f1ef09fde1
Pull namespace updates from Eric Biederman: "There is a lot here. A lot of these changes result in subtle user visible differences in kernel behavior. I don't expect anything will care but I will revert/fix things immediately if any regressions show up. From Seth Forshee there is a continuation of the work to make the vfs ready for unpriviled mounts. We had thought the previous changes prevented the creation of files outside of s_user_ns of a filesystem, but it turns we missed the O_CREAT path. Ooops. Pavel Tikhomirov and Oleg Nesterov worked together to fix a long standing bug in the implemenation of PR_SET_CHILD_SUBREAPER where only children that are forked after the prctl are considered and not children forked before the prctl. The only known user of this prctl systemd forks all children after the prctl. So no userspace regressions will occur. Holding earlier forked children to the same rules as later forked children creates a semantic that is sane enough to allow checkpoing of processes that use this feature. There is a long delayed change by Nikolay Borisov to limit inotify instances inside a user namespace. Michael Kerrisk extends the API for files used to maniuplate namespaces with two new trivial ioctls to allow discovery of the hierachy and properties of namespaces. Konstantin Khlebnikov with the help of Al Viro adds code that when a network namespace exits purges it's sysctl entries from the dcache. As in some circumstances this could use a lot of memory. Vivek Goyal fixed a bug with stacked filesystems where the permissions on the wrong inode were being checked. I continue previous work on ptracing across exec. Allowing a file to be setuid across exec while being ptraced if the tracer has enough credentials in the user namespace, and if the process has CAP_SETUID in it's own namespace. Proc files for setuid or otherwise undumpable executables are now owned by the root in the user namespace of their mm. Allowing debugging of setuid applications in containers to work better. A bug I introduced with permission checking and automount is now fixed. The big change is to mark the mounts that the kernel initiates as a result of an automount. This allows the permission checks in sget to be safely suppressed for this kind of mount. As the permission check happened when the original filesystem was mounted. Finally a special case in the mount namespace is removed preventing unbounded chains in the mount hash table, and making the semantics simpler which benefits CRIU. The vfs fix along with related work in ima and evm I believe makes us ready to finish developing and merge fully unprivileged mounts of the fuse filesystem. The cleanups of the mount namespace makes discussing how to fix the worst case complexity of umount. The stacked filesystem fixes pave the way for adding multiple mappings for the filesystem uids so that efficient and safer containers can be implemented" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: proc/sysctl: Don't grab i_lock under sysctl_lock. vfs: Use upper filesystem inode in bprm_fill_uid() proc/sysctl: prune stale dentries during unregistering mnt: Tuck mounts under others instead of creating shadow/side mounts. prctl: propagate has_child_subreaper flag to every descendant introduce the walk_process_tree() helper nsfs: Add an ioctl() to return owner UID of a userns fs: Better permission checking for submounts exit: fix the setns() && PR_SET_CHILD_SUBREAPER interaction vfs: open() with O_CREAT should not create inodes with unknown ids nsfs: Add an ioctl() to return the namespace type proc: Better ownership of files for non-dumpable tasks in user namespaces exec: Remove LSM_UNSAFE_PTRACE_CAP exec: Test the ptracer's saved cred to see if the tracee can gain caps exec: Don't reset euid and egid when the tracee has CAP_SETUID inotify: Convert to using per-namespace limits
1731 lines
44 KiB
C
1731 lines
44 KiB
C
/*
|
|
* linux/kernel/exit.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/iocontext.h>
|
|
#include <linux/key.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/taskstats_kern.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/audit.h> /* for audit_free() */
|
|
#include <linux/resource.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/perf_event.h>
|
|
#include <trace/events/sched.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/kcov.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rcuwait.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
static void __unhash_process(struct task_struct *p, bool group_dead)
|
|
{
|
|
nr_threads--;
|
|
detach_pid(p, PIDTYPE_PID);
|
|
if (group_dead) {
|
|
detach_pid(p, PIDTYPE_PGID);
|
|
detach_pid(p, PIDTYPE_SID);
|
|
|
|
list_del_rcu(&p->tasks);
|
|
list_del_init(&p->sibling);
|
|
__this_cpu_dec(process_counts);
|
|
}
|
|
list_del_rcu(&p->thread_group);
|
|
list_del_rcu(&p->thread_node);
|
|
}
|
|
|
|
/*
|
|
* This function expects the tasklist_lock write-locked.
|
|
*/
|
|
static void __exit_signal(struct task_struct *tsk)
|
|
{
|
|
struct signal_struct *sig = tsk->signal;
|
|
bool group_dead = thread_group_leader(tsk);
|
|
struct sighand_struct *sighand;
|
|
struct tty_struct *uninitialized_var(tty);
|
|
u64 utime, stime;
|
|
|
|
sighand = rcu_dereference_check(tsk->sighand,
|
|
lockdep_tasklist_lock_is_held());
|
|
spin_lock(&sighand->siglock);
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
posix_cpu_timers_exit(tsk);
|
|
if (group_dead) {
|
|
posix_cpu_timers_exit_group(tsk);
|
|
} else {
|
|
/*
|
|
* This can only happen if the caller is de_thread().
|
|
* FIXME: this is the temporary hack, we should teach
|
|
* posix-cpu-timers to handle this case correctly.
|
|
*/
|
|
if (unlikely(has_group_leader_pid(tsk)))
|
|
posix_cpu_timers_exit_group(tsk);
|
|
}
|
|
#endif
|
|
|
|
if (group_dead) {
|
|
tty = sig->tty;
|
|
sig->tty = NULL;
|
|
} else {
|
|
/*
|
|
* If there is any task waiting for the group exit
|
|
* then notify it:
|
|
*/
|
|
if (sig->notify_count > 0 && !--sig->notify_count)
|
|
wake_up_process(sig->group_exit_task);
|
|
|
|
if (tsk == sig->curr_target)
|
|
sig->curr_target = next_thread(tsk);
|
|
}
|
|
|
|
add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
|
|
sizeof(unsigned long long));
|
|
|
|
/*
|
|
* Accumulate here the counters for all threads as they die. We could
|
|
* skip the group leader because it is the last user of signal_struct,
|
|
* but we want to avoid the race with thread_group_cputime() which can
|
|
* see the empty ->thread_head list.
|
|
*/
|
|
task_cputime(tsk, &utime, &stime);
|
|
write_seqlock(&sig->stats_lock);
|
|
sig->utime += utime;
|
|
sig->stime += stime;
|
|
sig->gtime += task_gtime(tsk);
|
|
sig->min_flt += tsk->min_flt;
|
|
sig->maj_flt += tsk->maj_flt;
|
|
sig->nvcsw += tsk->nvcsw;
|
|
sig->nivcsw += tsk->nivcsw;
|
|
sig->inblock += task_io_get_inblock(tsk);
|
|
sig->oublock += task_io_get_oublock(tsk);
|
|
task_io_accounting_add(&sig->ioac, &tsk->ioac);
|
|
sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
|
|
sig->nr_threads--;
|
|
__unhash_process(tsk, group_dead);
|
|
write_sequnlock(&sig->stats_lock);
|
|
|
|
/*
|
|
* Do this under ->siglock, we can race with another thread
|
|
* doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
|
|
*/
|
|
flush_sigqueue(&tsk->pending);
|
|
tsk->sighand = NULL;
|
|
spin_unlock(&sighand->siglock);
|
|
|
|
__cleanup_sighand(sighand);
|
|
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
|
|
if (group_dead) {
|
|
flush_sigqueue(&sig->shared_pending);
|
|
tty_kref_put(tty);
|
|
}
|
|
}
|
|
|
|
static void delayed_put_task_struct(struct rcu_head *rhp)
|
|
{
|
|
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
|
|
|
|
perf_event_delayed_put(tsk);
|
|
trace_sched_process_free(tsk);
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
|
|
void release_task(struct task_struct *p)
|
|
{
|
|
struct task_struct *leader;
|
|
int zap_leader;
|
|
repeat:
|
|
/* don't need to get the RCU readlock here - the process is dead and
|
|
* can't be modifying its own credentials. But shut RCU-lockdep up */
|
|
rcu_read_lock();
|
|
atomic_dec(&__task_cred(p)->user->processes);
|
|
rcu_read_unlock();
|
|
|
|
proc_flush_task(p);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
ptrace_release_task(p);
|
|
__exit_signal(p);
|
|
|
|
/*
|
|
* If we are the last non-leader member of the thread
|
|
* group, and the leader is zombie, then notify the
|
|
* group leader's parent process. (if it wants notification.)
|
|
*/
|
|
zap_leader = 0;
|
|
leader = p->group_leader;
|
|
if (leader != p && thread_group_empty(leader)
|
|
&& leader->exit_state == EXIT_ZOMBIE) {
|
|
/*
|
|
* If we were the last child thread and the leader has
|
|
* exited already, and the leader's parent ignores SIGCHLD,
|
|
* then we are the one who should release the leader.
|
|
*/
|
|
zap_leader = do_notify_parent(leader, leader->exit_signal);
|
|
if (zap_leader)
|
|
leader->exit_state = EXIT_DEAD;
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
release_thread(p);
|
|
call_rcu(&p->rcu, delayed_put_task_struct);
|
|
|
|
p = leader;
|
|
if (unlikely(zap_leader))
|
|
goto repeat;
|
|
}
|
|
|
|
/*
|
|
* Note that if this function returns a valid task_struct pointer (!NULL)
|
|
* task->usage must remain >0 for the duration of the RCU critical section.
|
|
*/
|
|
struct task_struct *task_rcu_dereference(struct task_struct **ptask)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* We need to verify that release_task() was not called and thus
|
|
* delayed_put_task_struct() can't run and drop the last reference
|
|
* before rcu_read_unlock(). We check task->sighand != NULL,
|
|
* but we can read the already freed and reused memory.
|
|
*/
|
|
retry:
|
|
task = rcu_dereference(*ptask);
|
|
if (!task)
|
|
return NULL;
|
|
|
|
probe_kernel_address(&task->sighand, sighand);
|
|
|
|
/*
|
|
* Pairs with atomic_dec_and_test() in put_task_struct(). If this task
|
|
* was already freed we can not miss the preceding update of this
|
|
* pointer.
|
|
*/
|
|
smp_rmb();
|
|
if (unlikely(task != READ_ONCE(*ptask)))
|
|
goto retry;
|
|
|
|
/*
|
|
* We've re-checked that "task == *ptask", now we have two different
|
|
* cases:
|
|
*
|
|
* 1. This is actually the same task/task_struct. In this case
|
|
* sighand != NULL tells us it is still alive.
|
|
*
|
|
* 2. This is another task which got the same memory for task_struct.
|
|
* We can't know this of course, and we can not trust
|
|
* sighand != NULL.
|
|
*
|
|
* In this case we actually return a random value, but this is
|
|
* correct.
|
|
*
|
|
* If we return NULL - we can pretend that we actually noticed that
|
|
* *ptask was updated when the previous task has exited. Or pretend
|
|
* that probe_slab_address(&sighand) reads NULL.
|
|
*
|
|
* If we return the new task (because sighand is not NULL for any
|
|
* reason) - this is fine too. This (new) task can't go away before
|
|
* another gp pass.
|
|
*
|
|
* And note: We could even eliminate the false positive if re-read
|
|
* task->sighand once again to avoid the falsely NULL. But this case
|
|
* is very unlikely so we don't care.
|
|
*/
|
|
if (!sighand)
|
|
return NULL;
|
|
|
|
return task;
|
|
}
|
|
|
|
void rcuwait_wake_up(struct rcuwait *w)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Order condition vs @task, such that everything prior to the load
|
|
* of @task is visible. This is the condition as to why the user called
|
|
* rcuwait_trywake() in the first place. Pairs with set_current_state()
|
|
* barrier (A) in rcuwait_wait_event().
|
|
*
|
|
* WAIT WAKE
|
|
* [S] tsk = current [S] cond = true
|
|
* MB (A) MB (B)
|
|
* [L] cond [L] tsk
|
|
*/
|
|
smp_rmb(); /* (B) */
|
|
|
|
/*
|
|
* Avoid using task_rcu_dereference() magic as long as we are careful,
|
|
* see comment in rcuwait_wait_event() regarding ->exit_state.
|
|
*/
|
|
task = rcu_dereference(w->task);
|
|
if (task)
|
|
wake_up_process(task);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
struct task_struct *try_get_task_struct(struct task_struct **ptask)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
rcu_read_lock();
|
|
task = task_rcu_dereference(ptask);
|
|
if (task)
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
return task;
|
|
}
|
|
|
|
/*
|
|
* Determine if a process group is "orphaned", according to the POSIX
|
|
* definition in 2.2.2.52. Orphaned process groups are not to be affected
|
|
* by terminal-generated stop signals. Newly orphaned process groups are
|
|
* to receive a SIGHUP and a SIGCONT.
|
|
*
|
|
* "I ask you, have you ever known what it is to be an orphan?"
|
|
*/
|
|
static int will_become_orphaned_pgrp(struct pid *pgrp,
|
|
struct task_struct *ignored_task)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if ((p == ignored_task) ||
|
|
(p->exit_state && thread_group_empty(p)) ||
|
|
is_global_init(p->real_parent))
|
|
continue;
|
|
|
|
if (task_pgrp(p->real_parent) != pgrp &&
|
|
task_session(p->real_parent) == task_session(p))
|
|
return 0;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int is_current_pgrp_orphaned(void)
|
|
{
|
|
int retval;
|
|
|
|
read_lock(&tasklist_lock);
|
|
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static bool has_stopped_jobs(struct pid *pgrp)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if (p->signal->flags & SIGNAL_STOP_STOPPED)
|
|
return true;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if any process groups have become orphaned as
|
|
* a result of our exiting, and if they have any stopped jobs,
|
|
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
static void
|
|
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
|
|
{
|
|
struct pid *pgrp = task_pgrp(tsk);
|
|
struct task_struct *ignored_task = tsk;
|
|
|
|
if (!parent)
|
|
/* exit: our father is in a different pgrp than
|
|
* we are and we were the only connection outside.
|
|
*/
|
|
parent = tsk->real_parent;
|
|
else
|
|
/* reparent: our child is in a different pgrp than
|
|
* we are, and it was the only connection outside.
|
|
*/
|
|
ignored_task = NULL;
|
|
|
|
if (task_pgrp(parent) != pgrp &&
|
|
task_session(parent) == task_session(tsk) &&
|
|
will_become_orphaned_pgrp(pgrp, ignored_task) &&
|
|
has_stopped_jobs(pgrp)) {
|
|
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
|
|
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
/*
|
|
* A task is exiting. If it owned this mm, find a new owner for the mm.
|
|
*/
|
|
void mm_update_next_owner(struct mm_struct *mm)
|
|
{
|
|
struct task_struct *c, *g, *p = current;
|
|
|
|
retry:
|
|
/*
|
|
* If the exiting or execing task is not the owner, it's
|
|
* someone else's problem.
|
|
*/
|
|
if (mm->owner != p)
|
|
return;
|
|
/*
|
|
* The current owner is exiting/execing and there are no other
|
|
* candidates. Do not leave the mm pointing to a possibly
|
|
* freed task structure.
|
|
*/
|
|
if (atomic_read(&mm->mm_users) <= 1) {
|
|
mm->owner = NULL;
|
|
return;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
/*
|
|
* Search in the children
|
|
*/
|
|
list_for_each_entry(c, &p->children, sibling) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
}
|
|
|
|
/*
|
|
* Search in the siblings
|
|
*/
|
|
list_for_each_entry(c, &p->real_parent->children, sibling) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
}
|
|
|
|
/*
|
|
* Search through everything else, we should not get here often.
|
|
*/
|
|
for_each_process(g) {
|
|
if (g->flags & PF_KTHREAD)
|
|
continue;
|
|
for_each_thread(g, c) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
if (c->mm)
|
|
break;
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
/*
|
|
* We found no owner yet mm_users > 1: this implies that we are
|
|
* most likely racing with swapoff (try_to_unuse()) or /proc or
|
|
* ptrace or page migration (get_task_mm()). Mark owner as NULL.
|
|
*/
|
|
mm->owner = NULL;
|
|
return;
|
|
|
|
assign_new_owner:
|
|
BUG_ON(c == p);
|
|
get_task_struct(c);
|
|
/*
|
|
* The task_lock protects c->mm from changing.
|
|
* We always want mm->owner->mm == mm
|
|
*/
|
|
task_lock(c);
|
|
/*
|
|
* Delay read_unlock() till we have the task_lock()
|
|
* to ensure that c does not slip away underneath us
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
if (c->mm != mm) {
|
|
task_unlock(c);
|
|
put_task_struct(c);
|
|
goto retry;
|
|
}
|
|
mm->owner = c;
|
|
task_unlock(c);
|
|
put_task_struct(c);
|
|
}
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
/*
|
|
* Turn us into a lazy TLB process if we
|
|
* aren't already..
|
|
*/
|
|
static void exit_mm(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct core_state *core_state;
|
|
|
|
mm_release(current, mm);
|
|
if (!mm)
|
|
return;
|
|
sync_mm_rss(mm);
|
|
/*
|
|
* Serialize with any possible pending coredump.
|
|
* We must hold mmap_sem around checking core_state
|
|
* and clearing tsk->mm. The core-inducing thread
|
|
* will increment ->nr_threads for each thread in the
|
|
* group with ->mm != NULL.
|
|
*/
|
|
down_read(&mm->mmap_sem);
|
|
core_state = mm->core_state;
|
|
if (core_state) {
|
|
struct core_thread self;
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
self.task = current;
|
|
self.next = xchg(&core_state->dumper.next, &self);
|
|
/*
|
|
* Implies mb(), the result of xchg() must be visible
|
|
* to core_state->dumper.
|
|
*/
|
|
if (atomic_dec_and_test(&core_state->nr_threads))
|
|
complete(&core_state->startup);
|
|
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (!self.task) /* see coredump_finish() */
|
|
break;
|
|
freezable_schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
down_read(&mm->mmap_sem);
|
|
}
|
|
atomic_inc(&mm->mm_count);
|
|
BUG_ON(mm != current->active_mm);
|
|
/* more a memory barrier than a real lock */
|
|
task_lock(current);
|
|
current->mm = NULL;
|
|
up_read(&mm->mmap_sem);
|
|
enter_lazy_tlb(mm, current);
|
|
task_unlock(current);
|
|
mm_update_next_owner(mm);
|
|
mmput(mm);
|
|
if (test_thread_flag(TIF_MEMDIE))
|
|
exit_oom_victim();
|
|
}
|
|
|
|
static struct task_struct *find_alive_thread(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
for_each_thread(p, t) {
|
|
if (!(t->flags & PF_EXITING))
|
|
return t;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct task_struct *find_child_reaper(struct task_struct *father)
|
|
__releases(&tasklist_lock)
|
|
__acquires(&tasklist_lock)
|
|
{
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(father);
|
|
struct task_struct *reaper = pid_ns->child_reaper;
|
|
|
|
if (likely(reaper != father))
|
|
return reaper;
|
|
|
|
reaper = find_alive_thread(father);
|
|
if (reaper) {
|
|
pid_ns->child_reaper = reaper;
|
|
return reaper;
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
if (unlikely(pid_ns == &init_pid_ns)) {
|
|
panic("Attempted to kill init! exitcode=0x%08x\n",
|
|
father->signal->group_exit_code ?: father->exit_code);
|
|
}
|
|
zap_pid_ns_processes(pid_ns);
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
return father;
|
|
}
|
|
|
|
/*
|
|
* When we die, we re-parent all our children, and try to:
|
|
* 1. give them to another thread in our thread group, if such a member exists
|
|
* 2. give it to the first ancestor process which prctl'd itself as a
|
|
* child_subreaper for its children (like a service manager)
|
|
* 3. give it to the init process (PID 1) in our pid namespace
|
|
*/
|
|
static struct task_struct *find_new_reaper(struct task_struct *father,
|
|
struct task_struct *child_reaper)
|
|
{
|
|
struct task_struct *thread, *reaper;
|
|
|
|
thread = find_alive_thread(father);
|
|
if (thread)
|
|
return thread;
|
|
|
|
if (father->signal->has_child_subreaper) {
|
|
unsigned int ns_level = task_pid(father)->level;
|
|
/*
|
|
* Find the first ->is_child_subreaper ancestor in our pid_ns.
|
|
* We can't check reaper != child_reaper to ensure we do not
|
|
* cross the namespaces, the exiting parent could be injected
|
|
* by setns() + fork().
|
|
* We check pid->level, this is slightly more efficient than
|
|
* task_active_pid_ns(reaper) != task_active_pid_ns(father).
|
|
*/
|
|
for (reaper = father->real_parent;
|
|
task_pid(reaper)->level == ns_level;
|
|
reaper = reaper->real_parent) {
|
|
if (reaper == &init_task)
|
|
break;
|
|
if (!reaper->signal->is_child_subreaper)
|
|
continue;
|
|
thread = find_alive_thread(reaper);
|
|
if (thread)
|
|
return thread;
|
|
}
|
|
}
|
|
|
|
return child_reaper;
|
|
}
|
|
|
|
/*
|
|
* Any that need to be release_task'd are put on the @dead list.
|
|
*/
|
|
static void reparent_leader(struct task_struct *father, struct task_struct *p,
|
|
struct list_head *dead)
|
|
{
|
|
if (unlikely(p->exit_state == EXIT_DEAD))
|
|
return;
|
|
|
|
/* We don't want people slaying init. */
|
|
p->exit_signal = SIGCHLD;
|
|
|
|
/* If it has exited notify the new parent about this child's death. */
|
|
if (!p->ptrace &&
|
|
p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
|
|
if (do_notify_parent(p, p->exit_signal)) {
|
|
p->exit_state = EXIT_DEAD;
|
|
list_add(&p->ptrace_entry, dead);
|
|
}
|
|
}
|
|
|
|
kill_orphaned_pgrp(p, father);
|
|
}
|
|
|
|
/*
|
|
* This does two things:
|
|
*
|
|
* A. Make init inherit all the child processes
|
|
* B. Check to see if any process groups have become orphaned
|
|
* as a result of our exiting, and if they have any stopped
|
|
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
static void forget_original_parent(struct task_struct *father,
|
|
struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *t, *reaper;
|
|
|
|
if (unlikely(!list_empty(&father->ptraced)))
|
|
exit_ptrace(father, dead);
|
|
|
|
/* Can drop and reacquire tasklist_lock */
|
|
reaper = find_child_reaper(father);
|
|
if (list_empty(&father->children))
|
|
return;
|
|
|
|
reaper = find_new_reaper(father, reaper);
|
|
list_for_each_entry(p, &father->children, sibling) {
|
|
for_each_thread(p, t) {
|
|
t->real_parent = reaper;
|
|
BUG_ON((!t->ptrace) != (t->parent == father));
|
|
if (likely(!t->ptrace))
|
|
t->parent = t->real_parent;
|
|
if (t->pdeath_signal)
|
|
group_send_sig_info(t->pdeath_signal,
|
|
SEND_SIG_NOINFO, t);
|
|
}
|
|
/*
|
|
* If this is a threaded reparent there is no need to
|
|
* notify anyone anything has happened.
|
|
*/
|
|
if (!same_thread_group(reaper, father))
|
|
reparent_leader(father, p, dead);
|
|
}
|
|
list_splice_tail_init(&father->children, &reaper->children);
|
|
}
|
|
|
|
/*
|
|
* Send signals to all our closest relatives so that they know
|
|
* to properly mourn us..
|
|
*/
|
|
static void exit_notify(struct task_struct *tsk, int group_dead)
|
|
{
|
|
bool autoreap;
|
|
struct task_struct *p, *n;
|
|
LIST_HEAD(dead);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
forget_original_parent(tsk, &dead);
|
|
|
|
if (group_dead)
|
|
kill_orphaned_pgrp(tsk->group_leader, NULL);
|
|
|
|
if (unlikely(tsk->ptrace)) {
|
|
int sig = thread_group_leader(tsk) &&
|
|
thread_group_empty(tsk) &&
|
|
!ptrace_reparented(tsk) ?
|
|
tsk->exit_signal : SIGCHLD;
|
|
autoreap = do_notify_parent(tsk, sig);
|
|
} else if (thread_group_leader(tsk)) {
|
|
autoreap = thread_group_empty(tsk) &&
|
|
do_notify_parent(tsk, tsk->exit_signal);
|
|
} else {
|
|
autoreap = true;
|
|
}
|
|
|
|
tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
|
|
if (tsk->exit_state == EXIT_DEAD)
|
|
list_add(&tsk->ptrace_entry, &dead);
|
|
|
|
/* mt-exec, de_thread() is waiting for group leader */
|
|
if (unlikely(tsk->signal->notify_count < 0))
|
|
wake_up_process(tsk->signal->group_exit_task);
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
|
|
list_del_init(&p->ptrace_entry);
|
|
release_task(p);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
static void check_stack_usage(void)
|
|
{
|
|
static DEFINE_SPINLOCK(low_water_lock);
|
|
static int lowest_to_date = THREAD_SIZE;
|
|
unsigned long free;
|
|
|
|
free = stack_not_used(current);
|
|
|
|
if (free >= lowest_to_date)
|
|
return;
|
|
|
|
spin_lock(&low_water_lock);
|
|
if (free < lowest_to_date) {
|
|
pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
|
|
current->comm, task_pid_nr(current), free);
|
|
lowest_to_date = free;
|
|
}
|
|
spin_unlock(&low_water_lock);
|
|
}
|
|
#else
|
|
static inline void check_stack_usage(void) {}
|
|
#endif
|
|
|
|
void __noreturn do_exit(long code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int group_dead;
|
|
TASKS_RCU(int tasks_rcu_i);
|
|
|
|
profile_task_exit(tsk);
|
|
kcov_task_exit(tsk);
|
|
|
|
WARN_ON(blk_needs_flush_plug(tsk));
|
|
|
|
if (unlikely(in_interrupt()))
|
|
panic("Aiee, killing interrupt handler!");
|
|
if (unlikely(!tsk->pid))
|
|
panic("Attempted to kill the idle task!");
|
|
|
|
/*
|
|
* If do_exit is called because this processes oopsed, it's possible
|
|
* that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
|
|
* continuing. Amongst other possible reasons, this is to prevent
|
|
* mm_release()->clear_child_tid() from writing to a user-controlled
|
|
* kernel address.
|
|
*/
|
|
set_fs(USER_DS);
|
|
|
|
ptrace_event(PTRACE_EVENT_EXIT, code);
|
|
|
|
validate_creds_for_do_exit(tsk);
|
|
|
|
/*
|
|
* We're taking recursive faults here in do_exit. Safest is to just
|
|
* leave this task alone and wait for reboot.
|
|
*/
|
|
if (unlikely(tsk->flags & PF_EXITING)) {
|
|
pr_alert("Fixing recursive fault but reboot is needed!\n");
|
|
/*
|
|
* We can do this unlocked here. The futex code uses
|
|
* this flag just to verify whether the pi state
|
|
* cleanup has been done or not. In the worst case it
|
|
* loops once more. We pretend that the cleanup was
|
|
* done as there is no way to return. Either the
|
|
* OWNER_DIED bit is set by now or we push the blocked
|
|
* task into the wait for ever nirwana as well.
|
|
*/
|
|
tsk->flags |= PF_EXITPIDONE;
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
|
|
exit_signals(tsk); /* sets PF_EXITING */
|
|
/*
|
|
* Ensure that all new tsk->pi_lock acquisitions must observe
|
|
* PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
|
|
*/
|
|
smp_mb();
|
|
/*
|
|
* Ensure that we must observe the pi_state in exit_mm() ->
|
|
* mm_release() -> exit_pi_state_list().
|
|
*/
|
|
raw_spin_unlock_wait(&tsk->pi_lock);
|
|
|
|
if (unlikely(in_atomic())) {
|
|
pr_info("note: %s[%d] exited with preempt_count %d\n",
|
|
current->comm, task_pid_nr(current),
|
|
preempt_count());
|
|
preempt_count_set(PREEMPT_ENABLED);
|
|
}
|
|
|
|
/* sync mm's RSS info before statistics gathering */
|
|
if (tsk->mm)
|
|
sync_mm_rss(tsk->mm);
|
|
acct_update_integrals(tsk);
|
|
group_dead = atomic_dec_and_test(&tsk->signal->live);
|
|
if (group_dead) {
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
hrtimer_cancel(&tsk->signal->real_timer);
|
|
exit_itimers(tsk->signal);
|
|
#endif
|
|
if (tsk->mm)
|
|
setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
|
|
}
|
|
acct_collect(code, group_dead);
|
|
if (group_dead)
|
|
tty_audit_exit();
|
|
audit_free(tsk);
|
|
|
|
tsk->exit_code = code;
|
|
taskstats_exit(tsk, group_dead);
|
|
|
|
exit_mm();
|
|
|
|
if (group_dead)
|
|
acct_process();
|
|
trace_sched_process_exit(tsk);
|
|
|
|
exit_sem(tsk);
|
|
exit_shm(tsk);
|
|
exit_files(tsk);
|
|
exit_fs(tsk);
|
|
if (group_dead)
|
|
disassociate_ctty(1);
|
|
exit_task_namespaces(tsk);
|
|
exit_task_work(tsk);
|
|
exit_thread(tsk);
|
|
|
|
/*
|
|
* Flush inherited counters to the parent - before the parent
|
|
* gets woken up by child-exit notifications.
|
|
*
|
|
* because of cgroup mode, must be called before cgroup_exit()
|
|
*/
|
|
perf_event_exit_task(tsk);
|
|
|
|
sched_autogroup_exit_task(tsk);
|
|
cgroup_exit(tsk);
|
|
|
|
/*
|
|
* FIXME: do that only when needed, using sched_exit tracepoint
|
|
*/
|
|
flush_ptrace_hw_breakpoint(tsk);
|
|
|
|
TASKS_RCU(preempt_disable());
|
|
TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
|
|
TASKS_RCU(preempt_enable());
|
|
exit_notify(tsk, group_dead);
|
|
proc_exit_connector(tsk);
|
|
mpol_put_task_policy(tsk);
|
|
#ifdef CONFIG_FUTEX
|
|
if (unlikely(current->pi_state_cache))
|
|
kfree(current->pi_state_cache);
|
|
#endif
|
|
/*
|
|
* Make sure we are holding no locks:
|
|
*/
|
|
debug_check_no_locks_held();
|
|
/*
|
|
* We can do this unlocked here. The futex code uses this flag
|
|
* just to verify whether the pi state cleanup has been done
|
|
* or not. In the worst case it loops once more.
|
|
*/
|
|
tsk->flags |= PF_EXITPIDONE;
|
|
|
|
if (tsk->io_context)
|
|
exit_io_context(tsk);
|
|
|
|
if (tsk->splice_pipe)
|
|
free_pipe_info(tsk->splice_pipe);
|
|
|
|
if (tsk->task_frag.page)
|
|
put_page(tsk->task_frag.page);
|
|
|
|
validate_creds_for_do_exit(tsk);
|
|
|
|
check_stack_usage();
|
|
preempt_disable();
|
|
if (tsk->nr_dirtied)
|
|
__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
|
|
exit_rcu();
|
|
TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
|
|
|
|
do_task_dead();
|
|
}
|
|
EXPORT_SYMBOL_GPL(do_exit);
|
|
|
|
void complete_and_exit(struct completion *comp, long code)
|
|
{
|
|
if (comp)
|
|
complete(comp);
|
|
|
|
do_exit(code);
|
|
}
|
|
EXPORT_SYMBOL(complete_and_exit);
|
|
|
|
SYSCALL_DEFINE1(exit, int, error_code)
|
|
{
|
|
do_exit((error_code&0xff)<<8);
|
|
}
|
|
|
|
/*
|
|
* Take down every thread in the group. This is called by fatal signals
|
|
* as well as by sys_exit_group (below).
|
|
*/
|
|
void
|
|
do_group_exit(int exit_code)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
BUG_ON(exit_code & 0x80); /* core dumps don't get here */
|
|
|
|
if (signal_group_exit(sig))
|
|
exit_code = sig->group_exit_code;
|
|
else if (!thread_group_empty(current)) {
|
|
struct sighand_struct *const sighand = current->sighand;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
if (signal_group_exit(sig))
|
|
/* Another thread got here before we took the lock. */
|
|
exit_code = sig->group_exit_code;
|
|
else {
|
|
sig->group_exit_code = exit_code;
|
|
sig->flags = SIGNAL_GROUP_EXIT;
|
|
zap_other_threads(current);
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
|
|
do_exit(exit_code);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* this kills every thread in the thread group. Note that any externally
|
|
* wait4()-ing process will get the correct exit code - even if this
|
|
* thread is not the thread group leader.
|
|
*/
|
|
SYSCALL_DEFINE1(exit_group, int, error_code)
|
|
{
|
|
do_group_exit((error_code & 0xff) << 8);
|
|
/* NOTREACHED */
|
|
return 0;
|
|
}
|
|
|
|
struct wait_opts {
|
|
enum pid_type wo_type;
|
|
int wo_flags;
|
|
struct pid *wo_pid;
|
|
|
|
struct siginfo __user *wo_info;
|
|
int __user *wo_stat;
|
|
struct rusage __user *wo_rusage;
|
|
|
|
wait_queue_t child_wait;
|
|
int notask_error;
|
|
};
|
|
|
|
static inline
|
|
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
|
|
{
|
|
if (type != PIDTYPE_PID)
|
|
task = task->group_leader;
|
|
return task->pids[type].pid;
|
|
}
|
|
|
|
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
return wo->wo_type == PIDTYPE_MAX ||
|
|
task_pid_type(p, wo->wo_type) == wo->wo_pid;
|
|
}
|
|
|
|
static int
|
|
eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
|
|
{
|
|
if (!eligible_pid(wo, p))
|
|
return 0;
|
|
|
|
/*
|
|
* Wait for all children (clone and not) if __WALL is set or
|
|
* if it is traced by us.
|
|
*/
|
|
if (ptrace || (wo->wo_flags & __WALL))
|
|
return 1;
|
|
|
|
/*
|
|
* Otherwise, wait for clone children *only* if __WCLONE is set;
|
|
* otherwise, wait for non-clone children *only*.
|
|
*
|
|
* Note: a "clone" child here is one that reports to its parent
|
|
* using a signal other than SIGCHLD, or a non-leader thread which
|
|
* we can only see if it is traced by us.
|
|
*/
|
|
if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
|
|
pid_t pid, uid_t uid, int why, int status)
|
|
{
|
|
struct siginfo __user *infop;
|
|
int retval = wo->wo_rusage
|
|
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
|
|
|
|
put_task_struct(p);
|
|
infop = wo->wo_info;
|
|
if (infop) {
|
|
if (!retval)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval)
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval)
|
|
retval = put_user(uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = put_user(status, &infop->si_status);
|
|
}
|
|
if (!retval)
|
|
retval = pid;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
int state, retval, status;
|
|
pid_t pid = task_pid_vnr(p);
|
|
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
struct siginfo __user *infop;
|
|
|
|
if (!likely(wo->wo_flags & WEXITED))
|
|
return 0;
|
|
|
|
if (unlikely(wo->wo_flags & WNOWAIT)) {
|
|
int exit_code = p->exit_code;
|
|
int why;
|
|
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
|
|
if ((exit_code & 0x7f) == 0) {
|
|
why = CLD_EXITED;
|
|
status = exit_code >> 8;
|
|
} else {
|
|
why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
|
|
status = exit_code & 0x7f;
|
|
}
|
|
return wait_noreap_copyout(wo, p, pid, uid, why, status);
|
|
}
|
|
/*
|
|
* Move the task's state to DEAD/TRACE, only one thread can do this.
|
|
*/
|
|
state = (ptrace_reparented(p) && thread_group_leader(p)) ?
|
|
EXIT_TRACE : EXIT_DEAD;
|
|
if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
|
|
return 0;
|
|
/*
|
|
* We own this thread, nobody else can reap it.
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
|
|
/*
|
|
* Check thread_group_leader() to exclude the traced sub-threads.
|
|
*/
|
|
if (state == EXIT_DEAD && thread_group_leader(p)) {
|
|
struct signal_struct *sig = p->signal;
|
|
struct signal_struct *psig = current->signal;
|
|
unsigned long maxrss;
|
|
u64 tgutime, tgstime;
|
|
|
|
/*
|
|
* The resource counters for the group leader are in its
|
|
* own task_struct. Those for dead threads in the group
|
|
* are in its signal_struct, as are those for the child
|
|
* processes it has previously reaped. All these
|
|
* accumulate in the parent's signal_struct c* fields.
|
|
*
|
|
* We don't bother to take a lock here to protect these
|
|
* p->signal fields because the whole thread group is dead
|
|
* and nobody can change them.
|
|
*
|
|
* psig->stats_lock also protects us from our sub-theads
|
|
* which can reap other children at the same time. Until
|
|
* we change k_getrusage()-like users to rely on this lock
|
|
* we have to take ->siglock as well.
|
|
*
|
|
* We use thread_group_cputime_adjusted() to get times for
|
|
* the thread group, which consolidates times for all threads
|
|
* in the group including the group leader.
|
|
*/
|
|
thread_group_cputime_adjusted(p, &tgutime, &tgstime);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
write_seqlock(&psig->stats_lock);
|
|
psig->cutime += tgutime + sig->cutime;
|
|
psig->cstime += tgstime + sig->cstime;
|
|
psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
|
|
psig->cmin_flt +=
|
|
p->min_flt + sig->min_flt + sig->cmin_flt;
|
|
psig->cmaj_flt +=
|
|
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
|
|
psig->cnvcsw +=
|
|
p->nvcsw + sig->nvcsw + sig->cnvcsw;
|
|
psig->cnivcsw +=
|
|
p->nivcsw + sig->nivcsw + sig->cnivcsw;
|
|
psig->cinblock +=
|
|
task_io_get_inblock(p) +
|
|
sig->inblock + sig->cinblock;
|
|
psig->coublock +=
|
|
task_io_get_oublock(p) +
|
|
sig->oublock + sig->coublock;
|
|
maxrss = max(sig->maxrss, sig->cmaxrss);
|
|
if (psig->cmaxrss < maxrss)
|
|
psig->cmaxrss = maxrss;
|
|
task_io_accounting_add(&psig->ioac, &p->ioac);
|
|
task_io_accounting_add(&psig->ioac, &sig->ioac);
|
|
write_sequnlock(&psig->stats_lock);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
retval = wo->wo_rusage
|
|
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
|
|
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
|
|
? p->signal->group_exit_code : p->exit_code;
|
|
if (!retval && wo->wo_stat)
|
|
retval = put_user(status, wo->wo_stat);
|
|
|
|
infop = wo->wo_info;
|
|
if (!retval && infop)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval && infop)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval && infop) {
|
|
int why;
|
|
|
|
if ((status & 0x7f) == 0) {
|
|
why = CLD_EXITED;
|
|
status >>= 8;
|
|
} else {
|
|
why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
|
|
status &= 0x7f;
|
|
}
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval)
|
|
retval = put_user(status, &infop->si_status);
|
|
}
|
|
if (!retval && infop)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval && infop)
|
|
retval = put_user(uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = pid;
|
|
|
|
if (state == EXIT_TRACE) {
|
|
write_lock_irq(&tasklist_lock);
|
|
/* We dropped tasklist, ptracer could die and untrace */
|
|
ptrace_unlink(p);
|
|
|
|
/* If parent wants a zombie, don't release it now */
|
|
state = EXIT_ZOMBIE;
|
|
if (do_notify_parent(p, p->exit_signal))
|
|
state = EXIT_DEAD;
|
|
p->exit_state = state;
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
if (state == EXIT_DEAD)
|
|
release_task(p);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int *task_stopped_code(struct task_struct *p, bool ptrace)
|
|
{
|
|
if (ptrace) {
|
|
if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
|
|
return &p->exit_code;
|
|
} else {
|
|
if (p->signal->flags & SIGNAL_STOP_STOPPED)
|
|
return &p->signal->group_exit_code;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
|
|
* @wo: wait options
|
|
* @ptrace: is the wait for ptrace
|
|
* @p: task to wait for
|
|
*
|
|
* Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
|
|
*
|
|
* CONTEXT:
|
|
* read_lock(&tasklist_lock), which is released if return value is
|
|
* non-zero. Also, grabs and releases @p->sighand->siglock.
|
|
*
|
|
* RETURNS:
|
|
* 0 if wait condition didn't exist and search for other wait conditions
|
|
* should continue. Non-zero return, -errno on failure and @p's pid on
|
|
* success, implies that tasklist_lock is released and wait condition
|
|
* search should terminate.
|
|
*/
|
|
static int wait_task_stopped(struct wait_opts *wo,
|
|
int ptrace, struct task_struct *p)
|
|
{
|
|
struct siginfo __user *infop;
|
|
int retval, exit_code, *p_code, why;
|
|
uid_t uid = 0; /* unneeded, required by compiler */
|
|
pid_t pid;
|
|
|
|
/*
|
|
* Traditionally we see ptrace'd stopped tasks regardless of options.
|
|
*/
|
|
if (!ptrace && !(wo->wo_flags & WUNTRACED))
|
|
return 0;
|
|
|
|
if (!task_stopped_code(p, ptrace))
|
|
return 0;
|
|
|
|
exit_code = 0;
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
|
|
p_code = task_stopped_code(p, ptrace);
|
|
if (unlikely(!p_code))
|
|
goto unlock_sig;
|
|
|
|
exit_code = *p_code;
|
|
if (!exit_code)
|
|
goto unlock_sig;
|
|
|
|
if (!unlikely(wo->wo_flags & WNOWAIT))
|
|
*p_code = 0;
|
|
|
|
uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
unlock_sig:
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
if (!exit_code)
|
|
return 0;
|
|
|
|
/*
|
|
* Now we are pretty sure this task is interesting.
|
|
* Make sure it doesn't get reaped out from under us while we
|
|
* give up the lock and then examine it below. We don't want to
|
|
* keep holding onto the tasklist_lock while we call getrusage and
|
|
* possibly take page faults for user memory.
|
|
*/
|
|
get_task_struct(p);
|
|
pid = task_pid_vnr(p);
|
|
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
|
|
if (unlikely(wo->wo_flags & WNOWAIT))
|
|
return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
|
|
|
|
retval = wo->wo_rusage
|
|
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
|
|
if (!retval && wo->wo_stat)
|
|
retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
|
|
|
|
infop = wo->wo_info;
|
|
if (!retval && infop)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval && infop)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval && infop)
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval && infop)
|
|
retval = put_user(exit_code, &infop->si_status);
|
|
if (!retval && infop)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval && infop)
|
|
retval = put_user(uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = pid;
|
|
put_task_struct(p);
|
|
|
|
BUG_ON(!retval);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Handle do_wait work for one task in a live, non-stopped state.
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
int retval;
|
|
pid_t pid;
|
|
uid_t uid;
|
|
|
|
if (!unlikely(wo->wo_flags & WCONTINUED))
|
|
return 0;
|
|
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
|
|
return 0;
|
|
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
/* Re-check with the lock held. */
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return 0;
|
|
}
|
|
if (!unlikely(wo->wo_flags & WNOWAIT))
|
|
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
|
|
uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
|
|
pid = task_pid_vnr(p);
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
|
|
if (!wo->wo_info) {
|
|
retval = wo->wo_rusage
|
|
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
|
|
put_task_struct(p);
|
|
if (!retval && wo->wo_stat)
|
|
retval = put_user(0xffff, wo->wo_stat);
|
|
if (!retval)
|
|
retval = pid;
|
|
} else {
|
|
retval = wait_noreap_copyout(wo, p, pid, uid,
|
|
CLD_CONTINUED, SIGCONT);
|
|
BUG_ON(retval == 0);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Consider @p for a wait by @parent.
|
|
*
|
|
* -ECHILD should be in ->notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue;
|
|
* then ->notask_error is 0 if @p is an eligible child,
|
|
* or still -ECHILD.
|
|
*/
|
|
static int wait_consider_task(struct wait_opts *wo, int ptrace,
|
|
struct task_struct *p)
|
|
{
|
|
/*
|
|
* We can race with wait_task_zombie() from another thread.
|
|
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
|
|
* can't confuse the checks below.
|
|
*/
|
|
int exit_state = ACCESS_ONCE(p->exit_state);
|
|
int ret;
|
|
|
|
if (unlikely(exit_state == EXIT_DEAD))
|
|
return 0;
|
|
|
|
ret = eligible_child(wo, ptrace, p);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
if (unlikely(exit_state == EXIT_TRACE)) {
|
|
/*
|
|
* ptrace == 0 means we are the natural parent. In this case
|
|
* we should clear notask_error, debugger will notify us.
|
|
*/
|
|
if (likely(!ptrace))
|
|
wo->notask_error = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (likely(!ptrace) && unlikely(p->ptrace)) {
|
|
/*
|
|
* If it is traced by its real parent's group, just pretend
|
|
* the caller is ptrace_do_wait() and reap this child if it
|
|
* is zombie.
|
|
*
|
|
* This also hides group stop state from real parent; otherwise
|
|
* a single stop can be reported twice as group and ptrace stop.
|
|
* If a ptracer wants to distinguish these two events for its
|
|
* own children it should create a separate process which takes
|
|
* the role of real parent.
|
|
*/
|
|
if (!ptrace_reparented(p))
|
|
ptrace = 1;
|
|
}
|
|
|
|
/* slay zombie? */
|
|
if (exit_state == EXIT_ZOMBIE) {
|
|
/* we don't reap group leaders with subthreads */
|
|
if (!delay_group_leader(p)) {
|
|
/*
|
|
* A zombie ptracee is only visible to its ptracer.
|
|
* Notification and reaping will be cascaded to the
|
|
* real parent when the ptracer detaches.
|
|
*/
|
|
if (unlikely(ptrace) || likely(!p->ptrace))
|
|
return wait_task_zombie(wo, p);
|
|
}
|
|
|
|
/*
|
|
* Allow access to stopped/continued state via zombie by
|
|
* falling through. Clearing of notask_error is complex.
|
|
*
|
|
* When !@ptrace:
|
|
*
|
|
* If WEXITED is set, notask_error should naturally be
|
|
* cleared. If not, subset of WSTOPPED|WCONTINUED is set,
|
|
* so, if there are live subthreads, there are events to
|
|
* wait for. If all subthreads are dead, it's still safe
|
|
* to clear - this function will be called again in finite
|
|
* amount time once all the subthreads are released and
|
|
* will then return without clearing.
|
|
*
|
|
* When @ptrace:
|
|
*
|
|
* Stopped state is per-task and thus can't change once the
|
|
* target task dies. Only continued and exited can happen.
|
|
* Clear notask_error if WCONTINUED | WEXITED.
|
|
*/
|
|
if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
|
|
wo->notask_error = 0;
|
|
} else {
|
|
/*
|
|
* @p is alive and it's gonna stop, continue or exit, so
|
|
* there always is something to wait for.
|
|
*/
|
|
wo->notask_error = 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for stopped. Depending on @ptrace, different stopped state
|
|
* is used and the two don't interact with each other.
|
|
*/
|
|
ret = wait_task_stopped(wo, ptrace, p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Wait for continued. There's only one continued state and the
|
|
* ptracer can consume it which can confuse the real parent. Don't
|
|
* use WCONTINUED from ptracer. You don't need or want it.
|
|
*/
|
|
return wait_task_continued(wo, p);
|
|
}
|
|
|
|
/*
|
|
* Do the work of do_wait() for one thread in the group, @tsk.
|
|
*
|
|
* -ECHILD should be in ->notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue; then
|
|
* ->notask_error is 0 if there were any eligible children,
|
|
* or still -ECHILD.
|
|
*/
|
|
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
list_for_each_entry(p, &tsk->children, sibling) {
|
|
int ret = wait_consider_task(wo, 0, p);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
|
|
int ret = wait_consider_task(wo, 1, p);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int child_wait_callback(wait_queue_t *wait, unsigned mode,
|
|
int sync, void *key)
|
|
{
|
|
struct wait_opts *wo = container_of(wait, struct wait_opts,
|
|
child_wait);
|
|
struct task_struct *p = key;
|
|
|
|
if (!eligible_pid(wo, p))
|
|
return 0;
|
|
|
|
if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
|
|
return 0;
|
|
|
|
return default_wake_function(wait, mode, sync, key);
|
|
}
|
|
|
|
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
|
|
{
|
|
__wake_up_sync_key(&parent->signal->wait_chldexit,
|
|
TASK_INTERRUPTIBLE, 1, p);
|
|
}
|
|
|
|
static long do_wait(struct wait_opts *wo)
|
|
{
|
|
struct task_struct *tsk;
|
|
int retval;
|
|
|
|
trace_sched_process_wait(wo->wo_pid);
|
|
|
|
init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
|
|
wo->child_wait.private = current;
|
|
add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
|
|
repeat:
|
|
/*
|
|
* If there is nothing that can match our criteria, just get out.
|
|
* We will clear ->notask_error to zero if we see any child that
|
|
* might later match our criteria, even if we are not able to reap
|
|
* it yet.
|
|
*/
|
|
wo->notask_error = -ECHILD;
|
|
if ((wo->wo_type < PIDTYPE_MAX) &&
|
|
(!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
|
|
goto notask;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
read_lock(&tasklist_lock);
|
|
tsk = current;
|
|
do {
|
|
retval = do_wait_thread(wo, tsk);
|
|
if (retval)
|
|
goto end;
|
|
|
|
retval = ptrace_do_wait(wo, tsk);
|
|
if (retval)
|
|
goto end;
|
|
|
|
if (wo->wo_flags & __WNOTHREAD)
|
|
break;
|
|
} while_each_thread(current, tsk);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
notask:
|
|
retval = wo->notask_error;
|
|
if (!retval && !(wo->wo_flags & WNOHANG)) {
|
|
retval = -ERESTARTSYS;
|
|
if (!signal_pending(current)) {
|
|
schedule();
|
|
goto repeat;
|
|
}
|
|
}
|
|
end:
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
|
|
return retval;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
|
|
infop, int, options, struct rusage __user *, ru)
|
|
{
|
|
struct wait_opts wo;
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
long ret;
|
|
|
|
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
|
|
__WNOTHREAD|__WCLONE|__WALL))
|
|
return -EINVAL;
|
|
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
|
|
return -EINVAL;
|
|
|
|
switch (which) {
|
|
case P_ALL:
|
|
type = PIDTYPE_MAX;
|
|
break;
|
|
case P_PID:
|
|
type = PIDTYPE_PID;
|
|
if (upid <= 0)
|
|
return -EINVAL;
|
|
break;
|
|
case P_PGID:
|
|
type = PIDTYPE_PGID;
|
|
if (upid <= 0)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (type < PIDTYPE_MAX)
|
|
pid = find_get_pid(upid);
|
|
|
|
wo.wo_type = type;
|
|
wo.wo_pid = pid;
|
|
wo.wo_flags = options;
|
|
wo.wo_info = infop;
|
|
wo.wo_stat = NULL;
|
|
wo.wo_rusage = ru;
|
|
ret = do_wait(&wo);
|
|
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
} else if (infop) {
|
|
/*
|
|
* For a WNOHANG return, clear out all the fields
|
|
* we would set so the user can easily tell the
|
|
* difference.
|
|
*/
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_signo);
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_errno);
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_code);
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_pid);
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_uid);
|
|
if (!ret)
|
|
ret = put_user(0, &infop->si_status);
|
|
}
|
|
|
|
put_pid(pid);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
|
|
int, options, struct rusage __user *, ru)
|
|
{
|
|
struct wait_opts wo;
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
long ret;
|
|
|
|
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
|
|
__WNOTHREAD|__WCLONE|__WALL))
|
|
return -EINVAL;
|
|
|
|
if (upid == -1)
|
|
type = PIDTYPE_MAX;
|
|
else if (upid < 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = find_get_pid(-upid);
|
|
} else if (upid == 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = get_task_pid(current, PIDTYPE_PGID);
|
|
} else /* upid > 0 */ {
|
|
type = PIDTYPE_PID;
|
|
pid = find_get_pid(upid);
|
|
}
|
|
|
|
wo.wo_type = type;
|
|
wo.wo_pid = pid;
|
|
wo.wo_flags = options | WEXITED;
|
|
wo.wo_info = NULL;
|
|
wo.wo_stat = stat_addr;
|
|
wo.wo_rusage = ru;
|
|
ret = do_wait(&wo);
|
|
put_pid(pid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_WAITPID
|
|
|
|
/*
|
|
* sys_waitpid() remains for compatibility. waitpid() should be
|
|
* implemented by calling sys_wait4() from libc.a.
|
|
*/
|
|
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
|
|
{
|
|
return sys_wait4(pid, stat_addr, options, NULL);
|
|
}
|
|
|
|
#endif
|