d707bb74da
Following the introduction of the generic ECC engine infrastructure, it
was necessary to reorganize the code and move the ECC configuration in
the ->attach_chip() hook. Failing to do that properly lead to a first
series of fixes supposed to stabilize the situation. Unfortunately, this
only fixed the use of software ECC engines, preventing any other kind of
engine to be used, including on-die ones.
It is now time to (finally) fix the situation by ensuring that we still
provide a default (eg. software ECC) but will still support different
ECC engines such as on-die ECC engines if properly described in the
device tree.
There are no changes needed on the core side in order to do this, but we
just need to leverage the logic there which allows:
1- a subsystem default (set to Host engines in the raw NAND world)
2- a driver specific default (here set to software ECC engines)
3- any type of engine requested by the user (ie. described in the DT)
As the raw NAND subsystem has not yet been fully converted to the ECC
engine infrastructure, in order to provide a default ECC engine for this
driver we need to set chip->ecc.engine_type *before* calling
nand_scan(). During the initialization step, the core will consider this
entry as the default engine for this driver. This value may of course
be overloaded by the user if the usual DT properties are provided.
Fixes: 59d9347332
("mtd: rawnand: ams-delta: Move the ECC initialization to ->attach_chip()")
Cc: stable@vger.kernel.org
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-2-miquel.raynal@bootlin.com
450 lines
11 KiB
C
450 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
|
|
*
|
|
* Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
|
|
* Copyright (c) 2003 Texas Instruments
|
|
* Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
|
|
*
|
|
* Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
|
|
* Partially stolen from plat_nand.c
|
|
*
|
|
* Overview:
|
|
* This is a device driver for the NAND flash device found on the
|
|
* Amstrad E3 (Delta).
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand-gpio.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sizes.h>
|
|
|
|
/*
|
|
* MTD structure for E3 (Delta)
|
|
*/
|
|
struct gpio_nand {
|
|
struct nand_controller base;
|
|
struct nand_chip nand_chip;
|
|
struct gpio_desc *gpiod_rdy;
|
|
struct gpio_desc *gpiod_nce;
|
|
struct gpio_desc *gpiod_nre;
|
|
struct gpio_desc *gpiod_nwp;
|
|
struct gpio_desc *gpiod_nwe;
|
|
struct gpio_desc *gpiod_ale;
|
|
struct gpio_desc *gpiod_cle;
|
|
struct gpio_descs *data_gpiods;
|
|
bool data_in;
|
|
unsigned int tRP;
|
|
unsigned int tWP;
|
|
u8 (*io_read)(struct gpio_nand *this);
|
|
void (*io_write)(struct gpio_nand *this, u8 byte);
|
|
};
|
|
|
|
static void gpio_nand_write_commit(struct gpio_nand *priv)
|
|
{
|
|
gpiod_set_value(priv->gpiod_nwe, 1);
|
|
ndelay(priv->tWP);
|
|
gpiod_set_value(priv->gpiod_nwe, 0);
|
|
}
|
|
|
|
static void gpio_nand_io_write(struct gpio_nand *priv, u8 byte)
|
|
{
|
|
struct gpio_descs *data_gpiods = priv->data_gpiods;
|
|
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
|
|
|
|
gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
|
|
data_gpiods->info, values);
|
|
|
|
gpio_nand_write_commit(priv);
|
|
}
|
|
|
|
static void gpio_nand_dir_output(struct gpio_nand *priv, u8 byte)
|
|
{
|
|
struct gpio_descs *data_gpiods = priv->data_gpiods;
|
|
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
|
|
int i;
|
|
|
|
for (i = 0; i < data_gpiods->ndescs; i++)
|
|
gpiod_direction_output_raw(data_gpiods->desc[i],
|
|
test_bit(i, values));
|
|
|
|
gpio_nand_write_commit(priv);
|
|
|
|
priv->data_in = false;
|
|
}
|
|
|
|
static u8 gpio_nand_io_read(struct gpio_nand *priv)
|
|
{
|
|
u8 res;
|
|
struct gpio_descs *data_gpiods = priv->data_gpiods;
|
|
DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, };
|
|
|
|
gpiod_set_value(priv->gpiod_nre, 1);
|
|
ndelay(priv->tRP);
|
|
|
|
gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
|
|
data_gpiods->info, values);
|
|
|
|
gpiod_set_value(priv->gpiod_nre, 0);
|
|
|
|
res = values[0];
|
|
return res;
|
|
}
|
|
|
|
static void gpio_nand_dir_input(struct gpio_nand *priv)
|
|
{
|
|
struct gpio_descs *data_gpiods = priv->data_gpiods;
|
|
int i;
|
|
|
|
for (i = 0; i < data_gpiods->ndescs; i++)
|
|
gpiod_direction_input(data_gpiods->desc[i]);
|
|
|
|
priv->data_in = true;
|
|
}
|
|
|
|
static void gpio_nand_write_buf(struct gpio_nand *priv, const u8 *buf, int len)
|
|
{
|
|
int i = 0;
|
|
|
|
if (len > 0 && priv->data_in)
|
|
gpio_nand_dir_output(priv, buf[i++]);
|
|
|
|
while (i < len)
|
|
priv->io_write(priv, buf[i++]);
|
|
}
|
|
|
|
static void gpio_nand_read_buf(struct gpio_nand *priv, u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
if (priv->data_gpiods && !priv->data_in)
|
|
gpio_nand_dir_input(priv);
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = priv->io_read(priv);
|
|
}
|
|
|
|
static void gpio_nand_ctrl_cs(struct gpio_nand *priv, bool assert)
|
|
{
|
|
gpiod_set_value(priv->gpiod_nce, assert);
|
|
}
|
|
|
|
static int gpio_nand_exec_op(struct nand_chip *this,
|
|
const struct nand_operation *op, bool check_only)
|
|
{
|
|
struct gpio_nand *priv = nand_get_controller_data(this);
|
|
const struct nand_op_instr *instr;
|
|
int ret = 0;
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
gpio_nand_ctrl_cs(priv, 1);
|
|
|
|
for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) {
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
gpiod_set_value(priv->gpiod_cle, 1);
|
|
gpio_nand_write_buf(priv, &instr->ctx.cmd.opcode, 1);
|
|
gpiod_set_value(priv->gpiod_cle, 0);
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
gpiod_set_value(priv->gpiod_ale, 1);
|
|
gpio_nand_write_buf(priv, instr->ctx.addr.addrs,
|
|
instr->ctx.addr.naddrs);
|
|
gpiod_set_value(priv->gpiod_ale, 0);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
gpio_nand_read_buf(priv, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
gpio_nand_write_buf(priv, instr->ctx.data.buf.out,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
ret = priv->gpiod_rdy ?
|
|
nand_gpio_waitrdy(this, priv->gpiod_rdy,
|
|
instr->ctx.waitrdy.timeout_ms) :
|
|
nand_soft_waitrdy(this,
|
|
instr->ctx.waitrdy.timeout_ms);
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
gpio_nand_ctrl_cs(priv, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gpio_nand_setup_interface(struct nand_chip *this, int csline,
|
|
const struct nand_interface_config *cf)
|
|
{
|
|
struct gpio_nand *priv = nand_get_controller_data(this);
|
|
const struct nand_sdr_timings *sdr = nand_get_sdr_timings(cf);
|
|
struct device *dev = &nand_to_mtd(this)->dev;
|
|
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
if (priv->gpiod_nre) {
|
|
priv->tRP = DIV_ROUND_UP(sdr->tRP_min, 1000);
|
|
dev_dbg(dev, "using %u ns read pulse width\n", priv->tRP);
|
|
}
|
|
|
|
priv->tWP = DIV_ROUND_UP(sdr->tWP_min, 1000);
|
|
dev_dbg(dev, "using %u ns write pulse width\n", priv->tWP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gpio_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
|
|
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
|
|
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops gpio_nand_ops = {
|
|
.exec_op = gpio_nand_exec_op,
|
|
.attach_chip = gpio_nand_attach_chip,
|
|
.setup_interface = gpio_nand_setup_interface,
|
|
};
|
|
|
|
/*
|
|
* Main initialization routine
|
|
*/
|
|
static int gpio_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct gpio_nand_platdata *pdata = dev_get_platdata(&pdev->dev);
|
|
const struct mtd_partition *partitions = NULL;
|
|
int num_partitions = 0;
|
|
struct gpio_nand *priv;
|
|
struct nand_chip *this;
|
|
struct mtd_info *mtd;
|
|
int (*probe)(struct platform_device *pdev, struct gpio_nand *priv);
|
|
int err = 0;
|
|
|
|
if (pdata) {
|
|
partitions = pdata->parts;
|
|
num_partitions = pdata->num_parts;
|
|
}
|
|
|
|
/* Allocate memory for MTD device structure and private data */
|
|
priv = devm_kzalloc(&pdev->dev, sizeof(struct gpio_nand),
|
|
GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
this = &priv->nand_chip;
|
|
|
|
mtd = nand_to_mtd(this);
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
nand_set_controller_data(this, priv);
|
|
nand_set_flash_node(this, pdev->dev.of_node);
|
|
|
|
priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN);
|
|
if (IS_ERR(priv->gpiod_rdy)) {
|
|
err = PTR_ERR(priv->gpiod_rdy);
|
|
dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, priv);
|
|
|
|
/* Set chip enabled but write protected */
|
|
priv->gpiod_nwp = devm_gpiod_get_optional(&pdev->dev, "nwp",
|
|
GPIOD_OUT_HIGH);
|
|
if (IS_ERR(priv->gpiod_nwp)) {
|
|
err = PTR_ERR(priv->gpiod_nwp);
|
|
dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
priv->gpiod_nce = devm_gpiod_get_optional(&pdev->dev, "nce",
|
|
GPIOD_OUT_LOW);
|
|
if (IS_ERR(priv->gpiod_nce)) {
|
|
err = PTR_ERR(priv->gpiod_nce);
|
|
dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
priv->gpiod_nre = devm_gpiod_get_optional(&pdev->dev, "nre",
|
|
GPIOD_OUT_LOW);
|
|
if (IS_ERR(priv->gpiod_nre)) {
|
|
err = PTR_ERR(priv->gpiod_nre);
|
|
dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
priv->gpiod_nwe = devm_gpiod_get_optional(&pdev->dev, "nwe",
|
|
GPIOD_OUT_LOW);
|
|
if (IS_ERR(priv->gpiod_nwe)) {
|
|
err = PTR_ERR(priv->gpiod_nwe);
|
|
dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW);
|
|
if (IS_ERR(priv->gpiod_ale)) {
|
|
err = PTR_ERR(priv->gpiod_ale);
|
|
dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW);
|
|
if (IS_ERR(priv->gpiod_cle)) {
|
|
err = PTR_ERR(priv->gpiod_cle);
|
|
dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
/* Request array of data pins, initialize them as input */
|
|
priv->data_gpiods = devm_gpiod_get_array_optional(&pdev->dev, "data",
|
|
GPIOD_IN);
|
|
if (IS_ERR(priv->data_gpiods)) {
|
|
err = PTR_ERR(priv->data_gpiods);
|
|
dev_err(&pdev->dev, "data GPIO request failed: %d\n", err);
|
|
return err;
|
|
}
|
|
if (priv->data_gpiods) {
|
|
if (!priv->gpiod_nwe) {
|
|
dev_err(&pdev->dev,
|
|
"mandatory NWE pin not provided by platform\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv->io_read = gpio_nand_io_read;
|
|
priv->io_write = gpio_nand_io_write;
|
|
priv->data_in = true;
|
|
}
|
|
|
|
if (pdev->id_entry)
|
|
probe = (void *) pdev->id_entry->driver_data;
|
|
else
|
|
probe = of_device_get_match_data(&pdev->dev);
|
|
if (probe)
|
|
err = probe(pdev, priv);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!priv->io_read || !priv->io_write) {
|
|
dev_err(&pdev->dev, "incomplete device configuration\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Initialize the NAND controller object embedded in gpio_nand. */
|
|
priv->base.ops = &gpio_nand_ops;
|
|
nand_controller_init(&priv->base);
|
|
this->controller = &priv->base;
|
|
|
|
/*
|
|
* FIXME: We should release write protection only after nand_scan() to
|
|
* be on the safe side but we can't do that until we have a generic way
|
|
* to assert/deassert WP from the core. Even if the core shouldn't
|
|
* write things in the nand_scan() path, it should have control on this
|
|
* pin just in case we ever need to disable write protection during
|
|
* chip detection/initialization.
|
|
*/
|
|
/* Release write protection */
|
|
gpiod_set_value(priv->gpiod_nwp, 0);
|
|
|
|
/*
|
|
* This driver assumes that the default ECC engine should be TYPE_SOFT.
|
|
* Set ->engine_type before registering the NAND devices in order to
|
|
* provide a driver specific default value.
|
|
*/
|
|
this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
|
|
|
/* Scan to find existence of the device */
|
|
err = nand_scan(this, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Register the partitions */
|
|
err = mtd_device_register(mtd, partitions, num_partitions);
|
|
if (err)
|
|
goto err_nand_cleanup;
|
|
|
|
return 0;
|
|
|
|
err_nand_cleanup:
|
|
nand_cleanup(this);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Clean up routine
|
|
*/
|
|
static int gpio_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct gpio_nand *priv = platform_get_drvdata(pdev);
|
|
struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip);
|
|
int ret;
|
|
|
|
/* Apply write protection */
|
|
gpiod_set_value(priv->gpiod_nwp, 1);
|
|
|
|
/* Unregister device */
|
|
ret = mtd_device_unregister(mtd);
|
|
WARN_ON(ret);
|
|
nand_cleanup(mtd_to_nand(mtd));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id gpio_nand_of_id_table[] = {
|
|
{
|
|
/* sentinel */
|
|
},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, gpio_nand_of_id_table);
|
|
#endif
|
|
|
|
static const struct platform_device_id gpio_nand_plat_id_table[] = {
|
|
{
|
|
.name = "ams-delta-nand",
|
|
}, {
|
|
/* sentinel */
|
|
},
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, gpio_nand_plat_id_table);
|
|
|
|
static struct platform_driver gpio_nand_driver = {
|
|
.probe = gpio_nand_probe,
|
|
.remove = gpio_nand_remove,
|
|
.id_table = gpio_nand_plat_id_table,
|
|
.driver = {
|
|
.name = "ams-delta-nand",
|
|
.of_match_table = of_match_ptr(gpio_nand_of_id_table),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(gpio_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");
|
|
MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");
|