Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3188 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3188 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/percpu.c - percpu memory allocator
 | |
|  *
 | |
|  * Copyright (C) 2009		SUSE Linux Products GmbH
 | |
|  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 | |
|  *
 | |
|  * Copyright (C) 2017		Facebook Inc.
 | |
|  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
 | |
|  *
 | |
|  * The percpu allocator handles both static and dynamic areas.  Percpu
 | |
|  * areas are allocated in chunks which are divided into units.  There is
 | |
|  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
 | |
|  * based on NUMA properties of the machine.
 | |
|  *
 | |
|  *  c0                           c1                         c2
 | |
|  *  -------------------          -------------------        ------------
 | |
|  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 | |
|  *  -------------------  ......  -------------------  ....  ------------
 | |
|  *
 | |
|  * Allocation is done by offsets into a unit's address space.  Ie., an
 | |
|  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
 | |
|  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
 | |
|  * and even sparse.  Access is handled by configuring percpu base
 | |
|  * registers according to the cpu to unit mappings and offsetting the
 | |
|  * base address using pcpu_unit_size.
 | |
|  *
 | |
|  * There is special consideration for the first chunk which must handle
 | |
|  * the static percpu variables in the kernel image as allocation services
 | |
|  * are not online yet.  In short, the first chunk is structured like so:
 | |
|  *
 | |
|  *                  <Static | [Reserved] | Dynamic>
 | |
|  *
 | |
|  * The static data is copied from the original section managed by the
 | |
|  * linker.  The reserved section, if non-zero, primarily manages static
 | |
|  * percpu variables from kernel modules.  Finally, the dynamic section
 | |
|  * takes care of normal allocations.
 | |
|  *
 | |
|  * The allocator organizes chunks into lists according to free size and
 | |
|  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
 | |
|  * flag should be passed.  All memcg-aware allocations are sharing one set
 | |
|  * of chunks and all unaccounted allocations and allocations performed
 | |
|  * by processes belonging to the root memory cgroup are using the second set.
 | |
|  *
 | |
|  * The allocator tries to allocate from the fullest chunk first. Each chunk
 | |
|  * is managed by a bitmap with metadata blocks.  The allocation map is updated
 | |
|  * on every allocation and free to reflect the current state while the boundary
 | |
|  * map is only updated on allocation.  Each metadata block contains
 | |
|  * information to help mitigate the need to iterate over large portions
 | |
|  * of the bitmap.  The reverse mapping from page to chunk is stored in
 | |
|  * the page's index.  Lastly, units are lazily backed and grow in unison.
 | |
|  *
 | |
|  * There is a unique conversion that goes on here between bytes and bits.
 | |
|  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
 | |
|  * tracks the number of pages it is responsible for in nr_pages.  Helper
 | |
|  * functions are used to convert from between the bytes, bits, and blocks.
 | |
|  * All hints are managed in bits unless explicitly stated.
 | |
|  *
 | |
|  * To use this allocator, arch code should do the following:
 | |
|  *
 | |
|  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
 | |
|  *   regular address to percpu pointer and back if they need to be
 | |
|  *   different from the default
 | |
|  *
 | |
|  * - use pcpu_setup_first_chunk() during percpu area initialization to
 | |
|  *   setup the first chunk containing the kernel static percpu area
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/lcm.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/memcontrol.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/percpu.h>
 | |
| 
 | |
| #include "percpu-internal.h"
 | |
| 
 | |
| /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
 | |
| #define PCPU_SLOT_BASE_SHIFT		5
 | |
| /* chunks in slots below this are subject to being sidelined on failed alloc */
 | |
| #define PCPU_SLOT_FAIL_THRESHOLD	3
 | |
| 
 | |
| #define PCPU_EMPTY_POP_PAGES_LOW	2
 | |
| #define PCPU_EMPTY_POP_PAGES_HIGH	4
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 | |
| #ifndef __addr_to_pcpu_ptr
 | |
| #define __addr_to_pcpu_ptr(addr)					\
 | |
| 	(void __percpu *)((unsigned long)(addr) -			\
 | |
| 			  (unsigned long)pcpu_base_addr	+		\
 | |
| 			  (unsigned long)__per_cpu_start)
 | |
| #endif
 | |
| #ifndef __pcpu_ptr_to_addr
 | |
| #define __pcpu_ptr_to_addr(ptr)						\
 | |
| 	(void __force *)((unsigned long)(ptr) +				\
 | |
| 			 (unsigned long)pcpu_base_addr -		\
 | |
| 			 (unsigned long)__per_cpu_start)
 | |
| #endif
 | |
| #else	/* CONFIG_SMP */
 | |
| /* on UP, it's always identity mapped */
 | |
| #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 | |
| #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| static int pcpu_unit_pages __ro_after_init;
 | |
| static int pcpu_unit_size __ro_after_init;
 | |
| static int pcpu_nr_units __ro_after_init;
 | |
| static int pcpu_atom_size __ro_after_init;
 | |
| int pcpu_nr_slots __ro_after_init;
 | |
| static size_t pcpu_chunk_struct_size __ro_after_init;
 | |
| 
 | |
| /* cpus with the lowest and highest unit addresses */
 | |
| static unsigned int pcpu_low_unit_cpu __ro_after_init;
 | |
| static unsigned int pcpu_high_unit_cpu __ro_after_init;
 | |
| 
 | |
| /* the address of the first chunk which starts with the kernel static area */
 | |
| void *pcpu_base_addr __ro_after_init;
 | |
| EXPORT_SYMBOL_GPL(pcpu_base_addr);
 | |
| 
 | |
| static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
 | |
| const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
 | |
| 
 | |
| /* group information, used for vm allocation */
 | |
| static int pcpu_nr_groups __ro_after_init;
 | |
| static const unsigned long *pcpu_group_offsets __ro_after_init;
 | |
| static const size_t *pcpu_group_sizes __ro_after_init;
 | |
| 
 | |
| /*
 | |
|  * The first chunk which always exists.  Note that unlike other
 | |
|  * chunks, this one can be allocated and mapped in several different
 | |
|  * ways and thus often doesn't live in the vmalloc area.
 | |
|  */
 | |
| struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 | |
| 
 | |
| /*
 | |
|  * Optional reserved chunk.  This chunk reserves part of the first
 | |
|  * chunk and serves it for reserved allocations.  When the reserved
 | |
|  * region doesn't exist, the following variable is NULL.
 | |
|  */
 | |
| struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 | |
| 
 | |
| DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 | |
| static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 | |
| 
 | |
| struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 | |
| 
 | |
| /* chunks which need their map areas extended, protected by pcpu_lock */
 | |
| static LIST_HEAD(pcpu_map_extend_chunks);
 | |
| 
 | |
| /*
 | |
|  * The number of empty populated pages by chunk type, protected by pcpu_lock.
 | |
|  * The reserved chunk doesn't contribute to the count.
 | |
|  */
 | |
| int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
 | |
| 
 | |
| /*
 | |
|  * The number of populated pages in use by the allocator, protected by
 | |
|  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 | |
|  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 | |
|  * and increments/decrements this count by 1).
 | |
|  */
 | |
| static unsigned long pcpu_nr_populated;
 | |
| 
 | |
| /*
 | |
|  * Balance work is used to populate or destroy chunks asynchronously.  We
 | |
|  * try to keep the number of populated free pages between
 | |
|  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 | |
|  * empty chunk.
 | |
|  */
 | |
| static void pcpu_balance_workfn(struct work_struct *work);
 | |
| static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 | |
| static bool pcpu_async_enabled __read_mostly;
 | |
| static bool pcpu_atomic_alloc_failed;
 | |
| 
 | |
| static void pcpu_schedule_balance_work(void)
 | |
| {
 | |
| 	if (pcpu_async_enabled)
 | |
| 		schedule_work(&pcpu_balance_work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_addr_in_chunk - check if the address is served from this chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @addr: percpu address
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * True if the address is served from this chunk.
 | |
|  */
 | |
| static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 | |
| {
 | |
| 	void *start_addr, *end_addr;
 | |
| 
 | |
| 	if (!chunk)
 | |
| 		return false;
 | |
| 
 | |
| 	start_addr = chunk->base_addr + chunk->start_offset;
 | |
| 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 | |
| 		   chunk->end_offset;
 | |
| 
 | |
| 	return addr >= start_addr && addr < end_addr;
 | |
| }
 | |
| 
 | |
| static int __pcpu_size_to_slot(int size)
 | |
| {
 | |
| 	int highbit = fls(size);	/* size is in bytes */
 | |
| 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 | |
| }
 | |
| 
 | |
| static int pcpu_size_to_slot(int size)
 | |
| {
 | |
| 	if (size == pcpu_unit_size)
 | |
| 		return pcpu_nr_slots - 1;
 | |
| 	return __pcpu_size_to_slot(size);
 | |
| }
 | |
| 
 | |
| static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 
 | |
| 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 | |
| 	    chunk_md->contig_hint == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 | |
| }
 | |
| 
 | |
| /* set the pointer to a chunk in a page struct */
 | |
| static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 | |
| {
 | |
| 	page->index = (unsigned long)pcpu;
 | |
| }
 | |
| 
 | |
| /* obtain pointer to a chunk from a page struct */
 | |
| static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 | |
| {
 | |
| 	return (struct pcpu_chunk *)page->index;
 | |
| }
 | |
| 
 | |
| static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 | |
| 				     unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	return (unsigned long)chunk->base_addr +
 | |
| 	       pcpu_unit_page_offset(cpu, page_idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following are helper functions to help access bitmaps and convert
 | |
|  * between bitmap offsets to address offsets.
 | |
|  */
 | |
| static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 | |
| {
 | |
| 	return chunk->alloc_map +
 | |
| 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_off_to_block_index(int off)
 | |
| {
 | |
| 	return off / PCPU_BITMAP_BLOCK_BITS;
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_off_to_block_off(int off)
 | |
| {
 | |
| 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 | |
| }
 | |
| 
 | |
| static unsigned long pcpu_block_off_to_off(int index, int off)
 | |
| {
 | |
| 	return index * PCPU_BITMAP_BLOCK_BITS + off;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcpu_next_hint - determine which hint to use
 | |
|  * @block: block of interest
 | |
|  * @alloc_bits: size of allocation
 | |
|  *
 | |
|  * This determines if we should scan based on the scan_hint or first_free.
 | |
|  * In general, we want to scan from first_free to fulfill allocations by
 | |
|  * first fit.  However, if we know a scan_hint at position scan_hint_start
 | |
|  * cannot fulfill an allocation, we can begin scanning from there knowing
 | |
|  * the contig_hint will be our fallback.
 | |
|  */
 | |
| static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 | |
| {
 | |
| 	/*
 | |
| 	 * The three conditions below determine if we can skip past the
 | |
| 	 * scan_hint.  First, does the scan hint exist.  Second, is the
 | |
| 	 * contig_hint after the scan_hint (possibly not true iff
 | |
| 	 * contig_hint == scan_hint).  Third, is the allocation request
 | |
| 	 * larger than the scan_hint.
 | |
| 	 */
 | |
| 	if (block->scan_hint &&
 | |
| 	    block->contig_hint_start > block->scan_hint_start &&
 | |
| 	    alloc_bits > block->scan_hint)
 | |
| 		return block->scan_hint_start + block->scan_hint;
 | |
| 
 | |
| 	return block->first_free;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_next_md_free_region - finds the next hint free area
 | |
|  * @chunk: chunk of interest
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of free area
 | |
|  *
 | |
|  * Helper function for pcpu_for_each_md_free_region.  It checks
 | |
|  * block->contig_hint and performs aggregation across blocks to find the
 | |
|  * next hint.  It modifies bit_off and bits in-place to be consumed in the
 | |
|  * loop.
 | |
|  */
 | |
| static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 | |
| 				     int *bits)
 | |
| {
 | |
| 	int i = pcpu_off_to_block_index(*bit_off);
 | |
| 	int block_off = pcpu_off_to_block_off(*bit_off);
 | |
| 	struct pcpu_block_md *block;
 | |
| 
 | |
| 	*bits = 0;
 | |
| 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 | |
| 	     block++, i++) {
 | |
| 		/* handles contig area across blocks */
 | |
| 		if (*bits) {
 | |
| 			*bits += block->left_free;
 | |
| 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 | |
| 				continue;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This checks three things.  First is there a contig_hint to
 | |
| 		 * check.  Second, have we checked this hint before by
 | |
| 		 * comparing the block_off.  Third, is this the same as the
 | |
| 		 * right contig hint.  In the last case, it spills over into
 | |
| 		 * the next block and should be handled by the contig area
 | |
| 		 * across blocks code.
 | |
| 		 */
 | |
| 		*bits = block->contig_hint;
 | |
| 		if (*bits && block->contig_hint_start >= block_off &&
 | |
| 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 | |
| 			*bit_off = pcpu_block_off_to_off(i,
 | |
| 					block->contig_hint_start);
 | |
| 			return;
 | |
| 		}
 | |
| 		/* reset to satisfy the second predicate above */
 | |
| 		block_off = 0;
 | |
| 
 | |
| 		*bits = block->right_free;
 | |
| 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_next_fit_region - finds fit areas for a given allocation request
 | |
|  * @chunk: chunk of interest
 | |
|  * @alloc_bits: size of allocation
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of free area
 | |
|  *
 | |
|  * Finds the next free region that is viable for use with a given size and
 | |
|  * alignment.  This only returns if there is a valid area to be used for this
 | |
|  * allocation.  block->first_free is returned if the allocation request fits
 | |
|  * within the block to see if the request can be fulfilled prior to the contig
 | |
|  * hint.
 | |
|  */
 | |
| static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 | |
| 				 int align, int *bit_off, int *bits)
 | |
| {
 | |
| 	int i = pcpu_off_to_block_index(*bit_off);
 | |
| 	int block_off = pcpu_off_to_block_off(*bit_off);
 | |
| 	struct pcpu_block_md *block;
 | |
| 
 | |
| 	*bits = 0;
 | |
| 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 | |
| 	     block++, i++) {
 | |
| 		/* handles contig area across blocks */
 | |
| 		if (*bits) {
 | |
| 			*bits += block->left_free;
 | |
| 			if (*bits >= alloc_bits)
 | |
| 				return;
 | |
| 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		/* check block->contig_hint */
 | |
| 		*bits = ALIGN(block->contig_hint_start, align) -
 | |
| 			block->contig_hint_start;
 | |
| 		/*
 | |
| 		 * This uses the block offset to determine if this has been
 | |
| 		 * checked in the prior iteration.
 | |
| 		 */
 | |
| 		if (block->contig_hint &&
 | |
| 		    block->contig_hint_start >= block_off &&
 | |
| 		    block->contig_hint >= *bits + alloc_bits) {
 | |
| 			int start = pcpu_next_hint(block, alloc_bits);
 | |
| 
 | |
| 			*bits += alloc_bits + block->contig_hint_start -
 | |
| 				 start;
 | |
| 			*bit_off = pcpu_block_off_to_off(i, start);
 | |
| 			return;
 | |
| 		}
 | |
| 		/* reset to satisfy the second predicate above */
 | |
| 		block_off = 0;
 | |
| 
 | |
| 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 | |
| 				 align);
 | |
| 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 | |
| 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
 | |
| 		if (*bits >= alloc_bits)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* no valid offsets were found - fail condition */
 | |
| 	*bit_off = pcpu_chunk_map_bits(chunk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Metadata free area iterators.  These perform aggregation of free areas
 | |
|  * based on the metadata blocks and return the offset @bit_off and size in
 | |
|  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 | |
|  * a fit is found for the allocation request.
 | |
|  */
 | |
| #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
 | |
| 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
 | |
| 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
 | |
| 	     (bit_off) += (bits) + 1,					\
 | |
| 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 | |
| 
 | |
| #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 | |
| 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 | |
| 				  &(bits));				      \
 | |
| 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
 | |
| 	     (bit_off) += (bits),					      \
 | |
| 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 | |
| 				  &(bits)))
 | |
| 
 | |
| /**
 | |
|  * pcpu_mem_zalloc - allocate memory
 | |
|  * @size: bytes to allocate
 | |
|  * @gfp: allocation flags
 | |
|  *
 | |
|  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 | |
|  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 | |
|  * This is to facilitate passing through whitelisted flags.  The
 | |
|  * returned memory is always zeroed.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!slab_is_available()))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (size <= PAGE_SIZE)
 | |
| 		return kzalloc(size, gfp);
 | |
| 	else
 | |
| 		return __vmalloc(size, gfp | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_mem_free - free memory
 | |
|  * @ptr: memory to free
 | |
|  *
 | |
|  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 | |
|  */
 | |
| static void pcpu_mem_free(void *ptr)
 | |
| {
 | |
| 	kvfree(ptr);
 | |
| }
 | |
| 
 | |
| static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 | |
| 			      bool move_front)
 | |
| {
 | |
| 	if (chunk != pcpu_reserved_chunk) {
 | |
| 		struct list_head *pcpu_slot;
 | |
| 
 | |
| 		pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
 | |
| 		if (move_front)
 | |
| 			list_move(&chunk->list, &pcpu_slot[slot]);
 | |
| 		else
 | |
| 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 | |
| {
 | |
| 	__pcpu_chunk_move(chunk, slot, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 | |
|  * @chunk: chunk of interest
 | |
|  * @oslot: the previous slot it was on
 | |
|  *
 | |
|  * This function is called after an allocation or free changed @chunk.
 | |
|  * New slot according to the changed state is determined and @chunk is
 | |
|  * moved to the slot.  Note that the reserved chunk is never put on
 | |
|  * chunk slots.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_lock.
 | |
|  */
 | |
| static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 | |
| {
 | |
| 	int nslot = pcpu_chunk_slot(chunk);
 | |
| 
 | |
| 	if (oslot != nslot)
 | |
| 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcpu_update_empty_pages - update empty page counters
 | |
|  * @chunk: chunk of interest
 | |
|  * @nr: nr of empty pages
 | |
|  *
 | |
|  * This is used to keep track of the empty pages now based on the premise
 | |
|  * a md_block covers a page.  The hint update functions recognize if a block
 | |
|  * is made full or broken to calculate deltas for keeping track of free pages.
 | |
|  */
 | |
| static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 | |
| {
 | |
| 	chunk->nr_empty_pop_pages += nr;
 | |
| 	if (chunk != pcpu_reserved_chunk)
 | |
| 		pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcpu_region_overlap - determines if two regions overlap
 | |
|  * @a: start of first region, inclusive
 | |
|  * @b: end of first region, exclusive
 | |
|  * @x: start of second region, inclusive
 | |
|  * @y: end of second region, exclusive
 | |
|  *
 | |
|  * This is used to determine if the hint region [a, b) overlaps with the
 | |
|  * allocated region [x, y).
 | |
|  */
 | |
| static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 | |
| {
 | |
| 	return (a < y) && (x < b);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_block_update - updates a block given a free area
 | |
|  * @block: block of interest
 | |
|  * @start: start offset in block
 | |
|  * @end: end offset in block
 | |
|  *
 | |
|  * Updates a block given a known free area.  The region [start, end) is
 | |
|  * expected to be the entirety of the free area within a block.  Chooses
 | |
|  * the best starting offset if the contig hints are equal.
 | |
|  */
 | |
| static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 | |
| {
 | |
| 	int contig = end - start;
 | |
| 
 | |
| 	block->first_free = min(block->first_free, start);
 | |
| 	if (start == 0)
 | |
| 		block->left_free = contig;
 | |
| 
 | |
| 	if (end == block->nr_bits)
 | |
| 		block->right_free = contig;
 | |
| 
 | |
| 	if (contig > block->contig_hint) {
 | |
| 		/* promote the old contig_hint to be the new scan_hint */
 | |
| 		if (start > block->contig_hint_start) {
 | |
| 			if (block->contig_hint > block->scan_hint) {
 | |
| 				block->scan_hint_start =
 | |
| 					block->contig_hint_start;
 | |
| 				block->scan_hint = block->contig_hint;
 | |
| 			} else if (start < block->scan_hint_start) {
 | |
| 				/*
 | |
| 				 * The old contig_hint == scan_hint.  But, the
 | |
| 				 * new contig is larger so hold the invariant
 | |
| 				 * scan_hint_start < contig_hint_start.
 | |
| 				 */
 | |
| 				block->scan_hint = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			block->scan_hint = 0;
 | |
| 		}
 | |
| 		block->contig_hint_start = start;
 | |
| 		block->contig_hint = contig;
 | |
| 	} else if (contig == block->contig_hint) {
 | |
| 		if (block->contig_hint_start &&
 | |
| 		    (!start ||
 | |
| 		     __ffs(start) > __ffs(block->contig_hint_start))) {
 | |
| 			/* start has a better alignment so use it */
 | |
| 			block->contig_hint_start = start;
 | |
| 			if (start < block->scan_hint_start &&
 | |
| 			    block->contig_hint > block->scan_hint)
 | |
| 				block->scan_hint = 0;
 | |
| 		} else if (start > block->scan_hint_start ||
 | |
| 			   block->contig_hint > block->scan_hint) {
 | |
| 			/*
 | |
| 			 * Knowing contig == contig_hint, update the scan_hint
 | |
| 			 * if it is farther than or larger than the current
 | |
| 			 * scan_hint.
 | |
| 			 */
 | |
| 			block->scan_hint_start = start;
 | |
| 			block->scan_hint = contig;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The region is smaller than the contig_hint.  So only update
 | |
| 		 * the scan_hint if it is larger than or equal and farther than
 | |
| 		 * the current scan_hint.
 | |
| 		 */
 | |
| 		if ((start < block->contig_hint_start &&
 | |
| 		     (contig > block->scan_hint ||
 | |
| 		      (contig == block->scan_hint &&
 | |
| 		       start > block->scan_hint_start)))) {
 | |
| 			block->scan_hint_start = start;
 | |
| 			block->scan_hint = contig;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcpu_block_update_scan - update a block given a free area from a scan
 | |
|  * @chunk: chunk of interest
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of free area
 | |
|  *
 | |
|  * Finding the final allocation spot first goes through pcpu_find_block_fit()
 | |
|  * to find a block that can hold the allocation and then pcpu_alloc_area()
 | |
|  * where a scan is used.  When allocations require specific alignments,
 | |
|  * we can inadvertently create holes which will not be seen in the alloc
 | |
|  * or free paths.
 | |
|  *
 | |
|  * This takes a given free area hole and updates a block as it may change the
 | |
|  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 | |
|  * from alignment.
 | |
|  */
 | |
| static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 | |
| 				   int bits)
 | |
| {
 | |
| 	int s_off = pcpu_off_to_block_off(bit_off);
 | |
| 	int e_off = s_off + bits;
 | |
| 	int s_index, l_bit;
 | |
| 	struct pcpu_block_md *block;
 | |
| 
 | |
| 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
 | |
| 		return;
 | |
| 
 | |
| 	s_index = pcpu_off_to_block_index(bit_off);
 | |
| 	block = chunk->md_blocks + s_index;
 | |
| 
 | |
| 	/* scan backwards in case of alignment skipping free bits */
 | |
| 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 | |
| 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 | |
| 
 | |
| 	pcpu_block_update(block, s_off, e_off);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_refresh_hint - updates metadata about a chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @full_scan: if we should scan from the beginning
 | |
|  *
 | |
|  * Iterates over the metadata blocks to find the largest contig area.
 | |
|  * A full scan can be avoided on the allocation path as this is triggered
 | |
|  * if we broke the contig_hint.  In doing so, the scan_hint will be before
 | |
|  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 | |
|  * be prevented on freeing as we want to find the largest area possibly
 | |
|  * spanning blocks.
 | |
|  */
 | |
| static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	int bit_off, bits;
 | |
| 
 | |
| 	/* promote scan_hint to contig_hint */
 | |
| 	if (!full_scan && chunk_md->scan_hint) {
 | |
| 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 | |
| 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 | |
| 		chunk_md->contig_hint = chunk_md->scan_hint;
 | |
| 		chunk_md->scan_hint = 0;
 | |
| 	} else {
 | |
| 		bit_off = chunk_md->first_free;
 | |
| 		chunk_md->contig_hint = 0;
 | |
| 	}
 | |
| 
 | |
| 	bits = 0;
 | |
| 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
 | |
| 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_block_refresh_hint
 | |
|  * @chunk: chunk of interest
 | |
|  * @index: index of the metadata block
 | |
|  *
 | |
|  * Scans over the block beginning at first_free and updates the block
 | |
|  * metadata accordingly.
 | |
|  */
 | |
| static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 | |
| {
 | |
| 	struct pcpu_block_md *block = chunk->md_blocks + index;
 | |
| 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 | |
| 	unsigned int rs, re, start;	/* region start, region end */
 | |
| 
 | |
| 	/* promote scan_hint to contig_hint */
 | |
| 	if (block->scan_hint) {
 | |
| 		start = block->scan_hint_start + block->scan_hint;
 | |
| 		block->contig_hint_start = block->scan_hint_start;
 | |
| 		block->contig_hint = block->scan_hint;
 | |
| 		block->scan_hint = 0;
 | |
| 	} else {
 | |
| 		start = block->first_free;
 | |
| 		block->contig_hint = 0;
 | |
| 	}
 | |
| 
 | |
| 	block->right_free = 0;
 | |
| 
 | |
| 	/* iterate over free areas and update the contig hints */
 | |
| 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
 | |
| 				     PCPU_BITMAP_BLOCK_BITS)
 | |
| 		pcpu_block_update(block, rs, re);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_block_update_hint_alloc - update hint on allocation path
 | |
|  * @chunk: chunk of interest
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of request
 | |
|  *
 | |
|  * Updates metadata for the allocation path.  The metadata only has to be
 | |
|  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 | |
|  * scans are required if the block's contig hint is broken.
 | |
|  */
 | |
| static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 | |
| 					 int bits)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	int nr_empty_pages = 0;
 | |
| 	struct pcpu_block_md *s_block, *e_block, *block;
 | |
| 	int s_index, e_index;	/* block indexes of the freed allocation */
 | |
| 	int s_off, e_off;	/* block offsets of the freed allocation */
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate per block offsets.
 | |
| 	 * The calculation uses an inclusive range, but the resulting offsets
 | |
| 	 * are [start, end).  e_index always points to the last block in the
 | |
| 	 * range.
 | |
| 	 */
 | |
| 	s_index = pcpu_off_to_block_index(bit_off);
 | |
| 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 | |
| 	s_off = pcpu_off_to_block_off(bit_off);
 | |
| 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 | |
| 
 | |
| 	s_block = chunk->md_blocks + s_index;
 | |
| 	e_block = chunk->md_blocks + e_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update s_block.
 | |
| 	 * block->first_free must be updated if the allocation takes its place.
 | |
| 	 * If the allocation breaks the contig_hint, a scan is required to
 | |
| 	 * restore this hint.
 | |
| 	 */
 | |
| 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 | |
| 		nr_empty_pages++;
 | |
| 
 | |
| 	if (s_off == s_block->first_free)
 | |
| 		s_block->first_free = find_next_zero_bit(
 | |
| 					pcpu_index_alloc_map(chunk, s_index),
 | |
| 					PCPU_BITMAP_BLOCK_BITS,
 | |
| 					s_off + bits);
 | |
| 
 | |
| 	if (pcpu_region_overlap(s_block->scan_hint_start,
 | |
| 				s_block->scan_hint_start + s_block->scan_hint,
 | |
| 				s_off,
 | |
| 				s_off + bits))
 | |
| 		s_block->scan_hint = 0;
 | |
| 
 | |
| 	if (pcpu_region_overlap(s_block->contig_hint_start,
 | |
| 				s_block->contig_hint_start +
 | |
| 				s_block->contig_hint,
 | |
| 				s_off,
 | |
| 				s_off + bits)) {
 | |
| 		/* block contig hint is broken - scan to fix it */
 | |
| 		if (!s_off)
 | |
| 			s_block->left_free = 0;
 | |
| 		pcpu_block_refresh_hint(chunk, s_index);
 | |
| 	} else {
 | |
| 		/* update left and right contig manually */
 | |
| 		s_block->left_free = min(s_block->left_free, s_off);
 | |
| 		if (s_index == e_index)
 | |
| 			s_block->right_free = min_t(int, s_block->right_free,
 | |
| 					PCPU_BITMAP_BLOCK_BITS - e_off);
 | |
| 		else
 | |
| 			s_block->right_free = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update e_block.
 | |
| 	 */
 | |
| 	if (s_index != e_index) {
 | |
| 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 | |
| 			nr_empty_pages++;
 | |
| 
 | |
| 		/*
 | |
| 		 * When the allocation is across blocks, the end is along
 | |
| 		 * the left part of the e_block.
 | |
| 		 */
 | |
| 		e_block->first_free = find_next_zero_bit(
 | |
| 				pcpu_index_alloc_map(chunk, e_index),
 | |
| 				PCPU_BITMAP_BLOCK_BITS, e_off);
 | |
| 
 | |
| 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 | |
| 			/* reset the block */
 | |
| 			e_block++;
 | |
| 		} else {
 | |
| 			if (e_off > e_block->scan_hint_start)
 | |
| 				e_block->scan_hint = 0;
 | |
| 
 | |
| 			e_block->left_free = 0;
 | |
| 			if (e_off > e_block->contig_hint_start) {
 | |
| 				/* contig hint is broken - scan to fix it */
 | |
| 				pcpu_block_refresh_hint(chunk, e_index);
 | |
| 			} else {
 | |
| 				e_block->right_free =
 | |
| 					min_t(int, e_block->right_free,
 | |
| 					      PCPU_BITMAP_BLOCK_BITS - e_off);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* update in-between md_blocks */
 | |
| 		nr_empty_pages += (e_index - s_index - 1);
 | |
| 		for (block = s_block + 1; block < e_block; block++) {
 | |
| 			block->scan_hint = 0;
 | |
| 			block->contig_hint = 0;
 | |
| 			block->left_free = 0;
 | |
| 			block->right_free = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_empty_pages)
 | |
| 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
 | |
| 
 | |
| 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
 | |
| 				chunk_md->scan_hint_start +
 | |
| 				chunk_md->scan_hint,
 | |
| 				bit_off,
 | |
| 				bit_off + bits))
 | |
| 		chunk_md->scan_hint = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only time a full chunk scan is required is if the chunk
 | |
| 	 * contig hint is broken.  Otherwise, it means a smaller space
 | |
| 	 * was used and therefore the chunk contig hint is still correct.
 | |
| 	 */
 | |
| 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
 | |
| 				chunk_md->contig_hint_start +
 | |
| 				chunk_md->contig_hint,
 | |
| 				bit_off,
 | |
| 				bit_off + bits))
 | |
| 		pcpu_chunk_refresh_hint(chunk, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_block_update_hint_free - updates the block hints on the free path
 | |
|  * @chunk: chunk of interest
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of request
 | |
|  *
 | |
|  * Updates metadata for the allocation path.  This avoids a blind block
 | |
|  * refresh by making use of the block contig hints.  If this fails, it scans
 | |
|  * forward and backward to determine the extent of the free area.  This is
 | |
|  * capped at the boundary of blocks.
 | |
|  *
 | |
|  * A chunk update is triggered if a page becomes free, a block becomes free,
 | |
|  * or the free spans across blocks.  This tradeoff is to minimize iterating
 | |
|  * over the block metadata to update chunk_md->contig_hint.
 | |
|  * chunk_md->contig_hint may be off by up to a page, but it will never be more
 | |
|  * than the available space.  If the contig hint is contained in one block, it
 | |
|  * will be accurate.
 | |
|  */
 | |
| static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 | |
| 					int bits)
 | |
| {
 | |
| 	int nr_empty_pages = 0;
 | |
| 	struct pcpu_block_md *s_block, *e_block, *block;
 | |
| 	int s_index, e_index;	/* block indexes of the freed allocation */
 | |
| 	int s_off, e_off;	/* block offsets of the freed allocation */
 | |
| 	int start, end;		/* start and end of the whole free area */
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate per block offsets.
 | |
| 	 * The calculation uses an inclusive range, but the resulting offsets
 | |
| 	 * are [start, end).  e_index always points to the last block in the
 | |
| 	 * range.
 | |
| 	 */
 | |
| 	s_index = pcpu_off_to_block_index(bit_off);
 | |
| 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 | |
| 	s_off = pcpu_off_to_block_off(bit_off);
 | |
| 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 | |
| 
 | |
| 	s_block = chunk->md_blocks + s_index;
 | |
| 	e_block = chunk->md_blocks + e_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the freed area aligns with the block->contig_hint.
 | |
| 	 * If it does, then the scan to find the beginning/end of the
 | |
| 	 * larger free area can be avoided.
 | |
| 	 *
 | |
| 	 * start and end refer to beginning and end of the free area
 | |
| 	 * within each their respective blocks.  This is not necessarily
 | |
| 	 * the entire free area as it may span blocks past the beginning
 | |
| 	 * or end of the block.
 | |
| 	 */
 | |
| 	start = s_off;
 | |
| 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 | |
| 		start = s_block->contig_hint_start;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Scan backwards to find the extent of the free area.
 | |
| 		 * find_last_bit returns the starting bit, so if the start bit
 | |
| 		 * is returned, that means there was no last bit and the
 | |
| 		 * remainder of the chunk is free.
 | |
| 		 */
 | |
| 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
 | |
| 					  start);
 | |
| 		start = (start == l_bit) ? 0 : l_bit + 1;
 | |
| 	}
 | |
| 
 | |
| 	end = e_off;
 | |
| 	if (e_off == e_block->contig_hint_start)
 | |
| 		end = e_block->contig_hint_start + e_block->contig_hint;
 | |
| 	else
 | |
| 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
 | |
| 				    PCPU_BITMAP_BLOCK_BITS, end);
 | |
| 
 | |
| 	/* update s_block */
 | |
| 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
 | |
| 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
 | |
| 		nr_empty_pages++;
 | |
| 	pcpu_block_update(s_block, start, e_off);
 | |
| 
 | |
| 	/* freeing in the same block */
 | |
| 	if (s_index != e_index) {
 | |
| 		/* update e_block */
 | |
| 		if (end == PCPU_BITMAP_BLOCK_BITS)
 | |
| 			nr_empty_pages++;
 | |
| 		pcpu_block_update(e_block, 0, end);
 | |
| 
 | |
| 		/* reset md_blocks in the middle */
 | |
| 		nr_empty_pages += (e_index - s_index - 1);
 | |
| 		for (block = s_block + 1; block < e_block; block++) {
 | |
| 			block->first_free = 0;
 | |
| 			block->scan_hint = 0;
 | |
| 			block->contig_hint_start = 0;
 | |
| 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
 | |
| 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
 | |
| 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_empty_pages)
 | |
| 		pcpu_update_empty_pages(chunk, nr_empty_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Refresh chunk metadata when the free makes a block free or spans
 | |
| 	 * across blocks.  The contig_hint may be off by up to a page, but if
 | |
| 	 * the contig_hint is contained in a block, it will be accurate with
 | |
| 	 * the else condition below.
 | |
| 	 */
 | |
| 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
 | |
| 		pcpu_chunk_refresh_hint(chunk, true);
 | |
| 	else
 | |
| 		pcpu_block_update(&chunk->chunk_md,
 | |
| 				  pcpu_block_off_to_off(s_index, start),
 | |
| 				  end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_is_populated - determines if the region is populated
 | |
|  * @chunk: chunk of interest
 | |
|  * @bit_off: chunk offset
 | |
|  * @bits: size of area
 | |
|  * @next_off: return value for the next offset to start searching
 | |
|  *
 | |
|  * For atomic allocations, check if the backing pages are populated.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Bool if the backing pages are populated.
 | |
|  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 | |
|  */
 | |
| static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
 | |
| 			      int *next_off)
 | |
| {
 | |
| 	unsigned int page_start, page_end, rs, re;
 | |
| 
 | |
| 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
 | |
| 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 | |
| 
 | |
| 	rs = page_start;
 | |
| 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
 | |
| 	if (rs >= page_end)
 | |
| 		return true;
 | |
| 
 | |
| 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_find_block_fit - finds the block index to start searching
 | |
|  * @chunk: chunk of interest
 | |
|  * @alloc_bits: size of request in allocation units
 | |
|  * @align: alignment of area (max PAGE_SIZE bytes)
 | |
|  * @pop_only: use populated regions only
 | |
|  *
 | |
|  * Given a chunk and an allocation spec, find the offset to begin searching
 | |
|  * for a free region.  This iterates over the bitmap metadata blocks to
 | |
|  * find an offset that will be guaranteed to fit the requirements.  It is
 | |
|  * not quite first fit as if the allocation does not fit in the contig hint
 | |
|  * of a block or chunk, it is skipped.  This errs on the side of caution
 | |
|  * to prevent excess iteration.  Poor alignment can cause the allocator to
 | |
|  * skip over blocks and chunks that have valid free areas.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The offset in the bitmap to begin searching.
 | |
|  * -1 if no offset is found.
 | |
|  */
 | |
| static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
 | |
| 			       size_t align, bool pop_only)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	int bit_off, bits, next_off;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if the allocation can fit in the chunk's contig hint.
 | |
| 	 * This is an optimization to prevent scanning by assuming if it
 | |
| 	 * cannot fit in the global hint, there is memory pressure and creating
 | |
| 	 * a new chunk would happen soon.
 | |
| 	 */
 | |
| 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
 | |
| 		  chunk_md->contig_hint_start;
 | |
| 	if (bit_off + alloc_bits > chunk_md->contig_hint)
 | |
| 		return -1;
 | |
| 
 | |
| 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
 | |
| 	bits = 0;
 | |
| 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
 | |
| 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
 | |
| 						   &next_off))
 | |
| 			break;
 | |
| 
 | |
| 		bit_off = next_off;
 | |
| 		bits = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bit_off == pcpu_chunk_map_bits(chunk))
 | |
| 		return -1;
 | |
| 
 | |
| 	return bit_off;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
 | |
|  * @map: the address to base the search on
 | |
|  * @size: the bitmap size in bits
 | |
|  * @start: the bitnumber to start searching at
 | |
|  * @nr: the number of zeroed bits we're looking for
 | |
|  * @align_mask: alignment mask for zero area
 | |
|  * @largest_off: offset of the largest area skipped
 | |
|  * @largest_bits: size of the largest area skipped
 | |
|  *
 | |
|  * The @align_mask should be one less than a power of 2.
 | |
|  *
 | |
|  * This is a modified version of bitmap_find_next_zero_area_off() to remember
 | |
|  * the largest area that was skipped.  This is imperfect, but in general is
 | |
|  * good enough.  The largest remembered region is the largest failed region
 | |
|  * seen.  This does not include anything we possibly skipped due to alignment.
 | |
|  * pcpu_block_update_scan() does scan backwards to try and recover what was
 | |
|  * lost to alignment.  While this can cause scanning to miss earlier possible
 | |
|  * free areas, smaller allocations will eventually fill those holes.
 | |
|  */
 | |
| static unsigned long pcpu_find_zero_area(unsigned long *map,
 | |
| 					 unsigned long size,
 | |
| 					 unsigned long start,
 | |
| 					 unsigned long nr,
 | |
| 					 unsigned long align_mask,
 | |
| 					 unsigned long *largest_off,
 | |
| 					 unsigned long *largest_bits)
 | |
| {
 | |
| 	unsigned long index, end, i, area_off, area_bits;
 | |
| again:
 | |
| 	index = find_next_zero_bit(map, size, start);
 | |
| 
 | |
| 	/* Align allocation */
 | |
| 	index = __ALIGN_MASK(index, align_mask);
 | |
| 	area_off = index;
 | |
| 
 | |
| 	end = index + nr;
 | |
| 	if (end > size)
 | |
| 		return end;
 | |
| 	i = find_next_bit(map, end, index);
 | |
| 	if (i < end) {
 | |
| 		area_bits = i - area_off;
 | |
| 		/* remember largest unused area with best alignment */
 | |
| 		if (area_bits > *largest_bits ||
 | |
| 		    (area_bits == *largest_bits && *largest_off &&
 | |
| 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
 | |
| 			*largest_off = area_off;
 | |
| 			*largest_bits = area_bits;
 | |
| 		}
 | |
| 
 | |
| 		start = i + 1;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_area - allocates an area from a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @alloc_bits: size of request in allocation units
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  * @start: bit_off to start searching
 | |
|  *
 | |
|  * This function takes in a @start offset to begin searching to fit an
 | |
|  * allocation of @alloc_bits with alignment @align.  It needs to scan
 | |
|  * the allocation map because if it fits within the block's contig hint,
 | |
|  * @start will be block->first_free. This is an attempt to fill the
 | |
|  * allocation prior to breaking the contig hint.  The allocation and
 | |
|  * boundary maps are updated accordingly if it confirms a valid
 | |
|  * free area.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Allocated addr offset in @chunk on success.
 | |
|  * -1 if no matching area is found.
 | |
|  */
 | |
| static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
 | |
| 			   size_t align, int start)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	size_t align_mask = (align) ? (align - 1) : 0;
 | |
| 	unsigned long area_off = 0, area_bits = 0;
 | |
| 	int bit_off, end, oslot;
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_lock);
 | |
| 
 | |
| 	oslot = pcpu_chunk_slot(chunk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Search to find a fit.
 | |
| 	 */
 | |
| 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
 | |
| 		    pcpu_chunk_map_bits(chunk));
 | |
| 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
 | |
| 				      align_mask, &area_off, &area_bits);
 | |
| 	if (bit_off >= end)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (area_bits)
 | |
| 		pcpu_block_update_scan(chunk, area_off, area_bits);
 | |
| 
 | |
| 	/* update alloc map */
 | |
| 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
 | |
| 
 | |
| 	/* update boundary map */
 | |
| 	set_bit(bit_off, chunk->bound_map);
 | |
| 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
 | |
| 	set_bit(bit_off + alloc_bits, chunk->bound_map);
 | |
| 
 | |
| 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 	/* update first free bit */
 | |
| 	if (bit_off == chunk_md->first_free)
 | |
| 		chunk_md->first_free = find_next_zero_bit(
 | |
| 					chunk->alloc_map,
 | |
| 					pcpu_chunk_map_bits(chunk),
 | |
| 					bit_off + alloc_bits);
 | |
| 
 | |
| 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
 | |
| 
 | |
| 	pcpu_chunk_relocate(chunk, oslot);
 | |
| 
 | |
| 	return bit_off * PCPU_MIN_ALLOC_SIZE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_area - frees the corresponding offset
 | |
|  * @chunk: chunk of interest
 | |
|  * @off: addr offset into chunk
 | |
|  *
 | |
|  * This function determines the size of an allocation to free using
 | |
|  * the boundary bitmap and clears the allocation map.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Number of freed bytes.
 | |
|  */
 | |
| static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	int bit_off, bits, end, oslot, freed;
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_lock);
 | |
| 	pcpu_stats_area_dealloc(chunk);
 | |
| 
 | |
| 	oslot = pcpu_chunk_slot(chunk);
 | |
| 
 | |
| 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 	/* find end index */
 | |
| 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
 | |
| 			    bit_off + 1);
 | |
| 	bits = end - bit_off;
 | |
| 	bitmap_clear(chunk->alloc_map, bit_off, bits);
 | |
| 
 | |
| 	freed = bits * PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 	/* update metadata */
 | |
| 	chunk->free_bytes += freed;
 | |
| 
 | |
| 	/* update first free bit */
 | |
| 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
 | |
| 
 | |
| 	pcpu_block_update_hint_free(chunk, bit_off, bits);
 | |
| 
 | |
| 	pcpu_chunk_relocate(chunk, oslot);
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
 | |
| {
 | |
| 	block->scan_hint = 0;
 | |
| 	block->contig_hint = nr_bits;
 | |
| 	block->left_free = nr_bits;
 | |
| 	block->right_free = nr_bits;
 | |
| 	block->first_free = 0;
 | |
| 	block->nr_bits = nr_bits;
 | |
| }
 | |
| 
 | |
| static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	struct pcpu_block_md *md_block;
 | |
| 
 | |
| 	/* init the chunk's block */
 | |
| 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
 | |
| 
 | |
| 	for (md_block = chunk->md_blocks;
 | |
| 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
 | |
| 	     md_block++)
 | |
| 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
 | |
|  * @tmp_addr: the start of the region served
 | |
|  * @map_size: size of the region served
 | |
|  *
 | |
|  * This is responsible for creating the chunks that serve the first chunk.  The
 | |
|  * base_addr is page aligned down of @tmp_addr while the region end is page
 | |
|  * aligned up.  Offsets are kept track of to determine the region served. All
 | |
|  * this is done to appease the bitmap allocator in avoiding partial blocks.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Chunk serving the region at @tmp_addr of @map_size.
 | |
|  */
 | |
| static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
 | |
| 							 int map_size)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	unsigned long aligned_addr, lcm_align;
 | |
| 	int start_offset, offset_bits, region_size, region_bits;
 | |
| 	size_t alloc_size;
 | |
| 
 | |
| 	/* region calculations */
 | |
| 	aligned_addr = tmp_addr & PAGE_MASK;
 | |
| 
 | |
| 	start_offset = tmp_addr - aligned_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Align the end of the region with the LCM of PAGE_SIZE and
 | |
| 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
 | |
| 	 * the other.
 | |
| 	 */
 | |
| 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
 | |
| 	region_size = ALIGN(start_offset + map_size, lcm_align);
 | |
| 
 | |
| 	/* allocate chunk */
 | |
| 	alloc_size = struct_size(chunk, populated,
 | |
| 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
 | |
| 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!chunk)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->list);
 | |
| 
 | |
| 	chunk->base_addr = (void *)aligned_addr;
 | |
| 	chunk->start_offset = start_offset;
 | |
| 	chunk->end_offset = region_size - chunk->start_offset - map_size;
 | |
| 
 | |
| 	chunk->nr_pages = region_size >> PAGE_SHIFT;
 | |
| 	region_bits = pcpu_chunk_map_bits(chunk);
 | |
| 
 | |
| 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
 | |
| 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!chunk->alloc_map)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	alloc_size =
 | |
| 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
 | |
| 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!chunk->bound_map)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
 | |
| 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!chunk->md_blocks)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	/* first chunk isn't memcg-aware */
 | |
| 	chunk->obj_cgroups = NULL;
 | |
| #endif
 | |
| 	pcpu_init_md_blocks(chunk);
 | |
| 
 | |
| 	/* manage populated page bitmap */
 | |
| 	chunk->immutable = true;
 | |
| 	bitmap_fill(chunk->populated, chunk->nr_pages);
 | |
| 	chunk->nr_populated = chunk->nr_pages;
 | |
| 	chunk->nr_empty_pop_pages = chunk->nr_pages;
 | |
| 
 | |
| 	chunk->free_bytes = map_size;
 | |
| 
 | |
| 	if (chunk->start_offset) {
 | |
| 		/* hide the beginning of the bitmap */
 | |
| 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
 | |
| 		bitmap_set(chunk->alloc_map, 0, offset_bits);
 | |
| 		set_bit(0, chunk->bound_map);
 | |
| 		set_bit(offset_bits, chunk->bound_map);
 | |
| 
 | |
| 		chunk->chunk_md.first_free = offset_bits;
 | |
| 
 | |
| 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
 | |
| 	}
 | |
| 
 | |
| 	if (chunk->end_offset) {
 | |
| 		/* hide the end of the bitmap */
 | |
| 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
 | |
| 		bitmap_set(chunk->alloc_map,
 | |
| 			   pcpu_chunk_map_bits(chunk) - offset_bits,
 | |
| 			   offset_bits);
 | |
| 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
 | |
| 			chunk->bound_map);
 | |
| 		set_bit(region_bits, chunk->bound_map);
 | |
| 
 | |
| 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
 | |
| 					     - offset_bits, offset_bits);
 | |
| 	}
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	int region_bits;
 | |
| 
 | |
| 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->list);
 | |
| 	chunk->nr_pages = pcpu_unit_pages;
 | |
| 	region_bits = pcpu_chunk_map_bits(chunk);
 | |
| 
 | |
| 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
 | |
| 					   sizeof(chunk->alloc_map[0]), gfp);
 | |
| 	if (!chunk->alloc_map)
 | |
| 		goto alloc_map_fail;
 | |
| 
 | |
| 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
 | |
| 					   sizeof(chunk->bound_map[0]), gfp);
 | |
| 	if (!chunk->bound_map)
 | |
| 		goto bound_map_fail;
 | |
| 
 | |
| 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
 | |
| 					   sizeof(chunk->md_blocks[0]), gfp);
 | |
| 	if (!chunk->md_blocks)
 | |
| 		goto md_blocks_fail;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	if (pcpu_is_memcg_chunk(type)) {
 | |
| 		chunk->obj_cgroups =
 | |
| 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
 | |
| 					sizeof(struct obj_cgroup *), gfp);
 | |
| 		if (!chunk->obj_cgroups)
 | |
| 			goto objcg_fail;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	pcpu_init_md_blocks(chunk);
 | |
| 
 | |
| 	/* init metadata */
 | |
| 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
 | |
| 
 | |
| 	return chunk;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| objcg_fail:
 | |
| 	pcpu_mem_free(chunk->md_blocks);
 | |
| #endif
 | |
| md_blocks_fail:
 | |
| 	pcpu_mem_free(chunk->bound_map);
 | |
| bound_map_fail:
 | |
| 	pcpu_mem_free(chunk->alloc_map);
 | |
| alloc_map_fail:
 | |
| 	pcpu_mem_free(chunk);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	if (!chunk)
 | |
| 		return;
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	pcpu_mem_free(chunk->obj_cgroups);
 | |
| #endif
 | |
| 	pcpu_mem_free(chunk->md_blocks);
 | |
| 	pcpu_mem_free(chunk->bound_map);
 | |
| 	pcpu_mem_free(chunk->alloc_map);
 | |
| 	pcpu_mem_free(chunk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_populated - post-population bookkeeping
 | |
|  * @chunk: pcpu_chunk which got populated
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  *
 | |
|  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 | |
|  * the bookkeeping information accordingly.  Must be called after each
 | |
|  * successful population.
 | |
|  *
 | |
|  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
 | |
|  * is to serve an allocation in that area.
 | |
|  */
 | |
| static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
 | |
| 				 int page_end)
 | |
| {
 | |
| 	int nr = page_end - page_start;
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_lock);
 | |
| 
 | |
| 	bitmap_set(chunk->populated, page_start, nr);
 | |
| 	chunk->nr_populated += nr;
 | |
| 	pcpu_nr_populated += nr;
 | |
| 
 | |
| 	pcpu_update_empty_pages(chunk, nr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_depopulated - post-depopulation bookkeeping
 | |
|  * @chunk: pcpu_chunk which got depopulated
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  *
 | |
|  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 | |
|  * Update the bookkeeping information accordingly.  Must be called after
 | |
|  * each successful depopulation.
 | |
|  */
 | |
| static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
 | |
| 				   int page_start, int page_end)
 | |
| {
 | |
| 	int nr = page_end - page_start;
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_lock);
 | |
| 
 | |
| 	bitmap_clear(chunk->populated, page_start, nr);
 | |
| 	chunk->nr_populated -= nr;
 | |
| 	pcpu_nr_populated -= nr;
 | |
| 
 | |
| 	pcpu_update_empty_pages(chunk, -nr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Chunk management implementation.
 | |
|  *
 | |
|  * To allow different implementations, chunk alloc/free and
 | |
|  * [de]population are implemented in a separate file which is pulled
 | |
|  * into this file and compiled together.  The following functions
 | |
|  * should be implemented.
 | |
|  *
 | |
|  * pcpu_populate_chunk		- populate the specified range of a chunk
 | |
|  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 | |
|  * pcpu_create_chunk		- create a new chunk
 | |
|  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 | |
|  * pcpu_addr_to_page		- translate address to physical address
 | |
|  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 | |
|  */
 | |
| static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
 | |
| 			       int page_start, int page_end, gfp_t gfp);
 | |
| static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
 | |
| 				  int page_start, int page_end);
 | |
| static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
 | |
| 					    gfp_t gfp);
 | |
| static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 | |
| static struct page *pcpu_addr_to_page(void *addr);
 | |
| static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 | |
| 
 | |
| #ifdef CONFIG_NEED_PER_CPU_KM
 | |
| #include "percpu-km.c"
 | |
| #else
 | |
| #include "percpu-vm.c"
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * pcpu_chunk_addr_search - determine chunk containing specified address
 | |
|  * @addr: address for which the chunk needs to be determined.
 | |
|  *
 | |
|  * This is an internal function that handles all but static allocations.
 | |
|  * Static percpu address values should never be passed into the allocator.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The address of the found chunk.
 | |
|  */
 | |
| static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 | |
| {
 | |
| 	/* is it in the dynamic region (first chunk)? */
 | |
| 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
 | |
| 		return pcpu_first_chunk;
 | |
| 
 | |
| 	/* is it in the reserved region? */
 | |
| 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
 | |
| 		return pcpu_reserved_chunk;
 | |
| 
 | |
| 	/*
 | |
| 	 * The address is relative to unit0 which might be unused and
 | |
| 	 * thus unmapped.  Offset the address to the unit space of the
 | |
| 	 * current processor before looking it up in the vmalloc
 | |
| 	 * space.  Note that any possible cpu id can be used here, so
 | |
| 	 * there's no need to worry about preemption or cpu hotplug.
 | |
| 	 */
 | |
| 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
 | |
| 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
 | |
| 						     struct obj_cgroup **objcgp)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
 | |
| 		return PCPU_CHUNK_ROOT;
 | |
| 
 | |
| 	objcg = get_obj_cgroup_from_current();
 | |
| 	if (!objcg)
 | |
| 		return PCPU_CHUNK_ROOT;
 | |
| 
 | |
| 	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
 | |
| 		obj_cgroup_put(objcg);
 | |
| 		return PCPU_FAIL_ALLOC;
 | |
| 	}
 | |
| 
 | |
| 	*objcgp = objcg;
 | |
| 	return PCPU_CHUNK_MEMCG;
 | |
| }
 | |
| 
 | |
| static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
 | |
| 				       struct pcpu_chunk *chunk, int off,
 | |
| 				       size_t size)
 | |
| {
 | |
| 	if (!objcg)
 | |
| 		return;
 | |
| 
 | |
| 	if (chunk) {
 | |
| 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
 | |
| 				size * num_possible_cpus());
 | |
| 		rcu_read_unlock();
 | |
| 	} else {
 | |
| 		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
 | |
| 		obj_cgroup_put(objcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
 | |
| 		return;
 | |
| 
 | |
| 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
 | |
| 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
 | |
| 
 | |
| 	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
 | |
| 			-(size * num_possible_cpus()));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	obj_cgroup_put(objcg);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_MEMCG_KMEM */
 | |
| static enum pcpu_chunk_type
 | |
| pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
 | |
| {
 | |
| 	return PCPU_CHUNK_ROOT;
 | |
| }
 | |
| 
 | |
| static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
 | |
| 				       struct pcpu_chunk *chunk, int off,
 | |
| 				       size_t size)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc - the percpu allocator
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  * @reserved: allocate from the reserved chunk if available
 | |
|  * @gfp: allocation flags
 | |
|  *
 | |
|  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 | |
|  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
 | |
|  * then no warning will be triggered on invalid or failed allocation
 | |
|  * requests.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
 | |
| 				 gfp_t gfp)
 | |
| {
 | |
| 	gfp_t pcpu_gfp;
 | |
| 	bool is_atomic;
 | |
| 	bool do_warn;
 | |
| 	enum pcpu_chunk_type type;
 | |
| 	struct list_head *pcpu_slot;
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 	static int warn_limit = 10;
 | |
| 	struct pcpu_chunk *chunk, *next;
 | |
| 	const char *err;
 | |
| 	int slot, off, cpu, ret;
 | |
| 	unsigned long flags;
 | |
| 	void __percpu *ptr;
 | |
| 	size_t bits, bit_align;
 | |
| 
 | |
| 	gfp = current_gfp_context(gfp);
 | |
| 	/* whitelisted flags that can be passed to the backing allocators */
 | |
| 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
 | |
| 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
 | |
| 	do_warn = !(gfp & __GFP_NOWARN);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
 | |
| 	 * therefore alignment must be a minimum of that many bytes.
 | |
| 	 * An allocation may have internal fragmentation from rounding up
 | |
| 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
 | |
| 	 */
 | |
| 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
 | |
| 		align = PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
 | |
| 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
 | |
| 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
 | |
| 
 | |
| 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
 | |
| 		     !is_power_of_2(align))) {
 | |
| 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
 | |
| 		     size, align);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
 | |
| 	if (unlikely(type == PCPU_FAIL_ALLOC))
 | |
| 		return NULL;
 | |
| 	pcpu_slot = pcpu_chunk_list(type);
 | |
| 
 | |
| 	if (!is_atomic) {
 | |
| 		/*
 | |
| 		 * pcpu_balance_workfn() allocates memory under this mutex,
 | |
| 		 * and it may wait for memory reclaim. Allow current task
 | |
| 		 * to become OOM victim, in case of memory pressure.
 | |
| 		 */
 | |
| 		if (gfp & __GFP_NOFAIL) {
 | |
| 			mutex_lock(&pcpu_alloc_mutex);
 | |
| 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
 | |
| 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 
 | |
| 	/* serve reserved allocations from the reserved chunk if available */
 | |
| 	if (reserved && pcpu_reserved_chunk) {
 | |
| 		chunk = pcpu_reserved_chunk;
 | |
| 
 | |
| 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
 | |
| 		if (off < 0) {
 | |
| 			err = "alloc from reserved chunk failed";
 | |
| 			goto fail_unlock;
 | |
| 		}
 | |
| 
 | |
| 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
 | |
| 		if (off >= 0)
 | |
| 			goto area_found;
 | |
| 
 | |
| 		err = "alloc from reserved chunk failed";
 | |
| 		goto fail_unlock;
 | |
| 	}
 | |
| 
 | |
| restart:
 | |
| 	/* search through normal chunks */
 | |
| 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 | |
| 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
 | |
| 			off = pcpu_find_block_fit(chunk, bits, bit_align,
 | |
| 						  is_atomic);
 | |
| 			if (off < 0) {
 | |
| 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
 | |
| 					pcpu_chunk_move(chunk, 0);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
 | |
| 			if (off >= 0)
 | |
| 				goto area_found;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * No space left.  Create a new chunk.  We don't want multiple
 | |
| 	 * tasks to create chunks simultaneously.  Serialize and create iff
 | |
| 	 * there's still no empty chunk after grabbing the mutex.
 | |
| 	 */
 | |
| 	if (is_atomic) {
 | |
| 		err = "atomic alloc failed, no space left";
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
 | |
| 		chunk = pcpu_create_chunk(type, pcpu_gfp);
 | |
| 		if (!chunk) {
 | |
| 			err = "failed to allocate new chunk";
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 		pcpu_chunk_relocate(chunk, -1);
 | |
| 	} else {
 | |
| 		spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	goto restart;
 | |
| 
 | |
| area_found:
 | |
| 	pcpu_stats_area_alloc(chunk, size);
 | |
| 	spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| 
 | |
| 	/* populate if not all pages are already there */
 | |
| 	if (!is_atomic) {
 | |
| 		unsigned int page_start, page_end, rs, re;
 | |
| 
 | |
| 		page_start = PFN_DOWN(off);
 | |
| 		page_end = PFN_UP(off + size);
 | |
| 
 | |
| 		bitmap_for_each_clear_region(chunk->populated, rs, re,
 | |
| 					     page_start, page_end) {
 | |
| 			WARN_ON(chunk->immutable);
 | |
| 
 | |
| 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
 | |
| 
 | |
| 			spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 			if (ret) {
 | |
| 				pcpu_free_area(chunk, off);
 | |
| 				err = "failed to populate";
 | |
| 				goto fail_unlock;
 | |
| 			}
 | |
| 			pcpu_chunk_populated(chunk, rs, re);
 | |
| 			spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&pcpu_alloc_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
 | |
| 		pcpu_schedule_balance_work();
 | |
| 
 | |
| 	/* clear the areas and return address relative to base address */
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
 | |
| 
 | |
| 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
 | |
| 	kmemleak_alloc_percpu(ptr, size, gfp);
 | |
| 
 | |
| 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
 | |
| 			chunk->base_addr, off, ptr);
 | |
| 
 | |
| 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
 | |
| 
 | |
| 	return ptr;
 | |
| 
 | |
| fail_unlock:
 | |
| 	spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| fail:
 | |
| 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
 | |
| 
 | |
| 	if (!is_atomic && do_warn && warn_limit) {
 | |
| 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
 | |
| 			size, align, is_atomic, err);
 | |
| 		dump_stack();
 | |
| 		if (!--warn_limit)
 | |
| 			pr_info("limit reached, disable warning\n");
 | |
| 	}
 | |
| 	if (is_atomic) {
 | |
| 		/* see the flag handling in pcpu_balance_workfn() */
 | |
| 		pcpu_atomic_alloc_failed = true;
 | |
| 		pcpu_schedule_balance_work();
 | |
| 	} else {
 | |
| 		mutex_unlock(&pcpu_alloc_mutex);
 | |
| 	}
 | |
| 
 | |
| 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __alloc_percpu_gfp - allocate dynamic percpu area
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  * @gfp: allocation flags
 | |
|  *
 | |
|  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 | |
|  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 | |
|  * be called from any context but is a lot more likely to fail. If @gfp
 | |
|  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
 | |
|  * allocation requests.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
 | |
| {
 | |
| 	return pcpu_alloc(size, align, false, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
 | |
| 
 | |
| /**
 | |
|  * __alloc_percpu - allocate dynamic percpu area
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  *
 | |
|  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 | |
|  */
 | |
| void __percpu *__alloc_percpu(size_t size, size_t align)
 | |
| {
 | |
| 	return pcpu_alloc(size, align, false, GFP_KERNEL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__alloc_percpu);
 | |
| 
 | |
| /**
 | |
|  * __alloc_reserved_percpu - allocate reserved percpu area
 | |
|  * @size: size of area to allocate in bytes
 | |
|  * @align: alignment of area (max PAGE_SIZE)
 | |
|  *
 | |
|  * Allocate zero-filled percpu area of @size bytes aligned at @align
 | |
|  * from reserved percpu area if arch has set it up; otherwise,
 | |
|  * allocation is served from the same dynamic area.  Might sleep.
 | |
|  * Might trigger writeouts.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Does GFP_KERNEL allocation.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Percpu pointer to the allocated area on success, NULL on failure.
 | |
|  */
 | |
| void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
 | |
| {
 | |
| 	return pcpu_alloc(size, align, true, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
 | |
|  * @type: chunk type
 | |
|  *
 | |
|  * Reclaim all fully free chunks except for the first one.  This is also
 | |
|  * responsible for maintaining the pool of empty populated pages.  However,
 | |
|  * it is possible that this is called when physical memory is scarce causing
 | |
|  * OOM killer to be triggered.  We should avoid doing so until an actual
 | |
|  * allocation causes the failure as it is possible that requests can be
 | |
|  * serviced from already backed regions.
 | |
|  */
 | |
| static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
 | |
| {
 | |
| 	/* gfp flags passed to underlying allocators */
 | |
| 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
 | |
| 	LIST_HEAD(to_free);
 | |
| 	struct list_head *pcpu_slot = pcpu_chunk_list(type);
 | |
| 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
 | |
| 	struct pcpu_chunk *chunk, *next;
 | |
| 	int slot, nr_to_pop, ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's no reason to keep around multiple unused chunks and VM
 | |
| 	 * areas can be scarce.  Destroy all free chunks except for one.
 | |
| 	 */
 | |
| 	mutex_lock(&pcpu_alloc_mutex);
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(chunk, next, free_head, list) {
 | |
| 		WARN_ON(chunk->immutable);
 | |
| 
 | |
| 		/* spare the first one */
 | |
| 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
 | |
| 			continue;
 | |
| 
 | |
| 		list_move(&chunk->list, &to_free);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(chunk, next, &to_free, list) {
 | |
| 		unsigned int rs, re;
 | |
| 
 | |
| 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
 | |
| 					   chunk->nr_pages) {
 | |
| 			pcpu_depopulate_chunk(chunk, rs, re);
 | |
| 			spin_lock_irq(&pcpu_lock);
 | |
| 			pcpu_chunk_depopulated(chunk, rs, re);
 | |
| 			spin_unlock_irq(&pcpu_lock);
 | |
| 		}
 | |
| 		pcpu_destroy_chunk(chunk);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure there are certain number of free populated pages for
 | |
| 	 * atomic allocs.  Fill up from the most packed so that atomic
 | |
| 	 * allocs don't increase fragmentation.  If atomic allocation
 | |
| 	 * failed previously, always populate the maximum amount.  This
 | |
| 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
 | |
| 	 * failing indefinitely; however, large atomic allocs are not
 | |
| 	 * something we support properly and can be highly unreliable and
 | |
| 	 * inefficient.
 | |
| 	 */
 | |
| retry_pop:
 | |
| 	if (pcpu_atomic_alloc_failed) {
 | |
| 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
 | |
| 		/* best effort anyway, don't worry about synchronization */
 | |
| 		pcpu_atomic_alloc_failed = false;
 | |
| 	} else {
 | |
| 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
 | |
| 				  pcpu_nr_empty_pop_pages[type],
 | |
| 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
 | |
| 	}
 | |
| 
 | |
| 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
 | |
| 		unsigned int nr_unpop = 0, rs, re;
 | |
| 
 | |
| 		if (!nr_to_pop)
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock_irq(&pcpu_lock);
 | |
| 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 | |
| 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
 | |
| 			if (nr_unpop)
 | |
| 				break;
 | |
| 		}
 | |
| 		spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 		if (!nr_unpop)
 | |
| 			continue;
 | |
| 
 | |
| 		/* @chunk can't go away while pcpu_alloc_mutex is held */
 | |
| 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
 | |
| 					     chunk->nr_pages) {
 | |
| 			int nr = min_t(int, re - rs, nr_to_pop);
 | |
| 
 | |
| 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
 | |
| 			if (!ret) {
 | |
| 				nr_to_pop -= nr;
 | |
| 				spin_lock_irq(&pcpu_lock);
 | |
| 				pcpu_chunk_populated(chunk, rs, rs + nr);
 | |
| 				spin_unlock_irq(&pcpu_lock);
 | |
| 			} else {
 | |
| 				nr_to_pop = 0;
 | |
| 			}
 | |
| 
 | |
| 			if (!nr_to_pop)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_to_pop) {
 | |
| 		/* ran out of chunks to populate, create a new one and retry */
 | |
| 		chunk = pcpu_create_chunk(type, gfp);
 | |
| 		if (chunk) {
 | |
| 			spin_lock_irq(&pcpu_lock);
 | |
| 			pcpu_chunk_relocate(chunk, -1);
 | |
| 			spin_unlock_irq(&pcpu_lock);
 | |
| 			goto retry_pop;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&pcpu_alloc_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
 | |
|  * @work: unused
 | |
|  *
 | |
|  * Call __pcpu_balance_workfn() for each chunk type.
 | |
|  */
 | |
| static void pcpu_balance_workfn(struct work_struct *work)
 | |
| {
 | |
| 	enum pcpu_chunk_type type;
 | |
| 
 | |
| 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
 | |
| 		__pcpu_balance_workfn(type);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_percpu - free percpu area
 | |
|  * @ptr: pointer to area to free
 | |
|  *
 | |
|  * Free percpu area @ptr.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Can be called from atomic context.
 | |
|  */
 | |
| void free_percpu(void __percpu *ptr)
 | |
| {
 | |
| 	void *addr;
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	unsigned long flags;
 | |
| 	int size, off;
 | |
| 	bool need_balance = false;
 | |
| 	struct list_head *pcpu_slot;
 | |
| 
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	kmemleak_free_percpu(ptr);
 | |
| 
 | |
| 	addr = __pcpu_ptr_to_addr(ptr);
 | |
| 
 | |
| 	spin_lock_irqsave(&pcpu_lock, flags);
 | |
| 
 | |
| 	chunk = pcpu_chunk_addr_search(addr);
 | |
| 	off = addr - chunk->base_addr;
 | |
| 
 | |
| 	size = pcpu_free_area(chunk, off);
 | |
| 
 | |
| 	pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
 | |
| 
 | |
| 	pcpu_memcg_free_hook(chunk, off, size);
 | |
| 
 | |
| 	/* if there are more than one fully free chunks, wake up grim reaper */
 | |
| 	if (chunk->free_bytes == pcpu_unit_size) {
 | |
| 		struct pcpu_chunk *pos;
 | |
| 
 | |
| 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
 | |
| 			if (pos != chunk) {
 | |
| 				need_balance = true;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pcpu_lock, flags);
 | |
| 
 | |
| 	if (need_balance)
 | |
| 		pcpu_schedule_balance_work();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_percpu);
 | |
| 
 | |
| bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	const size_t static_size = __per_cpu_end - __per_cpu_start;
 | |
| 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		void *start = per_cpu_ptr(base, cpu);
 | |
| 		void *va = (void *)addr;
 | |
| 
 | |
| 		if (va >= start && va < start + static_size) {
 | |
| 			if (can_addr) {
 | |
| 				*can_addr = (unsigned long) (va - start);
 | |
| 				*can_addr += (unsigned long)
 | |
| 					per_cpu_ptr(base, get_boot_cpu_id());
 | |
| 			}
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	/* on UP, can't distinguish from other static vars, always false */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_kernel_percpu_address - test whether address is from static percpu area
 | |
|  * @addr: address to test
 | |
|  *
 | |
|  * Test whether @addr belongs to in-kernel static percpu area.  Module
 | |
|  * static percpu areas are not considered.  For those, use
 | |
|  * is_module_percpu_address().
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * %true if @addr is from in-kernel static percpu area, %false otherwise.
 | |
|  */
 | |
| bool is_kernel_percpu_address(unsigned long addr)
 | |
| {
 | |
| 	return __is_kernel_percpu_address(addr, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 | |
|  * @addr: the address to be converted to physical address
 | |
|  *
 | |
|  * Given @addr which is dereferenceable address obtained via one of
 | |
|  * percpu access macros, this function translates it into its physical
 | |
|  * address.  The caller is responsible for ensuring @addr stays valid
 | |
|  * until this function finishes.
 | |
|  *
 | |
|  * percpu allocator has special setup for the first chunk, which currently
 | |
|  * supports either embedding in linear address space or vmalloc mapping,
 | |
|  * and, from the second one, the backing allocator (currently either vm or
 | |
|  * km) provides translation.
 | |
|  *
 | |
|  * The addr can be translated simply without checking if it falls into the
 | |
|  * first chunk. But the current code reflects better how percpu allocator
 | |
|  * actually works, and the verification can discover both bugs in percpu
 | |
|  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 | |
|  * code.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The physical address for @addr.
 | |
|  */
 | |
| phys_addr_t per_cpu_ptr_to_phys(void *addr)
 | |
| {
 | |
| 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 | |
| 	bool in_first_chunk = false;
 | |
| 	unsigned long first_low, first_high;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following test on unit_low/high isn't strictly
 | |
| 	 * necessary but will speed up lookups of addresses which
 | |
| 	 * aren't in the first chunk.
 | |
| 	 *
 | |
| 	 * The address check is against full chunk sizes.  pcpu_base_addr
 | |
| 	 * points to the beginning of the first chunk including the
 | |
| 	 * static region.  Assumes good intent as the first chunk may
 | |
| 	 * not be full (ie. < pcpu_unit_pages in size).
 | |
| 	 */
 | |
| 	first_low = (unsigned long)pcpu_base_addr +
 | |
| 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
 | |
| 	first_high = (unsigned long)pcpu_base_addr +
 | |
| 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
 | |
| 	if ((unsigned long)addr >= first_low &&
 | |
| 	    (unsigned long)addr < first_high) {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			void *start = per_cpu_ptr(base, cpu);
 | |
| 
 | |
| 			if (addr >= start && addr < start + pcpu_unit_size) {
 | |
| 				in_first_chunk = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (in_first_chunk) {
 | |
| 		if (!is_vmalloc_addr(addr))
 | |
| 			return __pa(addr);
 | |
| 		else
 | |
| 			return page_to_phys(vmalloc_to_page(addr)) +
 | |
| 			       offset_in_page(addr);
 | |
| 	} else
 | |
| 		return page_to_phys(pcpu_addr_to_page(addr)) +
 | |
| 		       offset_in_page(addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_alloc_info - allocate percpu allocation info
 | |
|  * @nr_groups: the number of groups
 | |
|  * @nr_units: the number of units
 | |
|  *
 | |
|  * Allocate ai which is large enough for @nr_groups groups containing
 | |
|  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 | |
|  * cpu_map array which is long enough for @nr_units and filled with
 | |
|  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 | |
|  * pointer of other groups.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to the allocated pcpu_alloc_info on success, NULL on
 | |
|  * failure.
 | |
|  */
 | |
| struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
 | |
| 						      int nr_units)
 | |
| {
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	size_t base_size, ai_size;
 | |
| 	void *ptr;
 | |
| 	int unit;
 | |
| 
 | |
| 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
 | |
| 			  __alignof__(ai->groups[0].cpu_map[0]));
 | |
| 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
 | |
| 
 | |
| 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
 | |
| 	if (!ptr)
 | |
| 		return NULL;
 | |
| 	ai = ptr;
 | |
| 	ptr += base_size;
 | |
| 
 | |
| 	ai->groups[0].cpu_map = ptr;
 | |
| 
 | |
| 	for (unit = 0; unit < nr_units; unit++)
 | |
| 		ai->groups[0].cpu_map[unit] = NR_CPUS;
 | |
| 
 | |
| 	ai->nr_groups = nr_groups;
 | |
| 	ai->__ai_size = PFN_ALIGN(ai_size);
 | |
| 
 | |
| 	return ai;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_alloc_info - free percpu allocation info
 | |
|  * @ai: pcpu_alloc_info to free
 | |
|  *
 | |
|  * Free @ai which was allocated by pcpu_alloc_alloc_info().
 | |
|  */
 | |
| void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
 | |
| {
 | |
| 	memblock_free_early(__pa(ai), ai->__ai_size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 | |
|  * @lvl: loglevel
 | |
|  * @ai: allocation info to dump
 | |
|  *
 | |
|  * Print out information about @ai using loglevel @lvl.
 | |
|  */
 | |
| static void pcpu_dump_alloc_info(const char *lvl,
 | |
| 				 const struct pcpu_alloc_info *ai)
 | |
| {
 | |
| 	int group_width = 1, cpu_width = 1, width;
 | |
| 	char empty_str[] = "--------";
 | |
| 	int alloc = 0, alloc_end = 0;
 | |
| 	int group, v;
 | |
| 	int upa, apl;	/* units per alloc, allocs per line */
 | |
| 
 | |
| 	v = ai->nr_groups;
 | |
| 	while (v /= 10)
 | |
| 		group_width++;
 | |
| 
 | |
| 	v = num_possible_cpus();
 | |
| 	while (v /= 10)
 | |
| 		cpu_width++;
 | |
| 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
 | |
| 
 | |
| 	upa = ai->alloc_size / ai->unit_size;
 | |
| 	width = upa * (cpu_width + 1) + group_width + 3;
 | |
| 	apl = rounddown_pow_of_two(max(60 / width, 1));
 | |
| 
 | |
| 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
 | |
| 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
 | |
| 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
 | |
| 
 | |
| 	for (group = 0; group < ai->nr_groups; group++) {
 | |
| 		const struct pcpu_group_info *gi = &ai->groups[group];
 | |
| 		int unit = 0, unit_end = 0;
 | |
| 
 | |
| 		BUG_ON(gi->nr_units % upa);
 | |
| 		for (alloc_end += gi->nr_units / upa;
 | |
| 		     alloc < alloc_end; alloc++) {
 | |
| 			if (!(alloc % apl)) {
 | |
| 				pr_cont("\n");
 | |
| 				printk("%spcpu-alloc: ", lvl);
 | |
| 			}
 | |
| 			pr_cont("[%0*d] ", group_width, group);
 | |
| 
 | |
| 			for (unit_end += upa; unit < unit_end; unit++)
 | |
| 				if (gi->cpu_map[unit] != NR_CPUS)
 | |
| 					pr_cont("%0*d ",
 | |
| 						cpu_width, gi->cpu_map[unit]);
 | |
| 				else
 | |
| 					pr_cont("%s ", empty_str);
 | |
| 		}
 | |
| 	}
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_setup_first_chunk - initialize the first percpu chunk
 | |
|  * @ai: pcpu_alloc_info describing how to percpu area is shaped
 | |
|  * @base_addr: mapped address
 | |
|  *
 | |
|  * Initialize the first percpu chunk which contains the kernel static
 | |
|  * percpu area.  This function is to be called from arch percpu area
 | |
|  * setup path.
 | |
|  *
 | |
|  * @ai contains all information necessary to initialize the first
 | |
|  * chunk and prime the dynamic percpu allocator.
 | |
|  *
 | |
|  * @ai->static_size is the size of static percpu area.
 | |
|  *
 | |
|  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
 | |
|  * reserve after the static area in the first chunk.  This reserves
 | |
|  * the first chunk such that it's available only through reserved
 | |
|  * percpu allocation.  This is primarily used to serve module percpu
 | |
|  * static areas on architectures where the addressing model has
 | |
|  * limited offset range for symbol relocations to guarantee module
 | |
|  * percpu symbols fall inside the relocatable range.
 | |
|  *
 | |
|  * @ai->dyn_size determines the number of bytes available for dynamic
 | |
|  * allocation in the first chunk.  The area between @ai->static_size +
 | |
|  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
 | |
|  *
 | |
|  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 | |
|  * and equal to or larger than @ai->static_size + @ai->reserved_size +
 | |
|  * @ai->dyn_size.
 | |
|  *
 | |
|  * @ai->atom_size is the allocation atom size and used as alignment
 | |
|  * for vm areas.
 | |
|  *
 | |
|  * @ai->alloc_size is the allocation size and always multiple of
 | |
|  * @ai->atom_size.  This is larger than @ai->atom_size if
 | |
|  * @ai->unit_size is larger than @ai->atom_size.
 | |
|  *
 | |
|  * @ai->nr_groups and @ai->groups describe virtual memory layout of
 | |
|  * percpu areas.  Units which should be colocated are put into the
 | |
|  * same group.  Dynamic VM areas will be allocated according to these
 | |
|  * groupings.  If @ai->nr_groups is zero, a single group containing
 | |
|  * all units is assumed.
 | |
|  *
 | |
|  * The caller should have mapped the first chunk at @base_addr and
 | |
|  * copied static data to each unit.
 | |
|  *
 | |
|  * The first chunk will always contain a static and a dynamic region.
 | |
|  * However, the static region is not managed by any chunk.  If the first
 | |
|  * chunk also contains a reserved region, it is served by two chunks -
 | |
|  * one for the reserved region and one for the dynamic region.  They
 | |
|  * share the same vm, but use offset regions in the area allocation map.
 | |
|  * The chunk serving the dynamic region is circulated in the chunk slots
 | |
|  * and available for dynamic allocation like any other chunk.
 | |
|  */
 | |
| void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
 | |
| 				   void *base_addr)
 | |
| {
 | |
| 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
 | |
| 	size_t static_size, dyn_size;
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	unsigned long *group_offsets;
 | |
| 	size_t *group_sizes;
 | |
| 	unsigned long *unit_off;
 | |
| 	unsigned int cpu;
 | |
| 	int *unit_map;
 | |
| 	int group, unit, i;
 | |
| 	int map_size;
 | |
| 	unsigned long tmp_addr;
 | |
| 	size_t alloc_size;
 | |
| 	enum pcpu_chunk_type type;
 | |
| 
 | |
| #define PCPU_SETUP_BUG_ON(cond)	do {					\
 | |
| 	if (unlikely(cond)) {						\
 | |
| 		pr_emerg("failed to initialize, %s\n", #cond);		\
 | |
| 		pr_emerg("cpu_possible_mask=%*pb\n",			\
 | |
| 			 cpumask_pr_args(cpu_possible_mask));		\
 | |
| 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
 | |
| 		BUG();							\
 | |
| 	}								\
 | |
| } while (0)
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
 | |
| #ifdef CONFIG_SMP
 | |
| 	PCPU_SETUP_BUG_ON(!ai->static_size);
 | |
| 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
 | |
| #endif
 | |
| 	PCPU_SETUP_BUG_ON(!base_addr);
 | |
| 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
 | |
| 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
 | |
| 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
 | |
| 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
 | |
| 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
 | |
| 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
 | |
| 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
 | |
| 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
 | |
| 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
 | |
| 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
 | |
| 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
 | |
| 
 | |
| 	/* process group information and build config tables accordingly */
 | |
| 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
 | |
| 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!group_offsets)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
 | |
| 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!group_sizes)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
 | |
| 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!unit_map)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
 | |
| 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 | |
| 	if (!unit_off)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      alloc_size);
 | |
| 
 | |
| 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
 | |
| 		unit_map[cpu] = UINT_MAX;
 | |
| 
 | |
| 	pcpu_low_unit_cpu = NR_CPUS;
 | |
| 	pcpu_high_unit_cpu = NR_CPUS;
 | |
| 
 | |
| 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
 | |
| 		const struct pcpu_group_info *gi = &ai->groups[group];
 | |
| 
 | |
| 		group_offsets[group] = gi->base_offset;
 | |
| 		group_sizes[group] = gi->nr_units * ai->unit_size;
 | |
| 
 | |
| 		for (i = 0; i < gi->nr_units; i++) {
 | |
| 			cpu = gi->cpu_map[i];
 | |
| 			if (cpu == NR_CPUS)
 | |
| 				continue;
 | |
| 
 | |
| 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
 | |
| 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
 | |
| 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
 | |
| 
 | |
| 			unit_map[cpu] = unit + i;
 | |
| 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
 | |
| 
 | |
| 			/* determine low/high unit_cpu */
 | |
| 			if (pcpu_low_unit_cpu == NR_CPUS ||
 | |
| 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
 | |
| 				pcpu_low_unit_cpu = cpu;
 | |
| 			if (pcpu_high_unit_cpu == NR_CPUS ||
 | |
| 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
 | |
| 				pcpu_high_unit_cpu = cpu;
 | |
| 		}
 | |
| 	}
 | |
| 	pcpu_nr_units = unit;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
 | |
| 
 | |
| 	/* we're done parsing the input, undefine BUG macro and dump config */
 | |
| #undef PCPU_SETUP_BUG_ON
 | |
| 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
 | |
| 
 | |
| 	pcpu_nr_groups = ai->nr_groups;
 | |
| 	pcpu_group_offsets = group_offsets;
 | |
| 	pcpu_group_sizes = group_sizes;
 | |
| 	pcpu_unit_map = unit_map;
 | |
| 	pcpu_unit_offsets = unit_off;
 | |
| 
 | |
| 	/* determine basic parameters */
 | |
| 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
 | |
| 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
 | |
| 	pcpu_atom_size = ai->atom_size;
 | |
| 	pcpu_chunk_struct_size = struct_size(chunk, populated,
 | |
| 					     BITS_TO_LONGS(pcpu_unit_pages));
 | |
| 
 | |
| 	pcpu_stats_save_ai(ai);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate chunk slots.  The additional last slot is for
 | |
| 	 * empty chunks.
 | |
| 	 */
 | |
| 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
 | |
| 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
 | |
| 					  sizeof(pcpu_chunk_lists[0]) *
 | |
| 					  PCPU_NR_CHUNK_TYPES,
 | |
| 					  SMP_CACHE_BYTES);
 | |
| 	if (!pcpu_chunk_lists)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
 | |
| 		      PCPU_NR_CHUNK_TYPES);
 | |
| 
 | |
| 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
 | |
| 		for (i = 0; i < pcpu_nr_slots; i++)
 | |
| 			INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * The end of the static region needs to be aligned with the
 | |
| 	 * minimum allocation size as this offsets the reserved and
 | |
| 	 * dynamic region.  The first chunk ends page aligned by
 | |
| 	 * expanding the dynamic region, therefore the dynamic region
 | |
| 	 * can be shrunk to compensate while still staying above the
 | |
| 	 * configured sizes.
 | |
| 	 */
 | |
| 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
 | |
| 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize first chunk.
 | |
| 	 * If the reserved_size is non-zero, this initializes the reserved
 | |
| 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
 | |
| 	 * and the dynamic region is initialized here.  The first chunk,
 | |
| 	 * pcpu_first_chunk, will always point to the chunk that serves
 | |
| 	 * the dynamic region.
 | |
| 	 */
 | |
| 	tmp_addr = (unsigned long)base_addr + static_size;
 | |
| 	map_size = ai->reserved_size ?: dyn_size;
 | |
| 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
 | |
| 
 | |
| 	/* init dynamic chunk if necessary */
 | |
| 	if (ai->reserved_size) {
 | |
| 		pcpu_reserved_chunk = chunk;
 | |
| 
 | |
| 		tmp_addr = (unsigned long)base_addr + static_size +
 | |
| 			   ai->reserved_size;
 | |
| 		map_size = dyn_size;
 | |
| 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
 | |
| 	}
 | |
| 
 | |
| 	/* link the first chunk in */
 | |
| 	pcpu_first_chunk = chunk;
 | |
| 	pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
 | |
| 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
 | |
| 
 | |
| 	/* include all regions of the first chunk */
 | |
| 	pcpu_nr_populated += PFN_DOWN(size_sum);
 | |
| 
 | |
| 	pcpu_stats_chunk_alloc();
 | |
| 	trace_percpu_create_chunk(base_addr);
 | |
| 
 | |
| 	/* we're done */
 | |
| 	pcpu_base_addr = base_addr;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
 | |
| 	[PCPU_FC_AUTO]	= "auto",
 | |
| 	[PCPU_FC_EMBED]	= "embed",
 | |
| 	[PCPU_FC_PAGE]	= "page",
 | |
| };
 | |
| 
 | |
| enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
 | |
| 
 | |
| static int __init percpu_alloc_setup(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (0)
 | |
| 		/* nada */;
 | |
| #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
 | |
| 	else if (!strcmp(str, "embed"))
 | |
| 		pcpu_chosen_fc = PCPU_FC_EMBED;
 | |
| #endif
 | |
| #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 | |
| 	else if (!strcmp(str, "page"))
 | |
| 		pcpu_chosen_fc = PCPU_FC_PAGE;
 | |
| #endif
 | |
| 	else
 | |
| 		pr_warn("unknown allocator %s specified\n", str);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("percpu_alloc", percpu_alloc_setup);
 | |
| 
 | |
| /*
 | |
|  * pcpu_embed_first_chunk() is used by the generic percpu setup.
 | |
|  * Build it if needed by the arch config or the generic setup is going
 | |
|  * to be used.
 | |
|  */
 | |
| #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
 | |
| 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
 | |
| #define BUILD_EMBED_FIRST_CHUNK
 | |
| #endif
 | |
| 
 | |
| /* build pcpu_page_first_chunk() iff needed by the arch config */
 | |
| #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
 | |
| #define BUILD_PAGE_FIRST_CHUNK
 | |
| #endif
 | |
| 
 | |
| /* pcpu_build_alloc_info() is used by both embed and page first chunk */
 | |
| #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
 | |
| /**
 | |
|  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 | |
|  * @reserved_size: the size of reserved percpu area in bytes
 | |
|  * @dyn_size: minimum free size for dynamic allocation in bytes
 | |
|  * @atom_size: allocation atom size
 | |
|  * @cpu_distance_fn: callback to determine distance between cpus, optional
 | |
|  *
 | |
|  * This function determines grouping of units, their mappings to cpus
 | |
|  * and other parameters considering needed percpu size, allocation
 | |
|  * atom size and distances between CPUs.
 | |
|  *
 | |
|  * Groups are always multiples of atom size and CPUs which are of
 | |
|  * LOCAL_DISTANCE both ways are grouped together and share space for
 | |
|  * units in the same group.  The returned configuration is guaranteed
 | |
|  * to have CPUs on different nodes on different groups and >=75% usage
 | |
|  * of allocated virtual address space.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * On success, pointer to the new allocation_info is returned.  On
 | |
|  * failure, ERR_PTR value is returned.
 | |
|  */
 | |
| static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
 | |
| 				size_t reserved_size, size_t dyn_size,
 | |
| 				size_t atom_size,
 | |
| 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
 | |
| {
 | |
| 	static int group_map[NR_CPUS] __initdata;
 | |
| 	static int group_cnt[NR_CPUS] __initdata;
 | |
| 	static struct cpumask mask __initdata;
 | |
| 	const size_t static_size = __per_cpu_end - __per_cpu_start;
 | |
| 	int nr_groups = 1, nr_units = 0;
 | |
| 	size_t size_sum, min_unit_size, alloc_size;
 | |
| 	int upa, max_upa, best_upa;	/* units_per_alloc */
 | |
| 	int last_allocs, group, unit;
 | |
| 	unsigned int cpu, tcpu;
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	unsigned int *cpu_map;
 | |
| 
 | |
| 	/* this function may be called multiple times */
 | |
| 	memset(group_map, 0, sizeof(group_map));
 | |
| 	memset(group_cnt, 0, sizeof(group_cnt));
 | |
| 	cpumask_clear(&mask);
 | |
| 
 | |
| 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
 | |
| 	size_sum = PFN_ALIGN(static_size + reserved_size +
 | |
| 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
 | |
| 	dyn_size = size_sum - static_size - reserved_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine min_unit_size, alloc_size and max_upa such that
 | |
| 	 * alloc_size is multiple of atom_size and is the smallest
 | |
| 	 * which can accommodate 4k aligned segments which are equal to
 | |
| 	 * or larger than min_unit_size.
 | |
| 	 */
 | |
| 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
 | |
| 
 | |
| 	/* determine the maximum # of units that can fit in an allocation */
 | |
| 	alloc_size = roundup(min_unit_size, atom_size);
 | |
| 	upa = alloc_size / min_unit_size;
 | |
| 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
 | |
| 		upa--;
 | |
| 	max_upa = upa;
 | |
| 
 | |
| 	cpumask_copy(&mask, cpu_possible_mask);
 | |
| 
 | |
| 	/* group cpus according to their proximity */
 | |
| 	for (group = 0; !cpumask_empty(&mask); group++) {
 | |
| 		/* pop the group's first cpu */
 | |
| 		cpu = cpumask_first(&mask);
 | |
| 		group_map[cpu] = group;
 | |
| 		group_cnt[group]++;
 | |
| 		cpumask_clear_cpu(cpu, &mask);
 | |
| 
 | |
| 		for_each_cpu(tcpu, &mask) {
 | |
| 			if (!cpu_distance_fn ||
 | |
| 			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
 | |
| 			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
 | |
| 				group_map[tcpu] = group;
 | |
| 				group_cnt[group]++;
 | |
| 				cpumask_clear_cpu(tcpu, &mask);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	nr_groups = group;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
 | |
| 	 * Expand the unit_size until we use >= 75% of the units allocated.
 | |
| 	 * Related to atom_size, which could be much larger than the unit_size.
 | |
| 	 */
 | |
| 	last_allocs = INT_MAX;
 | |
| 	for (upa = max_upa; upa; upa--) {
 | |
| 		int allocs = 0, wasted = 0;
 | |
| 
 | |
| 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
 | |
| 			continue;
 | |
| 
 | |
| 		for (group = 0; group < nr_groups; group++) {
 | |
| 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
 | |
| 			allocs += this_allocs;
 | |
| 			wasted += this_allocs * upa - group_cnt[group];
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't accept if wastage is over 1/3.  The
 | |
| 		 * greater-than comparison ensures upa==1 always
 | |
| 		 * passes the following check.
 | |
| 		 */
 | |
| 		if (wasted > num_possible_cpus() / 3)
 | |
| 			continue;
 | |
| 
 | |
| 		/* and then don't consume more memory */
 | |
| 		if (allocs > last_allocs)
 | |
| 			break;
 | |
| 		last_allocs = allocs;
 | |
| 		best_upa = upa;
 | |
| 	}
 | |
| 	upa = best_upa;
 | |
| 
 | |
| 	/* allocate and fill alloc_info */
 | |
| 	for (group = 0; group < nr_groups; group++)
 | |
| 		nr_units += roundup(group_cnt[group], upa);
 | |
| 
 | |
| 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
 | |
| 	if (!ai)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	cpu_map = ai->groups[0].cpu_map;
 | |
| 
 | |
| 	for (group = 0; group < nr_groups; group++) {
 | |
| 		ai->groups[group].cpu_map = cpu_map;
 | |
| 		cpu_map += roundup(group_cnt[group], upa);
 | |
| 	}
 | |
| 
 | |
| 	ai->static_size = static_size;
 | |
| 	ai->reserved_size = reserved_size;
 | |
| 	ai->dyn_size = dyn_size;
 | |
| 	ai->unit_size = alloc_size / upa;
 | |
| 	ai->atom_size = atom_size;
 | |
| 	ai->alloc_size = alloc_size;
 | |
| 
 | |
| 	for (group = 0, unit = 0; group < nr_groups; group++) {
 | |
| 		struct pcpu_group_info *gi = &ai->groups[group];
 | |
| 
 | |
| 		/*
 | |
| 		 * Initialize base_offset as if all groups are located
 | |
| 		 * back-to-back.  The caller should update this to
 | |
| 		 * reflect actual allocation.
 | |
| 		 */
 | |
| 		gi->base_offset = unit * ai->unit_size;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			if (group_map[cpu] == group)
 | |
| 				gi->cpu_map[gi->nr_units++] = cpu;
 | |
| 		gi->nr_units = roundup(gi->nr_units, upa);
 | |
| 		unit += gi->nr_units;
 | |
| 	}
 | |
| 	BUG_ON(unit != nr_units);
 | |
| 
 | |
| 	return ai;
 | |
| }
 | |
| #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
 | |
| 
 | |
| #if defined(BUILD_EMBED_FIRST_CHUNK)
 | |
| /**
 | |
|  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 | |
|  * @reserved_size: the size of reserved percpu area in bytes
 | |
|  * @dyn_size: minimum free size for dynamic allocation in bytes
 | |
|  * @atom_size: allocation atom size
 | |
|  * @cpu_distance_fn: callback to determine distance between cpus, optional
 | |
|  * @alloc_fn: function to allocate percpu page
 | |
|  * @free_fn: function to free percpu page
 | |
|  *
 | |
|  * This is a helper to ease setting up embedded first percpu chunk and
 | |
|  * can be called where pcpu_setup_first_chunk() is expected.
 | |
|  *
 | |
|  * If this function is used to setup the first chunk, it is allocated
 | |
|  * by calling @alloc_fn and used as-is without being mapped into
 | |
|  * vmalloc area.  Allocations are always whole multiples of @atom_size
 | |
|  * aligned to @atom_size.
 | |
|  *
 | |
|  * This enables the first chunk to piggy back on the linear physical
 | |
|  * mapping which often uses larger page size.  Please note that this
 | |
|  * can result in very sparse cpu->unit mapping on NUMA machines thus
 | |
|  * requiring large vmalloc address space.  Don't use this allocator if
 | |
|  * vmalloc space is not orders of magnitude larger than distances
 | |
|  * between node memory addresses (ie. 32bit NUMA machines).
 | |
|  *
 | |
|  * @dyn_size specifies the minimum dynamic area size.
 | |
|  *
 | |
|  * If the needed size is smaller than the minimum or specified unit
 | |
|  * size, the leftover is returned using @free_fn.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
 | |
| 				  size_t atom_size,
 | |
| 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
 | |
| 				  pcpu_fc_alloc_fn_t alloc_fn,
 | |
| 				  pcpu_fc_free_fn_t free_fn)
 | |
| {
 | |
| 	void *base = (void *)ULONG_MAX;
 | |
| 	void **areas = NULL;
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	size_t size_sum, areas_size;
 | |
| 	unsigned long max_distance;
 | |
| 	int group, i, highest_group, rc = 0;
 | |
| 
 | |
| 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
 | |
| 				   cpu_distance_fn);
 | |
| 	if (IS_ERR(ai))
 | |
| 		return PTR_ERR(ai);
 | |
| 
 | |
| 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
 | |
| 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
 | |
| 
 | |
| 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
 | |
| 	if (!areas) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate, copy and determine base address & max_distance */
 | |
| 	highest_group = 0;
 | |
| 	for (group = 0; group < ai->nr_groups; group++) {
 | |
| 		struct pcpu_group_info *gi = &ai->groups[group];
 | |
| 		unsigned int cpu = NR_CPUS;
 | |
| 		void *ptr;
 | |
| 
 | |
| 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
 | |
| 			cpu = gi->cpu_map[i];
 | |
| 		BUG_ON(cpu == NR_CPUS);
 | |
| 
 | |
| 		/* allocate space for the whole group */
 | |
| 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
 | |
| 		if (!ptr) {
 | |
| 			rc = -ENOMEM;
 | |
| 			goto out_free_areas;
 | |
| 		}
 | |
| 		/* kmemleak tracks the percpu allocations separately */
 | |
| 		kmemleak_free(ptr);
 | |
| 		areas[group] = ptr;
 | |
| 
 | |
| 		base = min(ptr, base);
 | |
| 		if (ptr > areas[highest_group])
 | |
| 			highest_group = group;
 | |
| 	}
 | |
| 	max_distance = areas[highest_group] - base;
 | |
| 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
 | |
| 
 | |
| 	/* warn if maximum distance is further than 75% of vmalloc space */
 | |
| 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
 | |
| 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
 | |
| 				max_distance, VMALLOC_TOTAL);
 | |
| #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 | |
| 		/* and fail if we have fallback */
 | |
| 		rc = -EINVAL;
 | |
| 		goto out_free_areas;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy data and free unused parts.  This should happen after all
 | |
| 	 * allocations are complete; otherwise, we may end up with
 | |
| 	 * overlapping groups.
 | |
| 	 */
 | |
| 	for (group = 0; group < ai->nr_groups; group++) {
 | |
| 		struct pcpu_group_info *gi = &ai->groups[group];
 | |
| 		void *ptr = areas[group];
 | |
| 
 | |
| 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
 | |
| 			if (gi->cpu_map[i] == NR_CPUS) {
 | |
| 				/* unused unit, free whole */
 | |
| 				free_fn(ptr, ai->unit_size);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/* copy and return the unused part */
 | |
| 			memcpy(ptr, __per_cpu_load, ai->static_size);
 | |
| 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* base address is now known, determine group base offsets */
 | |
| 	for (group = 0; group < ai->nr_groups; group++) {
 | |
| 		ai->groups[group].base_offset = areas[group] - base;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
 | |
| 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
 | |
| 		ai->dyn_size, ai->unit_size);
 | |
| 
 | |
| 	pcpu_setup_first_chunk(ai, base);
 | |
| 	goto out_free;
 | |
| 
 | |
| out_free_areas:
 | |
| 	for (group = 0; group < ai->nr_groups; group++)
 | |
| 		if (areas[group])
 | |
| 			free_fn(areas[group],
 | |
| 				ai->groups[group].nr_units * ai->unit_size);
 | |
| out_free:
 | |
| 	pcpu_free_alloc_info(ai);
 | |
| 	if (areas)
 | |
| 		memblock_free_early(__pa(areas), areas_size);
 | |
| 	return rc;
 | |
| }
 | |
| #endif /* BUILD_EMBED_FIRST_CHUNK */
 | |
| 
 | |
| #ifdef BUILD_PAGE_FIRST_CHUNK
 | |
| /**
 | |
|  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
 | |
|  * @reserved_size: the size of reserved percpu area in bytes
 | |
|  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 | |
|  * @free_fn: function to free percpu page, always called with PAGE_SIZE
 | |
|  * @populate_pte_fn: function to populate pte
 | |
|  *
 | |
|  * This is a helper to ease setting up page-remapped first percpu
 | |
|  * chunk and can be called where pcpu_setup_first_chunk() is expected.
 | |
|  *
 | |
|  * This is the basic allocator.  Static percpu area is allocated
 | |
|  * page-by-page into vmalloc area.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init pcpu_page_first_chunk(size_t reserved_size,
 | |
| 				 pcpu_fc_alloc_fn_t alloc_fn,
 | |
| 				 pcpu_fc_free_fn_t free_fn,
 | |
| 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
 | |
| {
 | |
| 	static struct vm_struct vm;
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	char psize_str[16];
 | |
| 	int unit_pages;
 | |
| 	size_t pages_size;
 | |
| 	struct page **pages;
 | |
| 	int unit, i, j, rc = 0;
 | |
| 	int upa;
 | |
| 	int nr_g0_units;
 | |
| 
 | |
| 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
 | |
| 
 | |
| 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
 | |
| 	if (IS_ERR(ai))
 | |
| 		return PTR_ERR(ai);
 | |
| 	BUG_ON(ai->nr_groups != 1);
 | |
| 	upa = ai->alloc_size/ai->unit_size;
 | |
| 	nr_g0_units = roundup(num_possible_cpus(), upa);
 | |
| 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
 | |
| 		pcpu_free_alloc_info(ai);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	unit_pages = ai->unit_size >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* unaligned allocations can't be freed, round up to page size */
 | |
| 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
 | |
| 			       sizeof(pages[0]));
 | |
| 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
 | |
| 	if (!pages)
 | |
| 		panic("%s: Failed to allocate %zu bytes\n", __func__,
 | |
| 		      pages_size);
 | |
| 
 | |
| 	/* allocate pages */
 | |
| 	j = 0;
 | |
| 	for (unit = 0; unit < num_possible_cpus(); unit++) {
 | |
| 		unsigned int cpu = ai->groups[0].cpu_map[unit];
 | |
| 		for (i = 0; i < unit_pages; i++) {
 | |
| 			void *ptr;
 | |
| 
 | |
| 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
 | |
| 			if (!ptr) {
 | |
| 				pr_warn("failed to allocate %s page for cpu%u\n",
 | |
| 						psize_str, cpu);
 | |
| 				goto enomem;
 | |
| 			}
 | |
| 			/* kmemleak tracks the percpu allocations separately */
 | |
| 			kmemleak_free(ptr);
 | |
| 			pages[j++] = virt_to_page(ptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* allocate vm area, map the pages and copy static data */
 | |
| 	vm.flags = VM_ALLOC;
 | |
| 	vm.size = num_possible_cpus() * ai->unit_size;
 | |
| 	vm_area_register_early(&vm, PAGE_SIZE);
 | |
| 
 | |
| 	for (unit = 0; unit < num_possible_cpus(); unit++) {
 | |
| 		unsigned long unit_addr =
 | |
| 			(unsigned long)vm.addr + unit * ai->unit_size;
 | |
| 
 | |
| 		for (i = 0; i < unit_pages; i++)
 | |
| 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
 | |
| 
 | |
| 		/* pte already populated, the following shouldn't fail */
 | |
| 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
 | |
| 				      unit_pages);
 | |
| 		if (rc < 0)
 | |
| 			panic("failed to map percpu area, err=%d\n", rc);
 | |
| 
 | |
| 		/*
 | |
| 		 * FIXME: Archs with virtual cache should flush local
 | |
| 		 * cache for the linear mapping here - something
 | |
| 		 * equivalent to flush_cache_vmap() on the local cpu.
 | |
| 		 * flush_cache_vmap() can't be used as most supporting
 | |
| 		 * data structures are not set up yet.
 | |
| 		 */
 | |
| 
 | |
| 		/* copy static data */
 | |
| 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
 | |
| 	}
 | |
| 
 | |
| 	/* we're ready, commit */
 | |
| 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
 | |
| 		unit_pages, psize_str, ai->static_size,
 | |
| 		ai->reserved_size, ai->dyn_size);
 | |
| 
 | |
| 	pcpu_setup_first_chunk(ai, vm.addr);
 | |
| 	goto out_free_ar;
 | |
| 
 | |
| enomem:
 | |
| 	while (--j >= 0)
 | |
| 		free_fn(page_address(pages[j]), PAGE_SIZE);
 | |
| 	rc = -ENOMEM;
 | |
| out_free_ar:
 | |
| 	memblock_free_early(__pa(pages), pages_size);
 | |
| 	pcpu_free_alloc_info(ai);
 | |
| 	return rc;
 | |
| }
 | |
| #endif /* BUILD_PAGE_FIRST_CHUNK */
 | |
| 
 | |
| #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
 | |
| /*
 | |
|  * Generic SMP percpu area setup.
 | |
|  *
 | |
|  * The embedding helper is used because its behavior closely resembles
 | |
|  * the original non-dynamic generic percpu area setup.  This is
 | |
|  * important because many archs have addressing restrictions and might
 | |
|  * fail if the percpu area is located far away from the previous
 | |
|  * location.  As an added bonus, in non-NUMA cases, embedding is
 | |
|  * generally a good idea TLB-wise because percpu area can piggy back
 | |
|  * on the physical linear memory mapping which uses large page
 | |
|  * mappings on applicable archs.
 | |
|  */
 | |
| unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 | |
| EXPORT_SYMBOL(__per_cpu_offset);
 | |
| 
 | |
| static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
 | |
| 				       size_t align)
 | |
| {
 | |
| 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
 | |
| }
 | |
| 
 | |
| static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
 | |
| {
 | |
| 	memblock_free_early(__pa(ptr), size);
 | |
| }
 | |
| 
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	unsigned long delta;
 | |
| 	unsigned int cpu;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always reserve area for module percpu variables.  That's
 | |
| 	 * what the legacy allocator did.
 | |
| 	 */
 | |
| 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
 | |
| 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
 | |
| 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
 | |
| 	if (rc < 0)
 | |
| 		panic("Failed to initialize percpu areas.");
 | |
| 
 | |
| 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 | |
| }
 | |
| #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
 | |
| 
 | |
| #else	/* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * UP percpu area setup.
 | |
|  *
 | |
|  * UP always uses km-based percpu allocator with identity mapping.
 | |
|  * Static percpu variables are indistinguishable from the usual static
 | |
|  * variables and don't require any special preparation.
 | |
|  */
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	const size_t unit_size =
 | |
| 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
 | |
| 					 PERCPU_DYNAMIC_RESERVE));
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	void *fc;
 | |
| 
 | |
| 	ai = pcpu_alloc_alloc_info(1, 1);
 | |
| 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 | |
| 	if (!ai || !fc)
 | |
| 		panic("Failed to allocate memory for percpu areas.");
 | |
| 	/* kmemleak tracks the percpu allocations separately */
 | |
| 	kmemleak_free(fc);
 | |
| 
 | |
| 	ai->dyn_size = unit_size;
 | |
| 	ai->unit_size = unit_size;
 | |
| 	ai->atom_size = unit_size;
 | |
| 	ai->alloc_size = unit_size;
 | |
| 	ai->groups[0].nr_units = 1;
 | |
| 	ai->groups[0].cpu_map[0] = 0;
 | |
| 
 | |
| 	pcpu_setup_first_chunk(ai, fc);
 | |
| 	pcpu_free_alloc_info(ai);
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * pcpu_nr_pages - calculate total number of populated backing pages
 | |
|  *
 | |
|  * This reflects the number of pages populated to back chunks.  Metadata is
 | |
|  * excluded in the number exposed in meminfo as the number of backing pages
 | |
|  * scales with the number of cpus and can quickly outweigh the memory used for
 | |
|  * metadata.  It also keeps this calculation nice and simple.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Total number of populated backing pages in use by the allocator.
 | |
|  */
 | |
| unsigned long pcpu_nr_pages(void)
 | |
| {
 | |
| 	return pcpu_nr_populated * pcpu_nr_units;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Percpu allocator is initialized early during boot when neither slab or
 | |
|  * workqueue is available.  Plug async management until everything is up
 | |
|  * and running.
 | |
|  */
 | |
| static int __init percpu_enable_async(void)
 | |
| {
 | |
| 	pcpu_async_enabled = true;
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(percpu_enable_async);
 |