VFIO_PCI_OFFSET_SHIFT)
#define MTTY_VFIO_PCI_INDEX_TO_OFFSET(index) \
((u64)(index) << MTTY_VFIO_PCI_OFFSET_SHIFT)
#define MTTY_VFIO_PCI_OFFSET_MASK \
(((u64)(1) << MTTY_VFIO_PCI_OFFSET_SHIFT) - 1)
#define MAX_MTTYS 24
/*
* Global Structures
*/
static struct mtty_dev {
dev_t vd_devt;
struct class *vd_class;
struct cdev vd_cdev;
struct idr vd_idr;
struct device dev;
} mtty_dev;
struct mdev_region_info {
u64 start;
u64 phys_start;
u32 size;
u64 vfio_offset;
};
#if defined(DEBUG_REGS)
static const char *wr_reg[] = {
"TX",
"IER",
"FCR",
"LCR",
"MCR",
"LSR",
"MSR",
"SCR"
};
static const char *rd_reg[] = {
"RX",
"IER",
"IIR",
"LCR",
"MCR",
"LSR",
"MSR",
"SCR"
};
#endif
/* loop back buffer */
struct rxtx {
u8 fifo[MAX_FIFO_SIZE];
u8 head, tail;
u8 count;
};
struct serial_port {
u8 uart_reg[8]; /* 8 registers */
struct rxtx rxtx; /* loop back buffer */
bool dlab;
bool overrun;
u16 divisor;
u8 fcr; /* FIFO control register */
u8 max_fifo_size;
u8 intr_trigger_level; /* interrupt trigger level */
};
/* State of each mdev device */
struct mdev_state {
int irq_fd;
struct eventfd_ctx *intx_evtfd;
struct eventfd_ctx *msi_evtfd;
int irq_index;
u8 *vconfig;
struct mutex ops_lock;
struct mdev_device *mdev;
struct mdev_region_info region_info[VFIO_PCI_NUM_REGIONS];
u32 bar_mask[VFIO_PCI_NUM_REGIONS];
struct list_head next;
struct serial_port s[2];
struct mutex rxtx_lock;
struct vfio_device_info dev_info;
int nr_ports;
};
static struct mutex mdev_list_lock;
static struct list_head mdev_devices_list;
static const struct file_operations vd_fops = {
.owner = THIS_MODULE,
};
/* function prototypes */
static int mtty_trigger_interrupt(struct mdev_state *mdev_state);
/* Helper functions */
static void dump_buffer(u8 *buf, uint32_t count)
{
#if defined(DEBUG)
int i;
pr_info("Buffer:\n");
for (i = 0; i < count; i++) {
pr_info("%2x ", *(buf + i));
if ((i + 1) % 16 == 0)
pr_info("\n");
}
#endif
}
static void mtty_create_config_space(struct mdev_state *mdev_state)
{
/* PCI dev ID */
STORE_LE32((u32 *) &mdev_state->vconfig[0x0], 0x32534348);
/* Control: I/O+, Mem-, BusMaster- */
STORE_LE16((u16 *) &mdev_state->vconfig[0x4], 0x0001);
/* Status: capabilities list absent */
STORE_LE16((u16 *) &mdev_state->vconfig[0x6], 0x0200);
/* Rev ID */
mdev_state->vconfig[0x8] = 0x10;
/* programming interface class : 16550-compatible serial controller */
mdev_state->vconfig[0x9] = 0x02;
/* Sub class : 00 */
mdev_state->vconfig[0xa] = 0x00;
/* Base class : Simple Communication controllers */
mdev_state->vconfig[0xb] = 0x07;
/* base address registers */
/* BAR0: IO space */
STORE_LE32((u32 *) &mdev_state->vconfig[0x10], 0x000001);
mdev_state->bar_mask[0] = ~(MTTY_IO_BAR_SIZE) + 1;
if (mdev_state->nr_ports == 2) {
/* BAR1: IO space */
STORE_LE32((u32 *) &mdev_state->vconfig[0x14], 0x000001);
mdev_state->bar_mask[1] = ~(MTTY_IO_BAR_SIZE) + 1;
}
/* Subsystem ID */
STORE_LE32((u32 *) &mdev_state->vconfig[0x2c], 0x32534348);
mdev_state->vconfig[0x34] = 0x00; /* Cap Ptr */
mdev_state->vconfig[0x3d] = 0x01; /* interrupt pin (INTA#) */
/* Vendor specific data */
mdev_state->vconfig[0x40] = 0x23;
mdev_state->vconfig[0x43] = 0x80;
mdev_state->vconfig[0x44] = 0x23;
mdev_state->vconfig[0x48] = 0x23;
mdev_state->vconfig[0x4c] = 0x23;
mdev_state->vconfig[0x60] = 0x50;
mdev_state->vconfig[0x61] = 0x43;
mdev_state->vconfig[0x62] = 0x49;
mdev_state->vconfig[0x63] = 0x20;
mdev_state->vconfig[0x64] = 0x53;
mdev_state->vconfig[0x65] = 0x65;
mdev_state->vconfig[0x66] = 0x72;
mdev_state->vconfig[0x67] = 0x69;
mdev_state->vconfig[0x68] = 0x61;
mdev_state->vconfig[0x69] = 0x6c;
mdev_state->vconfig[0x6a] = 0x2f;
mdev_state->vconfig[0x6b] = 0x55;
mdev_state->vconfig[0x6c] = 0x41;
mdev_state->vconfig[0x6d] = 0x52;
mdev_state->vconfig[0x6e] = 0x54;
}
static void handle_pci_cfg_write(struct mdev_state *mdev_state, u16 offset,
u8 *buf, u32 count)
{
u32 cfg_addr, bar_mask, bar_index = 0;
switch (offset) {
case 0x04: /* device control */
case 0x06: /* device status */
/* do nothing */
break;
case 0x3c: /* interrupt line */
mdev_state->vconfig[0x3c] = buf[0];
break;
case 0x3d:
/*
* Interrupt Pin is hardwired to INTA.
* This field is write protected by hardware
*/
break;
case 0x10: /* BAR0 */
case 0x14: /* BAR1 */
if (offset == 0x10)
bar_index = 0;
else if (offset == 0x14)
bar_index = 1;
if ((mdev_state->nr_ports == 1) && (bar_index == 1)) {
STORE_LE32(&mdev_state->vconfig[offset], 0);
break;
}
cfg_addr = *(u32 *)buf;
pr_info("BAR%d addr 0x%x\n", bar_index, cfg_addr);
if (cfg_addr == 0xffffffff) {
bar_mask = mdev_state->bar_mask[bar_index];
cfg_addr = (cfg_addr & bar_mask);
}
cfg_addr |= (mdev_state->vconfig[offset] & 0x3ul);
STORE_LE32(&mdev_state->vconfig[offset], cfg_addr);
break;
case 0x18: /* BAR2 */
case 0x1c: /* BAR3 */
case 0x20: /* BAR4 */
STORE_LE32(&mdev_state->vconfig[offset], 0);
break;
default:
pr_info("PCI config write @0x%x of %d bytes not handled\n",
offset, count);
break;
}
}
static void handle_bar_write(unsigned int index, struct mdev_state *mdev_state,
u16 offset, u8 *buf, u32 count)
{
u8 data = *buf;
/* Handle data written by guest */
switch (offset) {
case UART_TX:
/* if DLAB set, data is LSB of divisor */
if (mdev_state->s[index].dlab) {
mdev_state->s[index].divisor |= data;
break;
}
mutex_lock(&mdev_state->rxtx_lock);
/* save in TX buffer */
if (mdev_state->s[index].rxtx.count <
mdev_state->s[index].max_fifo_size) {
mdev_state->s[index].rxtx.fifo[
mdev_state->s[index].rxtx.head] = data;
mdev_state->s[index].rxtx.count++;
CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.head);
mdev_state->s[index].overrun = false;
/*
* Trigger interrupt if receive data interrupt is
* enabled and fifo reached trigger level
*/
if ((mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_RDI) &&
(mdev_state->s[index].rxtx.count ==
mdev_state->s[index].intr_trigger_level)) {
/* trigger interrupt */
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Fifo level trigger\n",
index);
#endif
mtty_trigger_interrupt(mdev_state);
}
} else {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Buffer Overflow\n", index);
#endif
mdev_state->s[index].overrun = true;
/*
* Trigger interrupt if receiver line status interrupt
* is enabled
*/
if (mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_RLSI)
mtty_trigger_interrupt(mdev_state);
}
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_IER:
/* if DLAB set, data is MSB of divisor */
if (mdev_state->s[index].dlab)
mdev_state->s[index].divisor |= (u16)data << 8;
else {
mdev_state->s[index].uart_reg[offset] = data;
mutex_lock(&mdev_state->rxtx_lock);
if ((data & UART_IER_THRI) &&
(mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail)) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: IER_THRI write\n",
index);
#endif
mtty_trigger_interrupt(mdev_state);
}
mutex_unlock(&mdev_state->rxtx_lock);
}
break;
case UART_FCR:
mdev_state->s[index].fcr = data;
mutex_lock(&mdev_state->rxtx_lock);
if (data & (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)) {
/* clear loop back FIFO */
mdev_state->s[index].rxtx.count = 0;
mdev_state->s[index].rxtx.head = 0;
mdev_state->s[index].rxtx.tail = 0;
}
mutex_unlock(&mdev_state->rxtx_lock);
switch (data & UART_FCR_TRIGGER_MASK) {
case UART_FCR_TRIGGER_1:
mdev_state->s[index].intr_trigger_level = 1;
break;
case UART_FCR_TRIGGER_4:
mdev_state->s[index].intr_trigger_level = 4;
break;
case UART_FCR_TRIGGER_8:
mdev_state->s[index].intr_trigger_level = 8;
break;
case UART_FCR_TRIGGER_14:
mdev_state->s[index].intr_trigger_level = 14;
break;
}
/*
* Set trigger level to 1 otherwise or implement timer with
* timeout of 4 characters and on expiring that timer set
* Recevice data timeout in IIR register
*/
mdev_state->s[index].intr_trigger_level = 1;
if (data & UART_FCR_ENABLE_FIFO)
mdev_state->s[index].max_fifo_size = MAX_FIFO_SIZE;
else {
mdev_state->s[index].max_fifo_size = 1;
mdev_state->s[index].intr_trigger_level = 1;
}
break;
case UART_LCR:
if (data & UART_LCR_DLAB) {
mdev_state->s[index].dlab = true;
mdev_state->s[index].divisor = 0;
} else
mdev_state->s[index].dlab = false;
mdev_state->s[index].uart_reg[offset] = data;
break;
case UART_MCR:
mdev_state->s[index].uart_reg[offset] = data;
if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
(data & UART_MCR_OUT2)) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: MCR_OUT2 write\n", index);
#endif
mtty_trigger_interrupt(mdev_state);
}
if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
(data & (UART_MCR_RTS | UART_MCR_DTR))) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: MCR RTS/DTR write\n", index);
#endif
mtty_trigger_interrupt(mdev_state);
}
break;
case UART_LSR:
case UART_MSR:
/* do nothing */
break;
case UART_SCR:
mdev_state->s[index].uart_reg[offset] = data;
break;
default:
break;
}
}
static void handle_bar_read(unsigned int index, struct mdev_state *mdev_state,
u16 offset, u8 *buf, u32 count)
{
/* Handle read requests by guest */
switch (offset) {
case UART_RX:
/* if DLAB set, data is LSB of divisor */
if (mdev_state->s[index].dlab) {
*buf = (u8)mdev_state->s[index].divisor;
break;
}
mutex_lock(&mdev_state->rxtx_lock);
/* return data in tx buffer */
if (mdev_state->s[index].rxtx.head !=
mdev_state->s[index].rxtx.tail) {
*buf = mdev_state->s[index].rxtx.fifo[
mdev_state->s[index].rxtx.tail];
mdev_state->s[index].rxtx.count--;
CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.tail);
}
if (mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail) {
/*
* Trigger interrupt if tx buffer empty interrupt is
* enabled and fifo is empty
*/
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Buffer Empty\n", index);
#endif
if (mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_THRI)
mtty_trigger_interrupt(mdev_state);
}
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_IER:
if (mdev_state->s[index].dlab) {
*buf = (u8)(mdev_state->s[index].divisor >> 8);
break;
}
*buf = mdev_state->s[index].uart_reg[offset] & 0x0f;
break;
case UART_IIR:
{
u8 ier = mdev_state->s[index].uart_reg[UART_IER];
*buf = 0;
mutex_lock(&mdev_state->rxtx_lock);
/* Interrupt priority 1: Parity, overrun, framing or break */
if ((ier & UART_IER_RLSI) && mdev_state->s[index].overrun)
*buf |= UART_IIR_RLSI;
/* Interrupt priority 2: Fifo trigger level reached */
if ((ier & UART_IER_RDI) &&
(mdev_state->s[index].rxtx.count >=
mdev_state->s[index].intr_trigger_level))
*buf |= UART_IIR_RDI;
/* Interrupt priotiry 3: transmitter holding register empty */
if ((ier & UART_IER_THRI) &&
(mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail))
*buf |= UART_IIR_THRI;
/* Interrupt priotiry 4: Modem status: CTS, DSR, RI or DCD */
if ((ier & UART_IER_MSI) &&
(mdev_state->s[index].uart_reg[UART_MCR] &
(UART_MCR_RTS | UART_MCR_DTR)))
*buf |= UART_IIR_MSI;
/* bit0: 0=> interrupt pending, 1=> no interrupt is pending */
if (*buf == 0)
*buf = UART_IIR_NO_INT;
/* set bit 6 & 7 to be 16550 compatible */
*buf |= 0xC0;
mutex_unlock(&mdev_state->rxtx_lock);
}
break;
case UART_LCR:
case UART_MCR:
*buf = mdev_state->s[index].uart_reg[offset];
break;
case UART_LSR:
{
u8 lsr = 0;
mutex_lock(&mdev_state->rxtx_lock);
/* atleast one char in FIFO */
if (mdev_state->s[index].rxtx.head !=
mdev_state->s[index].rxtx.tail)
lsr |= UART_LSR_DR;
/* if FIFO overrun */
if (mdev_state->s[index].overrun)
lsr |= UART_LSR_OE;
/* transmit FIFO empty and tramsitter empty */
if (mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail)
lsr |= UART_LSR_TEMT | UART_LSR_THRE;
mutex_unlock(&mdev_state->rxtx_lock);
*buf = lsr;
break;
}
case UART_MSR:
*buf = UART_MSR_DSR | UART_MSR_DDSR | UART_MSR_DCD;
mutex_lock(&mdev_state->rxtx_lock);
/* if AFE is 1 and FIFO have space, set CTS bit */
if (mdev_state->s[index].uart_reg[UART_MCR] &
UART_MCR_AFE) {
if (mdev_state->s[index].rxtx.count <
mdev_state->s[index].max_fifo_size)
*buf |= UART_MSR_CTS | UART_MSR_DCTS;
} else
*buf |= UART_MSR_CTS | UART_MSR_DCTS;
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_SCR:
*buf = mdev_state->s[index].uart_reg[offset];
break;
default:
break;
}
}
static void mdev_read_base(struct mdev_state *mdev_state)
{
int index, pos;
u32 start_lo, start_hi;
u32 mem_type;
pos = PCI_BASE_ADDRESS_0;
for (index = 0; index <= VFIO_PCI_BAR5_REGION_INDEX; index++) {
if (!mdev_state->region_info[index].size)
continue;
start_lo = (*(u32 *)(mdev_state->vconfig + pos)) &
PCI_BASE_ADDRESS_MEM_MASK;
mem_type = (*(u32 *)(mdev_state->vconfig + pos)) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_64:
start_hi = (*(u32 *)(mdev_state->vconfig + pos + 4));
pos += 4;
break;
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
/* 1M mem BAR treated as 32-bit BAR */
default:
/* mem unknown type treated as 32-bit BAR */
start_hi = 0;
break;
}
pos += 4;
mdev_state->region_info[index].start = ((u64)start_hi << 32) |
start_lo;
}
}
static ssize_t mdev_access(struct mdev_device *mdev, u8 *buf, size_t count,
loff_t pos, bool is_write)
{
struct mdev_state *mdev_state;
unsigned int index;
loff_t offset;
int ret = 0;
if (!mdev || !buf)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state) {
pr_err("%s mdev_state not found\n", __func__);
return -EINVAL;
}
mutex_lock(&mdev_state->ops_lock);
index = MTTY_VFIO_PCI_OFFSET_TO_INDEX(pos);
offset = pos & MTTY_VFIO_PCI_OFFSET_MASK;
switch (index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
#if defined(DEBUG)
pr_info("%s: PCI config space %s at offset 0x%llx\n",
__func__, is_write ? "write" : "read", offset);
#endif
if (is_write) {
dump_buffer(buf, count);
handle_pci_cfg_write(mdev_state, offset, buf, count);
} else {
memcpy(buf, (mdev_state->vconfig + offset), count);
dump_buffer(buf, count);
}
break;
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
if (!mdev_state->region_info[index].start)
mdev_read_base(mdev_state);
if (is_write) {
dump_buffer(buf, count);
#if defined(DEBUG_REGS)
pr_info("%s: BAR%d WR @0x%llx %s val:0x%02x dlab:%d\n",
__func__, index, offset, wr_reg[offset],
*buf, mdev_state->s[index].dlab);
#endif
handle_bar_write(index, mdev_state, offset, buf, count);
} else {
handle_bar_read(index, mdev_state, offset, buf, count);
dump_buffer(buf, count);
#if defined(DEBUG_REGS)
pr_info("%s: BAR%d RD @0x%llx %s val:0x%02x dlab:%d\n",
__func__, index, offset, rd_reg[offset],
*buf, mdev_state->s[index].dlab);
#endif
}
break;
default:
ret = -1;
goto accessfailed;
}
ret = count;
accessfailed:
mutex_unlock(&mdev_state->ops_lock);
return ret;
}
static int mtty_create(struct mdev_device *mdev)
{
struct mdev_state *mdev_state;
int nr_ports = mdev_get_type_group_id(mdev) + 1;
mdev_state = kzalloc(sizeof(struct mdev_state), GFP_KERNEL);
if (mdev_state == NULL)
return -ENOMEM;
mdev_state->nr_ports = nr_ports;
mdev_state->irq_index = -1;
mdev_state->s[0].max_fifo_size = MAX_FIFO_SIZE;
mdev_state->s[1].max_fifo_size = MAX_FIFO_SIZE;
mutex_init(&mdev_state->rxtx_lock);
mdev_state->vconfig = kzalloc(MTTY_CONFIG_SPACE_SIZE, GFP_KERNEL);
if (mdev_state->vconfig == NULL) {
kfree(mdev_state);
return -ENOMEM;
}
mutex_init(&mdev_state->ops_lock);
mdev_state->mdev = mdev;
mdev_set_drvdata(mdev, mdev_state);
mtty_create_config_space(mdev_state);
mutex_lock(&mdev_list_lock);
list_add(&mdev_state->next, &mdev_devices_list);
mutex_unlock(&mdev_list_lock);
return 0;
}
static int mtty_remove(struct mdev_device *mdev)
{
struct mdev_state *mds, *tmp_mds;
struct mdev_state *mdev_state = mdev_get_drvdata(mdev);
int ret = -EINVAL;
mutex_lock(&mdev_list_lock);
list_for_each_entry_safe(mds, tmp_mds, &mdev_devices_list, next) {
if (mdev_state == mds) {
list_del(&mdev_state->next);
mdev_set_drvdata(mdev, NULL);
kfree(mdev_state->vconfig);
kfree(mdev_state);
ret = 0;
break;
}
}
mutex_unlock(&mdev_list_lock);
return ret;
}
static int mtty_reset(struct mdev_device *mdev)
{
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
pr_info("%s: called\n", __func__);
return 0;
}
static ssize_t mtty_read(struct mdev_device *mdev, char __user *buf,
size_t count, loff_t *ppos)
{
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
if (count >= 4 && !(*ppos % 4)) {
u32 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 2;
} else {
u8 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
read_err:
return -EFAULT;
}
static ssize_t mtty_write(struct mdev_device *mdev, const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
if (count >= 4 && !(*ppos % 4)) {
u32 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 2;
} else {
u8 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
write_err:
return -EFAULT;
}
static int mtty_set_irqs(struct mdev_device *mdev, uint32_t flags,
unsigned int index, unsigned int start,
unsigned int count, void *data)
{
int ret = 0;
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
mutex_lock(&mdev_state->ops_lock);
switch (index) {
case VFIO_PCI_INTX_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
{
if (flags & VFIO_IRQ_SET_DATA_NONE) {
pr_info("%s: disable INTx\n", __func__);
if (mdev_state->intx_evtfd)
eventfd_ctx_put(mdev_state->intx_evtfd);
break;
}
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int fd = *(int *)data;
if (fd > 0) {
struct eventfd_ctx *evt;
evt = eventfd_ctx_fdget(fd);
if (IS_ERR(evt)) {
ret = PTR_ERR(evt);
break;
}
mdev_state->intx_evtfd = evt;
mdev_state->irq_fd = fd;
mdev_state->irq_index = index;
break;
}
}
break;
}
}
break;
case VFIO_PCI_MSI_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
if (flags & VFIO_IRQ_SET_DATA_NONE) {
if (mdev_state->msi_evtfd)
eventfd_ctx_put(mdev_state->msi_evtfd);
pr_info("%s: disable MSI\n", __func__);
mdev_state->irq_index = VFIO_PCI_INTX_IRQ_INDEX;
break;
}
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int fd = *(int *)data;
struct eventfd_ctx *evt;
if (fd <= 0)
break;
if (mdev_state->msi_evtfd)
break;
evt = eventfd_ctx_fdget(fd);
if (IS_ERR(evt)) {
ret = PTR_ERR(evt);
break;
}
mdev_state->msi_evtfd = evt;
mdev_state->irq_fd = fd;
mdev_state->irq_index = index;
}
break;
}
break;
case VFIO_PCI_MSIX_IRQ_INDEX:
pr_info("%s: MSIX_IRQ\n", __func__);
break;
case VFIO_PCI_ERR_IRQ_INDEX:
pr_info("%s: ERR_IRQ\n", __func__);
break;
case VFIO_PCI_REQ_IRQ_INDEX:
pr_info("%s: REQ_IRQ\n", __func__);
break;
}
mutex_unlock(&mdev_state->ops_lock);
return ret;
}
static int mtty_trigger_interrupt(struct mdev_state *mdev_state)
{
int ret = -1;
if ((mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX) &&
(!mdev_state->msi_evtfd))
return -EINVAL;
else if ((mdev_state->irq_index == VFIO_PCI_INTX_IRQ_INDEX) &&
(!mdev_state->intx_evtfd)) {
pr_info("%s: Intr eventfd not found\n", __func__);
return -EINVAL;
}
if (mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX)
ret = eventfd_signal(mdev_state->msi_evtfd, 1);
else
ret = eventfd_signal(mdev_state->intx_evtfd, 1);
#if defined(DEBUG_INTR)
pr_info("Intx triggered\n");
#endif
if (ret != 1)
pr_err("%s: eventfd signal failed (%d)\n", __func__, ret);
return ret;
}
static int mtty_get_region_info(struct mdev_device *mdev,
struct vfio_region_info *region_info,
u16 *cap_type_id, void **cap_type)
{
unsigned int size = 0;
struct mdev_state *mdev_state;
u32 bar_index;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
bar_index = region_info->index;
if (bar_index >= VFIO_PCI_NUM_REGIONS)
return -EINVAL;
mutex_lock(&mdev_state->ops_lock);
switch (bar_index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
size = MTTY_CONFIG_SPACE_SIZE;
break;
case VFIO_PCI_BAR0_REGION_INDEX:
size = MTTY_IO_BAR_SIZE;
break;
case VFIO_PCI_BAR1_REGION_INDEX:
if (mdev_state->nr_ports == 2)
size = MTTY_IO_BAR_SIZE;
break;
default:
size = 0;
break;
}
mdev_state->region_info[bar_index].size = size;
mdev_state->region_info[bar_index].vfio_offset =
MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
region_info->size = size;
region_info->offset = MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
region_info->flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
mutex_unlock(&mdev_state->ops_lock);
return 0;
}
static int mtty_get_irq_info(struct mdev_device *mdev,
struct vfio_irq_info *irq_info)
{
switch (irq_info->index) {
case VFIO_PCI_INTX_IRQ_INDEX:
case VFIO_PCI_MSI_IRQ_INDEX:
case VFIO_PCI_REQ_IRQ_INDEX:
break;
default:
return -EINVAL;
}
irq_info->flags = VFIO_IRQ_INFO_EVENTFD;
irq_info->count = 1;
if (irq_info->index == VFIO_PCI_INTX_IRQ_INDEX)
irq_info->flags |= (VFIO_IRQ_INFO_MASKABLE |
VFIO_IRQ_INFO_AUTOMASKED);
else
irq_info->flags |= VFIO_IRQ_INFO_NORESIZE;
return 0;
}
static int mtty_get_device_info(struct mdev_device *mdev,
struct vfio_device_info *dev_info)
{
dev_info->flags = VFIO_DEVICE_FLAGS_PCI;
dev_info->num_regions = VFIO_PCI_NUM_REGIONS;
dev_info->num_irqs = VFIO_PCI_NUM_IRQS;
return 0;
}
static long mtty_ioctl(struct mdev_device *mdev, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
unsigned long minsz;
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -ENODEV;
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
{
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
ret = mtty_get_device_info(mdev, &info);
if (ret)
return ret;
memcpy(&mdev_state->dev_info, &info, sizeof(info));
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_GET_REGION_INFO:
{
struct vfio_region_info info;
u16 cap_type_id = 0;
void *cap_type = NULL;
minsz = offsetofend(struct vfio_region_info, offset);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
ret = mtty_get_region_info(mdev, &info, &cap_type_id,
&cap_type);
if (ret)
return ret;
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_GET_IRQ_INFO:
{
struct vfio_irq_info info;
minsz = offsetofend(struct vfio_irq_info, count);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if ((info.argsz < minsz) ||
(info.index >= mdev_state->dev_info.num_irqs))
return -EINVAL;
ret = mtty_get_irq_info(mdev, &info);
if (ret)
return ret;
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_SET_IRQS:
{
struct vfio_irq_set hdr;
u8 *data = NULL, *ptr = NULL;
size_t data_size = 0;
minsz = offsetofend(struct vfio_irq_set, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
ret = vfio_set_irqs_validate_and_prepare(&hdr,
mdev_state->dev_info.num_irqs,
VFIO_PCI_NUM_IRQS,
&data_size);
if (ret)
return ret;
if (data_size) {
ptr = data = memdup_user((void __user *)(arg + minsz),
data_size);
if (IS_ERR(data))
return PTR_ERR(data);
}
ret = mtty_set_irqs(mdev, hdr.flags, hdr.index, hdr.start,
hdr.count, data);
kfree(ptr);
return ret;
}
case VFIO_DEVICE_RESET:
return mtty_reset(mdev);
}
return -ENOTTY;
}
static int mtty_open(struct mdev_device *mdev)
{
pr_info("%s\n", __func__);
return 0;
}
static void mtty_close(struct mdev_device *mdev)
{
pr_info("%s\n", __func__);
}
static ssize_t
sample_mtty_dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "This is phy device\n");
}
static DEVICE_ATTR_RO(sample_mtty_dev);
static struct attribute *mtty_dev_attrs[] = {
&dev_attr_sample_mtty_dev.attr,
NULL,
};
static const struct attribute_group mtty_dev_group = {
.name = "mtty_dev",
.attrs = mtty_dev_attrs,
};
static const struct attribute_group *mtty_dev_groups[] = {
&mtty_dev_group,
NULL,
};
static ssize_t
sample_mdev_dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
if (mdev_from_dev(dev))
return sprintf(buf, "This is MDEV %s\n", dev_name(dev));
return sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(sample_mdev_dev);
static struct attribute *mdev_dev_attrs[] = {
&dev_attr_sample_mdev_dev.attr,
NULL,
};
static const struct attribute_group mdev_dev_group = {
.name = "vendor",
.attrs = mdev_dev_attrs,
};
static const struct attribute_group *mdev_dev_groups[] = {
&mdev_dev_group,
NULL,
};
static ssize_t name_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr, char *buf)
{
static const char *name_str[2] = { "Single port serial",
"Dual port serial" };
return sysfs_emit(buf, "%s\n",
name_str[mtype_get_type_group_id(mtype)]);
}
static MDEV_TYPE_ATTR_RO(name);
static ssize_t available_instances_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr,
char *buf)
{
struct mdev_state *mds;
unsigned int ports = mtype_get_type_group_id(mtype) + 1;
int used = 0;
list_for_each_entry(mds, &mdev_devices_list, next)
used += mds->nr_ports;
return sprintf(buf, "%d\n", (MAX_MTTYS - used)/ports);
}
static MDEV_TYPE_ATTR_RO(available_instances);
static ssize_t device_api_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", VFIO_DEVICE_API_PCI_STRING);
}
static MDEV_TYPE_ATTR_RO(device_api);
static struct attribute *mdev_types_attrs[] = {
&mdev_type_attr_name.attr,
&mdev_type_attr_device_api.attr,
&mdev_type_attr_available_instances.attr,
NULL,
};
static struct attribute_group mdev_type_group1 = {
.name = "1",
.attrs = mdev_types_attrs,
};
static struct attribute_group mdev_type_group2 = {
.name = "2",
.attrs = mdev_types_attrs,
};
static struct attribute_group *mdev_type_groups[] = {
&mdev_type_group1,
&mdev_type_group2,
NULL,
};
static const struct mdev_parent_ops mdev_fops = {
.owner = THIS_MODULE,
.dev_attr_groups = mtty_dev_groups,
.mdev_attr_groups = mdev_dev_groups,
.supported_type_groups = mdev_type_groups,
.create = mtty_create,
.remove = mtty_remove,
.open = mtty_open,
.release = mtty_close,
.read = mtty_read,
.write = mtty_write,
.ioctl = mtty_ioctl,
};
static void mtty_device_release(struct device *dev)
{
dev_dbg(dev, "mtty: released\n");
}
static int __init mtty_dev_init(void)
{
int ret = 0;
pr_info("mtty_dev: %s\n", __func__);
memset(&mtty_dev, 0, sizeof(mtty_dev));
idr_init(&mtty_dev.vd_idr);
ret = alloc_chrdev_region(&mtty_dev.vd_devt, 0, MINORMASK + 1,
MTTY_NAME);
if (ret < 0) {
pr_err("Error: failed to register mtty_dev, err:%d\n", ret);
return ret;
}
cdev_init(&mtty_dev.vd_cdev, &vd_fops);
cdev_add(&mtty_dev.vd_cdev, mtty_dev.vd_devt, MINORMASK + 1);
pr_info("major_number:%d\n", MAJOR(mtty_dev.vd_devt));
mtty_dev.vd_class = class_create(THIS_MODULE, MTTY_CLASS_NAME);
if (IS_ERR(mtty_dev.vd_class)) {
pr_err("Error: failed to register mtty_dev class\n");
ret = PTR_ERR(mtty_dev.vd_class);
goto failed1;
}
mtty_dev.dev.class = mtty_dev.vd_class;
mtty_dev.dev.release = mtty_device_release;
dev_set_name(&mtty_dev.dev, "%s", MTTY_NAME);
ret = device_register(&mtty_dev.dev);
if (ret)
goto failed2;
ret = mdev_register_device(&mtty_dev.dev, &mdev_fops);
if (ret)
goto failed3;
mutex_init(&mdev_list_lock);
INIT_LIST_HEAD(&mdev_devices_list);
goto all_done;
failed3:
device_unregister(&mtty_dev.dev);
failed2:
class_destroy(mtty_dev.vd_class);
failed1:
cdev_del(&mtty_dev.vd_cdev);
unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK + 1);
all_done:
return ret;
}
static void __exit mtty_dev_exit(void)
{
mtty_dev.dev.bus = NULL;
mdev_unregister_device(&mtty_dev.dev);
device_unregister(&mtty_dev.dev);
idr_destroy(&mtty_dev.vd_idr);
cdev_del(&mtty_dev.vd_cdev);
unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK + 1);
class_destroy(mtty_dev.vd_class);
mtty_dev.vd_class = NULL;
pr_info("mtty_dev: Unloaded!\n");
}
module_init(mtty_dev_init)
module_exit(mtty_dev_exit)
MODULE_LICENSE("GPL v2");
MODULE_INFO(supported, "Test driver that simulate serial port over PCI");
MODULE_VERSION(VERSION_STRING);
MODULE_AUTHOR(DRIVER_AUTHOR);