376e3fdecb
Enable the memtest functionality and rearrange some code to prevent it from clobbering the initrd. The code to implement CONFIG_BLK_DEV_INITRD was conditional on !defined(CONFIG_SUN3). For simplicity, remove that test on the basis that m68k_ramdisk.size == 0 on Sun 3. The SLIME source code at http://sammy.net/sun3/ftp/pub/m68k/sun3/slime/slime-2.0.tar.gz indicates that no BI_RAMDISK entry is ever passed to the kernel due to #ifdef 0 around the relevant code. Cc: Mike Rapoport <rppt@kernel.org> Cc: Sam Creasey <sammy@sammy.net> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Finn Thain <fthain@linux-m68k.org> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Link: https://lore.kernel.org/r/8170fe1d1c62426d82275d36ba409ecc18754292.1637274578.git.fthain@linux-m68k.org Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
486 lines
12 KiB
C
486 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/arch/m68k/mm/motorola.c
|
|
*
|
|
* Routines specific to the Motorola MMU, originally from:
|
|
* linux/arch/m68k/init.c
|
|
* which are Copyright (C) 1995 Hamish Macdonald
|
|
*
|
|
* Moved 8/20/1999 Sam Creasey
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/io.h>
|
|
#include <asm/dma.h>
|
|
#ifdef CONFIG_ATARI
|
|
#include <asm/atari_stram.h>
|
|
#endif
|
|
#include <asm/sections.h>
|
|
|
|
#undef DEBUG
|
|
|
|
#ifndef mm_cachebits
|
|
/*
|
|
* Bits to add to page descriptors for "normal" caching mode.
|
|
* For 68020/030 this is 0.
|
|
* For 68040, this is _PAGE_CACHE040 (cachable, copyback)
|
|
*/
|
|
unsigned long mm_cachebits;
|
|
EXPORT_SYMBOL(mm_cachebits);
|
|
#endif
|
|
|
|
/* Prior to calling these routines, the page should have been flushed
|
|
* from both the cache and ATC, or the CPU might not notice that the
|
|
* cache setting for the page has been changed. -jskov
|
|
*/
|
|
static inline void nocache_page(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long)vaddr;
|
|
|
|
if (CPU_IS_040_OR_060) {
|
|
pte_t *ptep = virt_to_kpte(addr);
|
|
|
|
*ptep = pte_mknocache(*ptep);
|
|
}
|
|
}
|
|
|
|
static inline void cache_page(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long)vaddr;
|
|
|
|
if (CPU_IS_040_OR_060) {
|
|
pte_t *ptep = virt_to_kpte(addr);
|
|
|
|
*ptep = pte_mkcache(*ptep);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Motorola 680x0 user's manual recommends using uncached memory for address
|
|
* translation tables.
|
|
*
|
|
* Seeing how the MMU can be external on (some of) these chips, that seems like
|
|
* a very important recommendation to follow. Provide some helpers to combat
|
|
* 'variation' amongst the users of this.
|
|
*/
|
|
|
|
void mmu_page_ctor(void *page)
|
|
{
|
|
__flush_page_to_ram(page);
|
|
flush_tlb_kernel_page(page);
|
|
nocache_page(page);
|
|
}
|
|
|
|
void mmu_page_dtor(void *page)
|
|
{
|
|
cache_page(page);
|
|
}
|
|
|
|
/* ++andreas: {get,free}_pointer_table rewritten to use unused fields from
|
|
struct page instead of separately kmalloced struct. Stolen from
|
|
arch/sparc/mm/srmmu.c ... */
|
|
|
|
typedef struct list_head ptable_desc;
|
|
|
|
static struct list_head ptable_list[2] = {
|
|
LIST_HEAD_INIT(ptable_list[0]),
|
|
LIST_HEAD_INIT(ptable_list[1]),
|
|
};
|
|
|
|
#define PD_PTABLE(page) ((ptable_desc *)&(virt_to_page(page)->lru))
|
|
#define PD_PAGE(ptable) (list_entry(ptable, struct page, lru))
|
|
#define PD_MARKBITS(dp) (*(unsigned int *)&PD_PAGE(dp)->index)
|
|
|
|
static const int ptable_shift[2] = {
|
|
7+2, /* PGD, PMD */
|
|
6+2, /* PTE */
|
|
};
|
|
|
|
#define ptable_size(type) (1U << ptable_shift[type])
|
|
#define ptable_mask(type) ((1U << (PAGE_SIZE / ptable_size(type))) - 1)
|
|
|
|
void __init init_pointer_table(void *table, int type)
|
|
{
|
|
ptable_desc *dp;
|
|
unsigned long ptable = (unsigned long)table;
|
|
unsigned long page = ptable & PAGE_MASK;
|
|
unsigned int mask = 1U << ((ptable - page)/ptable_size(type));
|
|
|
|
dp = PD_PTABLE(page);
|
|
if (!(PD_MARKBITS(dp) & mask)) {
|
|
PD_MARKBITS(dp) = ptable_mask(type);
|
|
list_add(dp, &ptable_list[type]);
|
|
}
|
|
|
|
PD_MARKBITS(dp) &= ~mask;
|
|
pr_debug("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp));
|
|
|
|
/* unreserve the page so it's possible to free that page */
|
|
__ClearPageReserved(PD_PAGE(dp));
|
|
init_page_count(PD_PAGE(dp));
|
|
|
|
return;
|
|
}
|
|
|
|
void *get_pointer_table(int type)
|
|
{
|
|
ptable_desc *dp = ptable_list[type].next;
|
|
unsigned int mask = list_empty(&ptable_list[type]) ? 0 : PD_MARKBITS(dp);
|
|
unsigned int tmp, off;
|
|
|
|
/*
|
|
* For a pointer table for a user process address space, a
|
|
* table is taken from a page allocated for the purpose. Each
|
|
* page can hold 8 pointer tables. The page is remapped in
|
|
* virtual address space to be noncacheable.
|
|
*/
|
|
if (mask == 0) {
|
|
void *page;
|
|
ptable_desc *new;
|
|
|
|
if (!(page = (void *)get_zeroed_page(GFP_KERNEL)))
|
|
return NULL;
|
|
|
|
if (type == TABLE_PTE) {
|
|
/*
|
|
* m68k doesn't have SPLIT_PTE_PTLOCKS for not having
|
|
* SMP.
|
|
*/
|
|
pgtable_pte_page_ctor(virt_to_page(page));
|
|
}
|
|
|
|
mmu_page_ctor(page);
|
|
|
|
new = PD_PTABLE(page);
|
|
PD_MARKBITS(new) = ptable_mask(type) - 1;
|
|
list_add_tail(new, dp);
|
|
|
|
return (pmd_t *)page;
|
|
}
|
|
|
|
for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += ptable_size(type))
|
|
;
|
|
PD_MARKBITS(dp) = mask & ~tmp;
|
|
if (!PD_MARKBITS(dp)) {
|
|
/* move to end of list */
|
|
list_move_tail(dp, &ptable_list[type]);
|
|
}
|
|
return page_address(PD_PAGE(dp)) + off;
|
|
}
|
|
|
|
int free_pointer_table(void *table, int type)
|
|
{
|
|
ptable_desc *dp;
|
|
unsigned long ptable = (unsigned long)table;
|
|
unsigned long page = ptable & PAGE_MASK;
|
|
unsigned int mask = 1U << ((ptable - page)/ptable_size(type));
|
|
|
|
dp = PD_PTABLE(page);
|
|
if (PD_MARKBITS (dp) & mask)
|
|
panic ("table already free!");
|
|
|
|
PD_MARKBITS (dp) |= mask;
|
|
|
|
if (PD_MARKBITS(dp) == ptable_mask(type)) {
|
|
/* all tables in page are free, free page */
|
|
list_del(dp);
|
|
mmu_page_dtor((void *)page);
|
|
if (type == TABLE_PTE)
|
|
pgtable_pte_page_dtor(virt_to_page(page));
|
|
free_page (page);
|
|
return 1;
|
|
} else if (ptable_list[type].next != dp) {
|
|
/*
|
|
* move this descriptor to the front of the list, since
|
|
* it has one or more free tables.
|
|
*/
|
|
list_move(dp, &ptable_list[type]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* size of memory already mapped in head.S */
|
|
extern __initdata unsigned long m68k_init_mapped_size;
|
|
|
|
extern unsigned long availmem;
|
|
|
|
static pte_t *last_pte_table __initdata = NULL;
|
|
|
|
static pte_t * __init kernel_page_table(void)
|
|
{
|
|
pte_t *pte_table = last_pte_table;
|
|
|
|
if (PAGE_ALIGNED(last_pte_table)) {
|
|
pte_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
|
|
if (!pte_table) {
|
|
panic("%s: Failed to allocate %lu bytes align=%lx\n",
|
|
__func__, PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
|
|
clear_page(pte_table);
|
|
mmu_page_ctor(pte_table);
|
|
|
|
last_pte_table = pte_table;
|
|
}
|
|
|
|
last_pte_table += PTRS_PER_PTE;
|
|
|
|
return pte_table;
|
|
}
|
|
|
|
static pmd_t *last_pmd_table __initdata = NULL;
|
|
|
|
static pmd_t * __init kernel_ptr_table(void)
|
|
{
|
|
if (!last_pmd_table) {
|
|
unsigned long pmd, last;
|
|
int i;
|
|
|
|
/* Find the last ptr table that was used in head.S and
|
|
* reuse the remaining space in that page for further
|
|
* ptr tables.
|
|
*/
|
|
last = (unsigned long)kernel_pg_dir;
|
|
for (i = 0; i < PTRS_PER_PGD; i++) {
|
|
pud_t *pud = (pud_t *)(&kernel_pg_dir[i]);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
pmd = pgd_page_vaddr(kernel_pg_dir[i]);
|
|
if (pmd > last)
|
|
last = pmd;
|
|
}
|
|
|
|
last_pmd_table = (pmd_t *)last;
|
|
#ifdef DEBUG
|
|
printk("kernel_ptr_init: %p\n", last_pmd_table);
|
|
#endif
|
|
}
|
|
|
|
last_pmd_table += PTRS_PER_PMD;
|
|
if (PAGE_ALIGNED(last_pmd_table)) {
|
|
last_pmd_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
|
|
if (!last_pmd_table)
|
|
panic("%s: Failed to allocate %lu bytes align=%lx\n",
|
|
__func__, PAGE_SIZE, PAGE_SIZE);
|
|
|
|
clear_page(last_pmd_table);
|
|
mmu_page_ctor(last_pmd_table);
|
|
}
|
|
|
|
return last_pmd_table;
|
|
}
|
|
|
|
static void __init map_node(int node)
|
|
{
|
|
unsigned long physaddr, virtaddr, size;
|
|
pgd_t *pgd_dir;
|
|
p4d_t *p4d_dir;
|
|
pud_t *pud_dir;
|
|
pmd_t *pmd_dir;
|
|
pte_t *pte_dir;
|
|
|
|
size = m68k_memory[node].size;
|
|
physaddr = m68k_memory[node].addr;
|
|
virtaddr = (unsigned long)phys_to_virt(physaddr);
|
|
physaddr |= m68k_supervisor_cachemode |
|
|
_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY;
|
|
if (CPU_IS_040_OR_060)
|
|
physaddr |= _PAGE_GLOBAL040;
|
|
|
|
while (size > 0) {
|
|
#ifdef DEBUG
|
|
if (!(virtaddr & (PMD_SIZE-1)))
|
|
printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK,
|
|
virtaddr);
|
|
#endif
|
|
pgd_dir = pgd_offset_k(virtaddr);
|
|
if (virtaddr && CPU_IS_020_OR_030) {
|
|
if (!(virtaddr & (PGDIR_SIZE-1)) &&
|
|
size >= PGDIR_SIZE) {
|
|
#ifdef DEBUG
|
|
printk ("[very early term]");
|
|
#endif
|
|
pgd_val(*pgd_dir) = physaddr;
|
|
size -= PGDIR_SIZE;
|
|
virtaddr += PGDIR_SIZE;
|
|
physaddr += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
}
|
|
p4d_dir = p4d_offset(pgd_dir, virtaddr);
|
|
pud_dir = pud_offset(p4d_dir, virtaddr);
|
|
if (!pud_present(*pud_dir)) {
|
|
pmd_dir = kernel_ptr_table();
|
|
#ifdef DEBUG
|
|
printk ("[new pointer %p]", pmd_dir);
|
|
#endif
|
|
pud_set(pud_dir, pmd_dir);
|
|
} else
|
|
pmd_dir = pmd_offset(pud_dir, virtaddr);
|
|
|
|
if (CPU_IS_020_OR_030) {
|
|
if (virtaddr) {
|
|
#ifdef DEBUG
|
|
printk ("[early term]");
|
|
#endif
|
|
pmd_val(*pmd_dir) = physaddr;
|
|
physaddr += PMD_SIZE;
|
|
} else {
|
|
int i;
|
|
#ifdef DEBUG
|
|
printk ("[zero map]");
|
|
#endif
|
|
pte_dir = kernel_page_table();
|
|
pmd_set(pmd_dir, pte_dir);
|
|
|
|
pte_val(*pte_dir++) = 0;
|
|
physaddr += PAGE_SIZE;
|
|
for (i = 1; i < PTRS_PER_PTE; physaddr += PAGE_SIZE, i++)
|
|
pte_val(*pte_dir++) = physaddr;
|
|
}
|
|
size -= PMD_SIZE;
|
|
virtaddr += PMD_SIZE;
|
|
} else {
|
|
if (!pmd_present(*pmd_dir)) {
|
|
#ifdef DEBUG
|
|
printk ("[new table]");
|
|
#endif
|
|
pte_dir = kernel_page_table();
|
|
pmd_set(pmd_dir, pte_dir);
|
|
}
|
|
pte_dir = pte_offset_kernel(pmd_dir, virtaddr);
|
|
|
|
if (virtaddr) {
|
|
if (!pte_present(*pte_dir))
|
|
pte_val(*pte_dir) = physaddr;
|
|
} else
|
|
pte_val(*pte_dir) = 0;
|
|
size -= PAGE_SIZE;
|
|
virtaddr += PAGE_SIZE;
|
|
physaddr += PAGE_SIZE;
|
|
}
|
|
|
|
}
|
|
#ifdef DEBUG
|
|
printk("\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* paging_init() continues the virtual memory environment setup which
|
|
* was begun by the code in arch/head.S.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
|
|
unsigned long min_addr, max_addr;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
#ifdef DEBUG
|
|
printk ("start of paging_init (%p, %lx)\n", kernel_pg_dir, availmem);
|
|
#endif
|
|
|
|
/* Fix the cache mode in the page descriptors for the 680[46]0. */
|
|
if (CPU_IS_040_OR_060) {
|
|
int i;
|
|
#ifndef mm_cachebits
|
|
mm_cachebits = _PAGE_CACHE040;
|
|
#endif
|
|
for (i = 0; i < 16; i++)
|
|
pgprot_val(protection_map[i]) |= _PAGE_CACHE040;
|
|
}
|
|
|
|
min_addr = m68k_memory[0].addr;
|
|
max_addr = min_addr + m68k_memory[0].size;
|
|
memblock_add_node(m68k_memory[0].addr, m68k_memory[0].size, 0,
|
|
MEMBLOCK_NONE);
|
|
for (i = 1; i < m68k_num_memory;) {
|
|
if (m68k_memory[i].addr < min_addr) {
|
|
printk("Ignoring memory chunk at 0x%lx:0x%lx before the first chunk\n",
|
|
m68k_memory[i].addr, m68k_memory[i].size);
|
|
printk("Fix your bootloader or use a memfile to make use of this area!\n");
|
|
m68k_num_memory--;
|
|
memmove(m68k_memory + i, m68k_memory + i + 1,
|
|
(m68k_num_memory - i) * sizeof(struct m68k_mem_info));
|
|
continue;
|
|
}
|
|
memblock_add_node(m68k_memory[i].addr, m68k_memory[i].size, i,
|
|
MEMBLOCK_NONE);
|
|
addr = m68k_memory[i].addr + m68k_memory[i].size;
|
|
if (addr > max_addr)
|
|
max_addr = addr;
|
|
i++;
|
|
}
|
|
m68k_memoffset = min_addr - PAGE_OFFSET;
|
|
m68k_virt_to_node_shift = fls(max_addr - min_addr - 1) - 6;
|
|
|
|
module_fixup(NULL, __start_fixup, __stop_fixup);
|
|
flush_icache();
|
|
|
|
high_memory = phys_to_virt(max_addr);
|
|
|
|
min_low_pfn = availmem >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn = max_addr >> PAGE_SHIFT;
|
|
|
|
/* Reserve kernel text/data/bss and the memory allocated in head.S */
|
|
memblock_reserve(m68k_memory[0].addr, availmem - m68k_memory[0].addr);
|
|
|
|
/*
|
|
* Map the physical memory available into the kernel virtual
|
|
* address space. Make sure memblock will not try to allocate
|
|
* pages beyond the memory we already mapped in head.S
|
|
*/
|
|
memblock_set_bottom_up(true);
|
|
|
|
for (i = 0; i < m68k_num_memory; i++) {
|
|
m68k_setup_node(i);
|
|
map_node(i);
|
|
}
|
|
|
|
flush_tlb_all();
|
|
|
|
early_memtest(min_addr, max_addr);
|
|
|
|
/*
|
|
* initialize the bad page table and bad page to point
|
|
* to a couple of allocated pages
|
|
*/
|
|
empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
if (!empty_zero_page)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, PAGE_SIZE, PAGE_SIZE);
|
|
|
|
/*
|
|
* Set up SFC/DFC registers
|
|
*/
|
|
set_fc(USER_DATA);
|
|
|
|
#ifdef DEBUG
|
|
printk ("before free_area_init\n");
|
|
#endif
|
|
for (i = 0; i < m68k_num_memory; i++)
|
|
if (node_present_pages(i))
|
|
node_set_state(i, N_NORMAL_MEMORY);
|
|
|
|
max_zone_pfn[ZONE_DMA] = memblock_end_of_DRAM();
|
|
free_area_init(max_zone_pfn);
|
|
}
|