21ab799585
Sparse warns: sparse warnings: (new ones prefixed by >>) >> drivers/vfio/pci/vfio_pci_igd.c:146:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned short [addressable] [usertype] val @@ got restricted __le16 [usertype] @@ drivers/vfio/pci/vfio_pci_igd.c:146:21: sparse: expected unsigned short [addressable] [usertype] val drivers/vfio/pci/vfio_pci_igd.c:146:21: sparse: got restricted __le16 [usertype] >> drivers/vfio/pci/vfio_pci_igd.c:161:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [addressable] [usertype] val @@ got restricted __le32 [usertype] @@ drivers/vfio/pci/vfio_pci_igd.c:161:21: sparse: expected unsigned int [addressable] [usertype] val drivers/vfio/pci/vfio_pci_igd.c:161:21: sparse: got restricted __le32 [usertype] drivers/vfio/pci/vfio_pci_igd.c:176:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned short [addressable] [usertype] val @@ got restricted __le16 [usertype] @@ drivers/vfio/pci/vfio_pci_igd.c:176:21: sparse: expected unsigned short [addressable] [usertype] val drivers/vfio/pci/vfio_pci_igd.c:176:21: sparse: got restricted __le16 [usertype] These are due to trying to use an unsigned to store the result of a cpu_to_leXX() conversion. These are small variables, so pointer tricks are wasteful and casting just generates different sparse warnings. Store to and copy results from a separate little endian variable. Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/r/202111290026.O3vehj03-lkp@intel.com/ Link: https://lore.kernel.org/r/163840226123.138003.7668320168896210328.stgit@omen Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
452 lines
11 KiB
C
452 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VFIO PCI Intel Graphics support
|
|
*
|
|
* Copyright (C) 2016 Red Hat, Inc. All rights reserved.
|
|
* Author: Alex Williamson <alex.williamson@redhat.com>
|
|
*
|
|
* Register a device specific region through which to provide read-only
|
|
* access to the Intel IGD opregion. The register defining the opregion
|
|
* address is also virtualized to prevent user modification.
|
|
*/
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vfio.h>
|
|
|
|
#include <linux/vfio_pci_core.h>
|
|
|
|
#define OPREGION_SIGNATURE "IntelGraphicsMem"
|
|
#define OPREGION_SIZE (8 * 1024)
|
|
#define OPREGION_PCI_ADDR 0xfc
|
|
|
|
#define OPREGION_RVDA 0x3ba
|
|
#define OPREGION_RVDS 0x3c2
|
|
#define OPREGION_VERSION 0x16
|
|
|
|
struct igd_opregion_vbt {
|
|
void *opregion;
|
|
void *vbt_ex;
|
|
};
|
|
|
|
/**
|
|
* igd_opregion_shift_copy() - Copy OpRegion to user buffer and shift position.
|
|
* @dst: User buffer ptr to copy to.
|
|
* @off: Offset to user buffer ptr. Increased by bytes on return.
|
|
* @src: Source buffer to copy from.
|
|
* @pos: Increased by bytes on return.
|
|
* @remaining: Decreased by bytes on return.
|
|
* @bytes: Bytes to copy and adjust off, pos and remaining.
|
|
*
|
|
* Copy OpRegion to offset from specific source ptr and shift the offset.
|
|
*
|
|
* Return: 0 on success, -EFAULT otherwise.
|
|
*
|
|
*/
|
|
static inline unsigned long igd_opregion_shift_copy(char __user *dst,
|
|
loff_t *off,
|
|
void *src,
|
|
loff_t *pos,
|
|
size_t *remaining,
|
|
size_t bytes)
|
|
{
|
|
if (copy_to_user(dst + (*off), src, bytes))
|
|
return -EFAULT;
|
|
|
|
*off += bytes;
|
|
*pos += bytes;
|
|
*remaining -= bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t vfio_pci_igd_rw(struct vfio_pci_core_device *vdev,
|
|
char __user *buf, size_t count, loff_t *ppos,
|
|
bool iswrite)
|
|
{
|
|
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
|
|
struct igd_opregion_vbt *opregionvbt = vdev->region[i].data;
|
|
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK, off = 0;
|
|
size_t remaining;
|
|
|
|
if (pos >= vdev->region[i].size || iswrite)
|
|
return -EINVAL;
|
|
|
|
count = min_t(size_t, count, vdev->region[i].size - pos);
|
|
remaining = count;
|
|
|
|
/* Copy until OpRegion version */
|
|
if (remaining && pos < OPREGION_VERSION) {
|
|
size_t bytes = min_t(size_t, remaining, OPREGION_VERSION - pos);
|
|
|
|
if (igd_opregion_shift_copy(buf, &off,
|
|
opregionvbt->opregion + pos, &pos,
|
|
&remaining, bytes))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Copy patched (if necessary) OpRegion version */
|
|
if (remaining && pos < OPREGION_VERSION + sizeof(__le16)) {
|
|
size_t bytes = min_t(size_t, remaining,
|
|
OPREGION_VERSION + sizeof(__le16) - pos);
|
|
__le16 version = *(__le16 *)(opregionvbt->opregion +
|
|
OPREGION_VERSION);
|
|
|
|
/* Patch to 2.1 if OpRegion 2.0 has extended VBT */
|
|
if (le16_to_cpu(version) == 0x0200 && opregionvbt->vbt_ex)
|
|
version = cpu_to_le16(0x0201);
|
|
|
|
if (igd_opregion_shift_copy(buf, &off,
|
|
(u8 *)&version +
|
|
(pos - OPREGION_VERSION),
|
|
&pos, &remaining, bytes))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Copy until RVDA */
|
|
if (remaining && pos < OPREGION_RVDA) {
|
|
size_t bytes = min_t(size_t, remaining, OPREGION_RVDA - pos);
|
|
|
|
if (igd_opregion_shift_copy(buf, &off,
|
|
opregionvbt->opregion + pos, &pos,
|
|
&remaining, bytes))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Copy modified (if necessary) RVDA */
|
|
if (remaining && pos < OPREGION_RVDA + sizeof(__le64)) {
|
|
size_t bytes = min_t(size_t, remaining,
|
|
OPREGION_RVDA + sizeof(__le64) - pos);
|
|
__le64 rvda = cpu_to_le64(opregionvbt->vbt_ex ?
|
|
OPREGION_SIZE : 0);
|
|
|
|
if (igd_opregion_shift_copy(buf, &off,
|
|
(u8 *)&rvda + (pos - OPREGION_RVDA),
|
|
&pos, &remaining, bytes))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Copy the rest of OpRegion */
|
|
if (remaining && pos < OPREGION_SIZE) {
|
|
size_t bytes = min_t(size_t, remaining, OPREGION_SIZE - pos);
|
|
|
|
if (igd_opregion_shift_copy(buf, &off,
|
|
opregionvbt->opregion + pos, &pos,
|
|
&remaining, bytes))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Copy extended VBT if exists */
|
|
if (remaining &&
|
|
copy_to_user(buf + off, opregionvbt->vbt_ex + (pos - OPREGION_SIZE),
|
|
remaining))
|
|
return -EFAULT;
|
|
|
|
*ppos += count;
|
|
|
|
return count;
|
|
}
|
|
|
|
static void vfio_pci_igd_release(struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_region *region)
|
|
{
|
|
struct igd_opregion_vbt *opregionvbt = region->data;
|
|
|
|
if (opregionvbt->vbt_ex)
|
|
memunmap(opregionvbt->vbt_ex);
|
|
|
|
memunmap(opregionvbt->opregion);
|
|
kfree(opregionvbt);
|
|
}
|
|
|
|
static const struct vfio_pci_regops vfio_pci_igd_regops = {
|
|
.rw = vfio_pci_igd_rw,
|
|
.release = vfio_pci_igd_release,
|
|
};
|
|
|
|
static int vfio_pci_igd_opregion_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
__le32 *dwordp = (__le32 *)(vdev->vconfig + OPREGION_PCI_ADDR);
|
|
u32 addr, size;
|
|
struct igd_opregion_vbt *opregionvbt;
|
|
int ret;
|
|
u16 version;
|
|
|
|
ret = pci_read_config_dword(vdev->pdev, OPREGION_PCI_ADDR, &addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!addr || !(~addr))
|
|
return -ENODEV;
|
|
|
|
opregionvbt = kzalloc(sizeof(*opregionvbt), GFP_KERNEL);
|
|
if (!opregionvbt)
|
|
return -ENOMEM;
|
|
|
|
opregionvbt->opregion = memremap(addr, OPREGION_SIZE, MEMREMAP_WB);
|
|
if (!opregionvbt->opregion) {
|
|
kfree(opregionvbt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (memcmp(opregionvbt->opregion, OPREGION_SIGNATURE, 16)) {
|
|
memunmap(opregionvbt->opregion);
|
|
kfree(opregionvbt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
size = le32_to_cpu(*(__le32 *)(opregionvbt->opregion + 16));
|
|
if (!size) {
|
|
memunmap(opregionvbt->opregion);
|
|
kfree(opregionvbt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
size *= 1024; /* In KB */
|
|
|
|
/*
|
|
* OpRegion and VBT:
|
|
* When VBT data doesn't exceed 6KB, it's stored in Mailbox #4.
|
|
* When VBT data exceeds 6KB size, Mailbox #4 is no longer large enough
|
|
* to hold the VBT data, the Extended VBT region is introduced since
|
|
* OpRegion 2.0 to hold the VBT data. Since OpRegion 2.0, RVDA/RVDS are
|
|
* introduced to define the extended VBT data location and size.
|
|
* OpRegion 2.0: RVDA defines the absolute physical address of the
|
|
* extended VBT data, RVDS defines the VBT data size.
|
|
* OpRegion 2.1 and above: RVDA defines the relative address of the
|
|
* extended VBT data to OpRegion base, RVDS defines the VBT data size.
|
|
*
|
|
* Due to the RVDA definition diff in OpRegion VBT (also the only diff
|
|
* between 2.0 and 2.1), exposing OpRegion and VBT as a contiguous range
|
|
* for OpRegion 2.0 and above makes it possible to support the
|
|
* non-contiguous VBT through a single vfio region. From r/w ops view,
|
|
* only contiguous VBT after OpRegion with version 2.1+ is exposed,
|
|
* regardless the host OpRegion is 2.0 or non-contiguous 2.1+. The r/w
|
|
* ops will on-the-fly shift the actural offset into VBT so that data at
|
|
* correct position can be returned to the requester.
|
|
*/
|
|
version = le16_to_cpu(*(__le16 *)(opregionvbt->opregion +
|
|
OPREGION_VERSION));
|
|
if (version >= 0x0200) {
|
|
u64 rvda = le64_to_cpu(*(__le64 *)(opregionvbt->opregion +
|
|
OPREGION_RVDA));
|
|
u32 rvds = le32_to_cpu(*(__le32 *)(opregionvbt->opregion +
|
|
OPREGION_RVDS));
|
|
|
|
/* The extended VBT is valid only when RVDA/RVDS are non-zero */
|
|
if (rvda && rvds) {
|
|
size += rvds;
|
|
|
|
/*
|
|
* Extended VBT location by RVDA:
|
|
* Absolute physical addr for 2.0.
|
|
* Relative addr to OpRegion header for 2.1+.
|
|
*/
|
|
if (version == 0x0200)
|
|
addr = rvda;
|
|
else
|
|
addr += rvda;
|
|
|
|
opregionvbt->vbt_ex = memremap(addr, rvds, MEMREMAP_WB);
|
|
if (!opregionvbt->vbt_ex) {
|
|
memunmap(opregionvbt->opregion);
|
|
kfree(opregionvbt);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = vfio_pci_register_dev_region(vdev,
|
|
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
|
|
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &vfio_pci_igd_regops,
|
|
size, VFIO_REGION_INFO_FLAG_READ, opregionvbt);
|
|
if (ret) {
|
|
if (opregionvbt->vbt_ex)
|
|
memunmap(opregionvbt->vbt_ex);
|
|
|
|
memunmap(opregionvbt->opregion);
|
|
kfree(opregionvbt);
|
|
return ret;
|
|
}
|
|
|
|
/* Fill vconfig with the hw value and virtualize register */
|
|
*dwordp = cpu_to_le32(addr);
|
|
memset(vdev->pci_config_map + OPREGION_PCI_ADDR,
|
|
PCI_CAP_ID_INVALID_VIRT, 4);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t vfio_pci_igd_cfg_rw(struct vfio_pci_core_device *vdev,
|
|
char __user *buf, size_t count, loff_t *ppos,
|
|
bool iswrite)
|
|
{
|
|
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
|
|
struct pci_dev *pdev = vdev->region[i].data;
|
|
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
|
|
size_t size;
|
|
int ret;
|
|
|
|
if (pos >= vdev->region[i].size || iswrite)
|
|
return -EINVAL;
|
|
|
|
size = count = min(count, (size_t)(vdev->region[i].size - pos));
|
|
|
|
if ((pos & 1) && size) {
|
|
u8 val;
|
|
|
|
ret = pci_user_read_config_byte(pdev, pos, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_to_user(buf + count - size, &val, 1))
|
|
return -EFAULT;
|
|
|
|
pos++;
|
|
size--;
|
|
}
|
|
|
|
if ((pos & 3) && size > 2) {
|
|
u16 val;
|
|
__le16 lval;
|
|
|
|
ret = pci_user_read_config_word(pdev, pos, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lval = cpu_to_le16(val);
|
|
if (copy_to_user(buf + count - size, &lval, 2))
|
|
return -EFAULT;
|
|
|
|
pos += 2;
|
|
size -= 2;
|
|
}
|
|
|
|
while (size > 3) {
|
|
u32 val;
|
|
__le32 lval;
|
|
|
|
ret = pci_user_read_config_dword(pdev, pos, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lval = cpu_to_le32(val);
|
|
if (copy_to_user(buf + count - size, &lval, 4))
|
|
return -EFAULT;
|
|
|
|
pos += 4;
|
|
size -= 4;
|
|
}
|
|
|
|
while (size >= 2) {
|
|
u16 val;
|
|
__le16 lval;
|
|
|
|
ret = pci_user_read_config_word(pdev, pos, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lval = cpu_to_le16(val);
|
|
if (copy_to_user(buf + count - size, &lval, 2))
|
|
return -EFAULT;
|
|
|
|
pos += 2;
|
|
size -= 2;
|
|
}
|
|
|
|
while (size) {
|
|
u8 val;
|
|
|
|
ret = pci_user_read_config_byte(pdev, pos, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_to_user(buf + count - size, &val, 1))
|
|
return -EFAULT;
|
|
|
|
pos++;
|
|
size--;
|
|
}
|
|
|
|
*ppos += count;
|
|
|
|
return count;
|
|
}
|
|
|
|
static void vfio_pci_igd_cfg_release(struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_region *region)
|
|
{
|
|
struct pci_dev *pdev = region->data;
|
|
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
static const struct vfio_pci_regops vfio_pci_igd_cfg_regops = {
|
|
.rw = vfio_pci_igd_cfg_rw,
|
|
.release = vfio_pci_igd_cfg_release,
|
|
};
|
|
|
|
static int vfio_pci_igd_cfg_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *host_bridge, *lpc_bridge;
|
|
int ret;
|
|
|
|
host_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0, 0));
|
|
if (!host_bridge)
|
|
return -ENODEV;
|
|
|
|
if (host_bridge->vendor != PCI_VENDOR_ID_INTEL ||
|
|
host_bridge->class != (PCI_CLASS_BRIDGE_HOST << 8)) {
|
|
pci_dev_put(host_bridge);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = vfio_pci_register_dev_region(vdev,
|
|
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
|
|
VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG,
|
|
&vfio_pci_igd_cfg_regops, host_bridge->cfg_size,
|
|
VFIO_REGION_INFO_FLAG_READ, host_bridge);
|
|
if (ret) {
|
|
pci_dev_put(host_bridge);
|
|
return ret;
|
|
}
|
|
|
|
lpc_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x1f, 0));
|
|
if (!lpc_bridge)
|
|
return -ENODEV;
|
|
|
|
if (lpc_bridge->vendor != PCI_VENDOR_ID_INTEL ||
|
|
lpc_bridge->class != (PCI_CLASS_BRIDGE_ISA << 8)) {
|
|
pci_dev_put(lpc_bridge);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = vfio_pci_register_dev_region(vdev,
|
|
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
|
|
VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG,
|
|
&vfio_pci_igd_cfg_regops, lpc_bridge->cfg_size,
|
|
VFIO_REGION_INFO_FLAG_READ, lpc_bridge);
|
|
if (ret) {
|
|
pci_dev_put(lpc_bridge);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vfio_pci_igd_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = vfio_pci_igd_opregion_init(vdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vfio_pci_igd_cfg_init(vdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|