linux/drivers/rtc/rtc-ti-k3.c
Bryan Brattlof f2c5671a64 rtc: k3: wait until the unlock field is not zero
After writing the magic words to the KICK0 and KICK1 registers, we must
wait for a 1 in the unlock field of the general control register to
signify when the rtc device is in an unlocked state.

Signed-off-by: Bryan Brattlof <bb@ti.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220816173312.23243-1-bb@ti.com
2022-08-23 22:25:28 +02:00

681 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments K3 RTC driver
*
* Copyright (C) 2021-2022 Texas Instruments Incorporated - https://www.ti.com/
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
/* Registers */
#define REG_K3RTC_S_CNT_LSW 0x08
#define REG_K3RTC_S_CNT_MSW 0x0c
#define REG_K3RTC_COMP 0x10
#define REG_K3RTC_ON_OFF_S_CNT_LSW 0x20
#define REG_K3RTC_ON_OFF_S_CNT_MSW 0x24
#define REG_K3RTC_SCRATCH0 0x30
#define REG_K3RTC_SCRATCH7 0x4c
#define REG_K3RTC_GENERAL_CTL 0x50
#define REG_K3RTC_IRQSTATUS_RAW_SYS 0x54
#define REG_K3RTC_IRQSTATUS_SYS 0x58
#define REG_K3RTC_IRQENABLE_SET_SYS 0x5c
#define REG_K3RTC_IRQENABLE_CLR_SYS 0x60
#define REG_K3RTC_SYNCPEND 0x68
#define REG_K3RTC_KICK0 0x70
#define REG_K3RTC_KICK1 0x74
/* Freeze when lsw is read and unfreeze when msw is read */
#define K3RTC_CNT_FMODE_S_CNT_VALUE (0x2 << 24)
/* Magic values for lock/unlock */
#define K3RTC_KICK0_UNLOCK_VALUE 0x83e70b13
#define K3RTC_KICK1_UNLOCK_VALUE 0x95a4f1e0
/* Multiplier for ppb conversions */
#define K3RTC_PPB_MULT (1000000000LL)
/* Min and max values supported with 'offset' interface (swapped sign) */
#define K3RTC_MIN_OFFSET (-277761)
#define K3RTC_MAX_OFFSET (277778)
/**
* struct ti_k3_rtc_soc_data - Private of compatible data for ti-k3-rtc
* @unlock_irq_erratum: Has erratum for unlock infinite IRQs (erratum i2327)
*/
struct ti_k3_rtc_soc_data {
const bool unlock_irq_erratum;
};
static const struct regmap_config ti_k3_rtc_regmap_config = {
.name = "peripheral-registers",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_K3RTC_KICK1,
};
enum ti_k3_rtc_fields {
K3RTC_KICK0,
K3RTC_KICK1,
K3RTC_S_CNT_LSW,
K3RTC_S_CNT_MSW,
K3RTC_O32K_OSC_DEP_EN,
K3RTC_UNLOCK,
K3RTC_CNT_FMODE,
K3RTC_PEND,
K3RTC_RELOAD_FROM_BBD,
K3RTC_COMP,
K3RTC_ALM_S_CNT_LSW,
K3RTC_ALM_S_CNT_MSW,
K3RTC_IRQ_STATUS_RAW,
K3RTC_IRQ_STATUS,
K3RTC_IRQ_ENABLE_SET,
K3RTC_IRQ_ENABLE_CLR,
K3RTC_IRQ_STATUS_ALT,
K3RTC_IRQ_ENABLE_CLR_ALT,
K3_RTC_MAX_FIELDS
};
static const struct reg_field ti_rtc_reg_fields[] = {
[K3RTC_KICK0] = REG_FIELD(REG_K3RTC_KICK0, 0, 31),
[K3RTC_KICK1] = REG_FIELD(REG_K3RTC_KICK1, 0, 31),
[K3RTC_S_CNT_LSW] = REG_FIELD(REG_K3RTC_S_CNT_LSW, 0, 31),
[K3RTC_S_CNT_MSW] = REG_FIELD(REG_K3RTC_S_CNT_MSW, 0, 15),
[K3RTC_O32K_OSC_DEP_EN] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 21, 21),
[K3RTC_UNLOCK] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 23, 23),
[K3RTC_CNT_FMODE] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 24, 25),
[K3RTC_PEND] = REG_FIELD(REG_K3RTC_SYNCPEND, 0, 1),
[K3RTC_RELOAD_FROM_BBD] = REG_FIELD(REG_K3RTC_SYNCPEND, 31, 31),
[K3RTC_COMP] = REG_FIELD(REG_K3RTC_COMP, 0, 31),
/* We use on to off as alarm trigger */
[K3RTC_ALM_S_CNT_LSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_LSW, 0, 31),
[K3RTC_ALM_S_CNT_MSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_MSW, 0, 15),
[K3RTC_IRQ_STATUS_RAW] = REG_FIELD(REG_K3RTC_IRQSTATUS_RAW_SYS, 0, 0),
[K3RTC_IRQ_STATUS] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 0, 0),
[K3RTC_IRQ_ENABLE_SET] = REG_FIELD(REG_K3RTC_IRQENABLE_SET_SYS, 0, 0),
[K3RTC_IRQ_ENABLE_CLR] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 0, 0),
/* Off to on is alternate */
[K3RTC_IRQ_STATUS_ALT] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 1, 1),
[K3RTC_IRQ_ENABLE_CLR_ALT] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 1, 1),
};
/**
* struct ti_k3_rtc - Private data for ti-k3-rtc
* @irq: IRQ
* @sync_timeout_us: data sync timeout period in uSec
* @rate_32k: 32k clock rate in Hz
* @rtc_dev: rtc device
* @regmap: rtc mmio regmap
* @r_fields: rtc register fields
* @soc: SoC compatible match data
*/
struct ti_k3_rtc {
unsigned int irq;
u32 sync_timeout_us;
unsigned long rate_32k;
struct rtc_device *rtc_dev;
struct regmap *regmap;
struct regmap_field *r_fields[K3_RTC_MAX_FIELDS];
const struct ti_k3_rtc_soc_data *soc;
};
static int k3rtc_field_read(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f)
{
int ret;
int val;
ret = regmap_field_read(priv->r_fields[f], &val);
/*
* We shouldn't be seeing regmap fail on us for mmio reads
* This is possible if clock context fails, but that isn't the case for us
*/
if (WARN_ON_ONCE(ret))
return ret;
return val;
}
static void k3rtc_field_write(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f, u32 val)
{
regmap_field_write(priv->r_fields[f], val);
}
/**
* k3rtc_fence - Ensure a register sync took place between the two domains
* @priv: pointer to priv data
*
* Return: 0 if the sync took place, else returns -ETIMEDOUT
*/
static int k3rtc_fence(struct ti_k3_rtc *priv)
{
int ret;
ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_PEND], ret,
!ret, 2, priv->sync_timeout_us);
return ret;
}
static inline int k3rtc_check_unlocked(struct ti_k3_rtc *priv)
{
int ret;
ret = k3rtc_field_read(priv, K3RTC_UNLOCK);
if (ret < 0)
return ret;
return (ret) ? 0 : 1;
}
static int k3rtc_unlock_rtc(struct ti_k3_rtc *priv)
{
int ret;
ret = k3rtc_check_unlocked(priv);
if (!ret)
return ret;
k3rtc_field_write(priv, K3RTC_KICK0, K3RTC_KICK0_UNLOCK_VALUE);
k3rtc_field_write(priv, K3RTC_KICK1, K3RTC_KICK1_UNLOCK_VALUE);
/* Skip fence since we are going to check the unlock bit as fence */
ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_UNLOCK], ret,
ret, 2, priv->sync_timeout_us);
return ret;
}
static int k3rtc_configure(struct device *dev)
{
int ret;
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
/*
* HWBUG: The compare state machine is broken if the RTC module
* is NOT unlocked in under one second of boot - which is pretty long
* time from the perspective of Linux driver (module load, u-boot
* shell all can take much longer than this.
*
* In such occurrence, it is assumed that the RTC module is unusable
*/
if (priv->soc->unlock_irq_erratum) {
ret = k3rtc_check_unlocked(priv);
/* If there is an error OR if we are locked, return error */
if (ret) {
dev_err(dev,
HW_ERR "Erratum i2327 unlock QUIRK! Cannot operate!!\n");
return -EFAULT;
}
} else {
/* May need to explicitly unlock first time */
ret = k3rtc_unlock_rtc(priv);
if (ret) {
dev_err(dev, "Failed to unlock(%d)!\n", ret);
return ret;
}
}
/* Enable Shadow register sync on 32k clock boundary */
k3rtc_field_write(priv, K3RTC_O32K_OSC_DEP_EN, 0x1);
/*
* Wait at least clock sync time before proceeding further programming.
* This ensures that the 32k based sync is active.
*/
usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 5);
/* We need to ensure fence here to make sure sync here */
ret = k3rtc_fence(priv);
if (ret) {
dev_err(dev,
"Failed fence osc_dep enable(%d) - is 32k clk working?!\n", ret);
return ret;
}
/*
* FMODE setting: Reading lower seconds will freeze value on higher
* seconds. This also implies that we must *ALWAYS* read lower seconds
* prior to reading higher seconds
*/
k3rtc_field_write(priv, K3RTC_CNT_FMODE, K3RTC_CNT_FMODE_S_CNT_VALUE);
/* Clear any spurious IRQ sources if any */
k3rtc_field_write(priv, K3RTC_IRQ_STATUS_ALT, 0x1);
k3rtc_field_write(priv, K3RTC_IRQ_STATUS, 0x1);
/* Disable all IRQs */
k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR_ALT, 0x1);
k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR, 0x1);
/* And.. Let us Sync the writes in */
return k3rtc_fence(priv);
}
static int ti_k3_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 seconds_lo, seconds_hi;
seconds_lo = k3rtc_field_read(priv, K3RTC_S_CNT_LSW);
seconds_hi = k3rtc_field_read(priv, K3RTC_S_CNT_MSW);
rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, tm);
return 0;
}
static int ti_k3_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
time64_t seconds;
seconds = rtc_tm_to_time64(tm);
/*
* Read operation on LSW will freeze the RTC, so to update
* the time, we cannot use field operations. Just write since the
* reserved bits are ignored.
*/
regmap_write(priv->regmap, REG_K3RTC_S_CNT_LSW, seconds);
regmap_write(priv->regmap, REG_K3RTC_S_CNT_MSW, seconds >> 32);
return k3rtc_fence(priv);
}
static int ti_k3_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 reg;
u32 offset = enabled ? K3RTC_IRQ_ENABLE_SET : K3RTC_IRQ_ENABLE_CLR;
reg = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
if ((enabled && reg) || (!enabled && !reg))
return 0;
k3rtc_field_write(priv, offset, 0x1);
/*
* Ensure the write sync is through - NOTE: it should be OK to have
* ISR to fire as we are checking sync (which should be done in a 32k
* cycle or so).
*/
return k3rtc_fence(priv);
}
static int ti_k3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 seconds_lo, seconds_hi;
seconds_lo = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_LSW);
seconds_hi = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_MSW);
rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, &alarm->time);
alarm->enabled = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
return 0;
}
static int ti_k3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
time64_t seconds;
int ret;
seconds = rtc_tm_to_time64(&alarm->time);
k3rtc_field_write(priv, K3RTC_ALM_S_CNT_LSW, seconds);
k3rtc_field_write(priv, K3RTC_ALM_S_CNT_MSW, (seconds >> 32));
/* Make sure the alarm time is synced in */
ret = k3rtc_fence(priv);
if (ret) {
dev_err(dev, "Failed to fence(%d)! Potential config issue?\n", ret);
return ret;
}
/* Alarm IRQ enable will do a sync */
return ti_k3_rtc_alarm_irq_enable(dev, alarm->enabled);
}
static int ti_k3_rtc_read_offset(struct device *dev, long *offset)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 ticks_per_hr = priv->rate_32k * 3600;
int comp;
s64 tmp;
comp = k3rtc_field_read(priv, K3RTC_COMP);
/* Convert from RTC calibration register format to ppb format */
tmp = comp * (s64)K3RTC_PPB_MULT;
if (tmp < 0)
tmp -= ticks_per_hr / 2LL;
else
tmp += ticks_per_hr / 2LL;
tmp = div_s64(tmp, ticks_per_hr);
/* Offset value operates in negative way, so swap sign */
*offset = (long)-tmp;
return 0;
}
static int ti_k3_rtc_set_offset(struct device *dev, long offset)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 ticks_per_hr = priv->rate_32k * 3600;
int comp;
s64 tmp;
/* Make sure offset value is within supported range */
if (offset < K3RTC_MIN_OFFSET || offset > K3RTC_MAX_OFFSET)
return -ERANGE;
/* Convert from ppb format to RTC calibration register format */
tmp = offset * (s64)ticks_per_hr;
if (tmp < 0)
tmp -= K3RTC_PPB_MULT / 2LL;
else
tmp += K3RTC_PPB_MULT / 2LL;
tmp = div_s64(tmp, K3RTC_PPB_MULT);
/* Offset value operates in negative way, so swap sign */
comp = (int)-tmp;
k3rtc_field_write(priv, K3RTC_COMP, comp);
return k3rtc_fence(priv);
}
static irqreturn_t ti_k3_rtc_interrupt(s32 irq, void *dev_id)
{
struct device *dev = dev_id;
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
u32 reg;
int ret;
/*
* IRQ assertion can be very fast, however, the IRQ Status clear
* de-assert depends on 32k clock edge in the 32k domain
* If we clear the status prior to the first 32k clock edge,
* the status bit is cleared, but the IRQ stays re-asserted.
*
* To prevent this condition, we need to wait for clock sync time.
* We can either do that by polling the 32k observability signal for
* a toggle OR we could just sleep and let the processor do other
* stuff.
*/
usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 2);
/* Lets make sure that this is a valid interrupt */
reg = k3rtc_field_read(priv, K3RTC_IRQ_STATUS);
if (!reg) {
u32 raw = k3rtc_field_read(priv, K3RTC_IRQ_STATUS_RAW);
dev_err(dev,
HW_ERR
"Erratum i2327/IRQ trig: status: 0x%08x / 0x%08x\n", reg, raw);
return IRQ_NONE;
}
/*
* Write 1 to clear status reg
* We cannot use a field operation here due to a potential race between
* 32k domain and vbus domain.
*/
regmap_write(priv->regmap, REG_K3RTC_IRQSTATUS_SYS, 0x1);
/* Sync the write in */
ret = k3rtc_fence(priv);
if (ret) {
dev_err(dev, "Failed to fence irq status clr(%d)!\n", ret);
return IRQ_NONE;
}
/*
* Force the 32k status to be reloaded back in to ensure status is
* reflected back correctly.
*/
k3rtc_field_write(priv, K3RTC_RELOAD_FROM_BBD, 0x1);
/* Ensure the write sync is through */
ret = k3rtc_fence(priv);
if (ret) {
dev_err(dev, "Failed to fence reload from bbd(%d)!\n", ret);
return IRQ_NONE;
}
/* Now we ensure that the status bit is cleared */
ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_IRQ_STATUS],
ret, !ret, 2, priv->sync_timeout_us);
if (ret) {
dev_err(dev, "Time out waiting for status clear\n");
return IRQ_NONE;
}
/* Notify RTC core on event */
rtc_update_irq(priv->rtc_dev, 1, RTC_IRQF | RTC_AF);
return IRQ_HANDLED;
}
static const struct rtc_class_ops ti_k3_rtc_ops = {
.read_time = ti_k3_rtc_read_time,
.set_time = ti_k3_rtc_set_time,
.read_alarm = ti_k3_rtc_read_alarm,
.set_alarm = ti_k3_rtc_set_alarm,
.read_offset = ti_k3_rtc_read_offset,
.set_offset = ti_k3_rtc_set_offset,
.alarm_irq_enable = ti_k3_rtc_alarm_irq_enable,
};
static int ti_k3_rtc_scratch_read(void *priv_data, unsigned int offset,
void *val, size_t bytes)
{
struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
return regmap_bulk_read(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
}
static int ti_k3_rtc_scratch_write(void *priv_data, unsigned int offset,
void *val, size_t bytes)
{
struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
int ret;
ret = regmap_bulk_write(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
if (ret)
return ret;
return k3rtc_fence(priv);
}
static struct nvmem_config ti_k3_rtc_nvmem_config = {
.name = "ti_k3_rtc_scratch",
.word_size = 4,
.stride = 4,
.size = REG_K3RTC_SCRATCH7 - REG_K3RTC_SCRATCH0 + 4,
.reg_read = ti_k3_rtc_scratch_read,
.reg_write = ti_k3_rtc_scratch_write,
};
static int k3rtc_get_32kclk(struct device *dev, struct ti_k3_rtc *priv)
{
int ret;
struct clk *clk;
clk = devm_clk_get(dev, "osc32k");
if (IS_ERR(clk))
return PTR_ERR(clk);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, (void (*)(void *))clk_disable_unprepare, clk);
if (ret)
return ret;
priv->rate_32k = clk_get_rate(clk);
/* Make sure we are exact 32k clock. Else, try to compensate delay */
if (priv->rate_32k != 32768)
dev_warn(dev, "Clock rate %ld is not 32768! Could misbehave!\n",
priv->rate_32k);
/*
* Sync timeout should be two 32k clk sync cycles = ~61uS. We double
* it to comprehend intermediate bus segment and cpu frequency
* deltas
*/
priv->sync_timeout_us = (u32)(DIV_ROUND_UP_ULL(1000000, priv->rate_32k) * 4);
return ret;
}
static int k3rtc_get_vbusclk(struct device *dev, struct ti_k3_rtc *priv)
{
int ret;
struct clk *clk;
/* Note: VBUS isn't a context clock, it is needed for hardware operation */
clk = devm_clk_get(dev, "vbus");
if (IS_ERR(clk))
return PTR_ERR(clk);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
return devm_add_action_or_reset(dev, (void (*)(void *))clk_disable_unprepare, clk);
}
static int ti_k3_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ti_k3_rtc *priv;
void __iomem *rtc_base;
int ret;
priv = devm_kzalloc(dev, sizeof(struct ti_k3_rtc), GFP_KERNEL);
if (!priv)
return -ENOMEM;
rtc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rtc_base))
return PTR_ERR(rtc_base);
priv->regmap = devm_regmap_init_mmio(dev, rtc_base, &ti_k3_rtc_regmap_config);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
ret = devm_regmap_field_bulk_alloc(dev, priv->regmap, priv->r_fields,
ti_rtc_reg_fields, K3_RTC_MAX_FIELDS);
if (ret)
return ret;
ret = k3rtc_get_32kclk(dev, priv);
if (ret)
return ret;
ret = k3rtc_get_vbusclk(dev, priv);
if (ret)
return ret;
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return ret;
priv->irq = (unsigned int)ret;
priv->rtc_dev = devm_rtc_allocate_device(dev);
if (IS_ERR(priv->rtc_dev))
return PTR_ERR(priv->rtc_dev);
priv->soc = of_device_get_match_data(dev);
priv->rtc_dev->ops = &ti_k3_rtc_ops;
priv->rtc_dev->range_max = (1ULL << 48) - 1; /* 48Bit seconds */
ti_k3_rtc_nvmem_config.priv = priv;
ret = devm_request_threaded_irq(dev, priv->irq, NULL,
ti_k3_rtc_interrupt,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
dev_name(dev), dev);
if (ret) {
dev_err(dev, "Could not request IRQ: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, priv);
ret = k3rtc_configure(dev);
if (ret)
return ret;
if (device_property_present(dev, "wakeup-source"))
device_init_wakeup(dev, true);
else
device_set_wakeup_capable(dev, true);
ret = devm_rtc_register_device(priv->rtc_dev);
if (ret)
return ret;
return devm_rtc_nvmem_register(priv->rtc_dev, &ti_k3_rtc_nvmem_config);
}
static const struct ti_k3_rtc_soc_data ti_k3_am62_data = {
.unlock_irq_erratum = true,
};
static const struct of_device_id ti_k3_rtc_of_match_table[] = {
{.compatible = "ti,am62-rtc", .data = &ti_k3_am62_data},
{}
};
MODULE_DEVICE_TABLE(of, ti_k3_rtc_of_match_table);
static int __maybe_unused ti_k3_rtc_suspend(struct device *dev)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(priv->irq);
return 0;
}
static int __maybe_unused ti_k3_rtc_resume(struct device *dev)
{
struct ti_k3_rtc *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(priv->irq);
return 0;
}
static SIMPLE_DEV_PM_OPS(ti_k3_rtc_pm_ops, ti_k3_rtc_suspend, ti_k3_rtc_resume);
static struct platform_driver ti_k3_rtc_driver = {
.probe = ti_k3_rtc_probe,
.driver = {
.name = "rtc-ti-k3",
.of_match_table = ti_k3_rtc_of_match_table,
.pm = &ti_k3_rtc_pm_ops,
},
};
module_platform_driver(ti_k3_rtc_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TI K3 RTC driver");
MODULE_AUTHOR("Nishanth Menon");