Kirill A. Shutemov f530ee95b7 x86/boot/compressed: Reserve more memory for page tables
The decompressor has a hard limit on the number of page tables it can
allocate. This limit is defined at compile-time and will cause boot
failure if it is reached.

The kernel is very strict and calculates the limit precisely for the
worst-case scenario based on the current configuration. However, it is
easy to forget to adjust the limit when a new use-case arises. The
worst-case scenario is rarely encountered during sanity checks.

In the case of enabling 5-level paging, a use-case was overlooked. The
limit needs to be increased by one to accommodate the additional level.
This oversight went unnoticed until Aaron attempted to run the kernel
via kexec with 5-level paging and unaccepted memory enabled.

Update wost-case calculations to include 5-level paging.

To address this issue, let's allocate some extra space for page tables.
128K should be sufficient for any use-case. The logic can be simplified
by using a single value for all kernel configurations.

[ Also add a warning, should this memory run low - by Dave Hansen. ]

Fixes: 34bbb0009f3b ("x86/boot/compressed: Enable 5-level paging during decompression stage")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915070221.10266-1-kirill.shutemov@linux.intel.com
2023-09-17 09:48:57 +02:00

91 lines
2.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_BOOT_H
#define _ASM_X86_BOOT_H
#include <asm/pgtable_types.h>
#include <uapi/asm/boot.h>
/* Physical address where kernel should be loaded. */
#define LOAD_PHYSICAL_ADDR ((CONFIG_PHYSICAL_START \
+ (CONFIG_PHYSICAL_ALIGN - 1)) \
& ~(CONFIG_PHYSICAL_ALIGN - 1))
/* Minimum kernel alignment, as a power of two */
#ifdef CONFIG_X86_64
# define MIN_KERNEL_ALIGN_LG2 PMD_SHIFT
#else
# define MIN_KERNEL_ALIGN_LG2 (PAGE_SHIFT + THREAD_SIZE_ORDER)
#endif
#define MIN_KERNEL_ALIGN (_AC(1, UL) << MIN_KERNEL_ALIGN_LG2)
#if (CONFIG_PHYSICAL_ALIGN & (CONFIG_PHYSICAL_ALIGN-1)) || \
(CONFIG_PHYSICAL_ALIGN < MIN_KERNEL_ALIGN)
# error "Invalid value for CONFIG_PHYSICAL_ALIGN"
#endif
#if defined(CONFIG_KERNEL_BZIP2)
# define BOOT_HEAP_SIZE 0x400000
#elif defined(CONFIG_KERNEL_ZSTD)
/*
* Zstd needs to allocate the ZSTD_DCtx in order to decompress the kernel.
* The ZSTD_DCtx is ~160KB, so set the heap size to 192KB because it is a
* round number and to allow some slack.
*/
# define BOOT_HEAP_SIZE 0x30000
#else
# define BOOT_HEAP_SIZE 0x10000
#endif
#ifdef CONFIG_X86_64
# define BOOT_STACK_SIZE 0x4000
/*
* Used by decompressor's startup_32() to allocate page tables for identity
* mapping of the 4G of RAM in 4-level paging mode:
* - 1 level4 table;
* - 1 level3 table;
* - 4 level2 table that maps everything with 2M pages;
*
* The additional level5 table needed for 5-level paging is allocated from
* trampoline_32bit memory.
*/
# define BOOT_INIT_PGT_SIZE (6*4096)
/*
* Total number of page tables kernel_add_identity_map() can allocate,
* including page tables consumed by startup_32().
*
* Worst-case scenario:
* - 5-level paging needs 1 level5 table;
* - KASLR needs to map kernel, boot_params, cmdline and randomized kernel,
* assuming all of them cross 256T boundary:
* + 4*2 level4 table;
* + 4*2 level3 table;
* + 4*2 level2 table;
* - X86_VERBOSE_BOOTUP needs to map the first 2M (video RAM):
* + 1 level4 table;
* + 1 level3 table;
* + 1 level2 table;
* Total: 28 tables
*
* Add 4 spare table in case decompressor touches anything beyond what is
* accounted above. Warn if it happens.
*/
# define BOOT_PGT_SIZE_WARN (28*4096)
# define BOOT_PGT_SIZE (32*4096)
#else /* !CONFIG_X86_64 */
# define BOOT_STACK_SIZE 0x1000
#endif
#ifndef __ASSEMBLY__
extern unsigned int output_len;
extern const unsigned long kernel_total_size;
unsigned long decompress_kernel(unsigned char *outbuf, unsigned long virt_addr,
void (*error)(char *x));
#endif
#endif /* _ASM_X86_BOOT_H */