Mika Westerberg f67cf49117 thunderbolt: Add support for Internal Connection Manager (ICM)
Starting from Intel Falcon Ridge the internal connection manager running
on the Thunderbolt host controller has been supporting 4 security
levels. One reason for this is to prevent DMA attacks and only allow
connecting devices the user trusts.

The internal connection manager (ICM) is the preferred way of connecting
Thunderbolt devices over software only implementation typically used on
Macs. The driver communicates with ICM using special Thunderbolt ring 0
(control channel) messages. In order to handle these messages we add
support for the ICM messages to the control channel.

The security levels are as follows:

  none - No security, all tunnels are created automatically
  user - User needs to approve the device before tunnels are created
  secure - User need to approve the device before tunnels are created.
	   The device is sent a challenge on future connects to be able
	   to verify it is actually the approved device.
  dponly - Only Display Port and USB tunnels can be created and those
           are created automatically.

The security levels are typically configurable from the system BIOS and
by default it is set to "user" on many systems.

In this patch each Thunderbolt device will have either one or two new
sysfs attributes: authorized and key. The latter appears for devices
that support secure connect.

In order to identify the device the user can read identication
information, including UUID and name of the device from sysfs and based
on that make a decision to authorize the device. The device is
authorized by simply writing 1 to the "authorized" sysfs attribute. This
is following the USB bus device authorization mechanism. The secure
connect requires an additional challenge step (writing 2 to the
"authorized" attribute) in future connects when the key has already been
stored to the NVM of the device.

Non-ICM systems (before Alpine Ridge) continue to use the existing
functionality and the security level is set to none. For systems with
Alpine Ridge, even on Apple hardware, we will use ICM.

This code is based on the work done by Amir Levy and Michael Jamet.

Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-09 11:42:43 +02:00

261 lines
5.4 KiB
C

/*
* Thunderbolt control channel messages
*
* Copyright (C) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2017, Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _TB_MSGS
#define _TB_MSGS
#include <linux/types.h>
#include <linux/uuid.h>
enum tb_cfg_pkg_type {
TB_CFG_PKG_READ = 1,
TB_CFG_PKG_WRITE = 2,
TB_CFG_PKG_ERROR = 3,
TB_CFG_PKG_NOTIFY_ACK = 4,
TB_CFG_PKG_EVENT = 5,
TB_CFG_PKG_XDOMAIN_REQ = 6,
TB_CFG_PKG_XDOMAIN_RESP = 7,
TB_CFG_PKG_OVERRIDE = 8,
TB_CFG_PKG_RESET = 9,
TB_CFG_PKG_ICM_EVENT = 10,
TB_CFG_PKG_ICM_CMD = 11,
TB_CFG_PKG_ICM_RESP = 12,
TB_CFG_PKG_PREPARE_TO_SLEEP = 0xd,
};
enum tb_cfg_space {
TB_CFG_HOPS = 0,
TB_CFG_PORT = 1,
TB_CFG_SWITCH = 2,
TB_CFG_COUNTERS = 3,
};
enum tb_cfg_error {
TB_CFG_ERROR_PORT_NOT_CONNECTED = 0,
TB_CFG_ERROR_LINK_ERROR = 1,
TB_CFG_ERROR_INVALID_CONFIG_SPACE = 2,
TB_CFG_ERROR_NO_SUCH_PORT = 4,
TB_CFG_ERROR_ACK_PLUG_EVENT = 7, /* send as reply to TB_CFG_PKG_EVENT */
TB_CFG_ERROR_LOOP = 8,
TB_CFG_ERROR_HEC_ERROR_DETECTED = 12,
TB_CFG_ERROR_FLOW_CONTROL_ERROR = 13,
};
/* common header */
struct tb_cfg_header {
u32 route_hi:22;
u32 unknown:10; /* highest order bit is set on replies */
u32 route_lo;
} __packed;
/* additional header for read/write packets */
struct tb_cfg_address {
u32 offset:13; /* in dwords */
u32 length:6; /* in dwords */
u32 port:6;
enum tb_cfg_space space:2;
u32 seq:2; /* sequence number */
u32 zero:3;
} __packed;
/* TB_CFG_PKG_READ, response for TB_CFG_PKG_WRITE */
struct cfg_read_pkg {
struct tb_cfg_header header;
struct tb_cfg_address addr;
} __packed;
/* TB_CFG_PKG_WRITE, response for TB_CFG_PKG_READ */
struct cfg_write_pkg {
struct tb_cfg_header header;
struct tb_cfg_address addr;
u32 data[64]; /* maximum size, tb_cfg_address.length has 6 bits */
} __packed;
/* TB_CFG_PKG_ERROR */
struct cfg_error_pkg {
struct tb_cfg_header header;
enum tb_cfg_error error:4;
u32 zero1:4;
u32 port:6;
u32 zero2:2; /* Both should be zero, still they are different fields. */
u32 zero3:16;
} __packed;
/* TB_CFG_PKG_EVENT */
struct cfg_event_pkg {
struct tb_cfg_header header;
u32 port:6;
u32 zero:25;
bool unplug:1;
} __packed;
/* TB_CFG_PKG_RESET */
struct cfg_reset_pkg {
struct tb_cfg_header header;
} __packed;
/* TB_CFG_PKG_PREPARE_TO_SLEEP */
struct cfg_pts_pkg {
struct tb_cfg_header header;
u32 data;
} __packed;
/* ICM messages */
enum icm_pkg_code {
ICM_GET_TOPOLOGY = 0x1,
ICM_DRIVER_READY = 0x3,
ICM_APPROVE_DEVICE = 0x4,
ICM_CHALLENGE_DEVICE = 0x5,
ICM_ADD_DEVICE_KEY = 0x6,
ICM_GET_ROUTE = 0xa,
};
enum icm_event_code {
ICM_EVENT_DEVICE_CONNECTED = 3,
ICM_EVENT_DEVICE_DISCONNECTED = 4,
};
struct icm_pkg_header {
u8 code;
u8 flags;
u8 packet_id;
u8 total_packets;
} __packed;
#define ICM_FLAGS_ERROR BIT(0)
#define ICM_FLAGS_NO_KEY BIT(1)
#define ICM_FLAGS_SLEVEL_SHIFT 3
#define ICM_FLAGS_SLEVEL_MASK GENMASK(4, 3)
struct icm_pkg_driver_ready {
struct icm_pkg_header hdr;
} __packed;
struct icm_pkg_driver_ready_response {
struct icm_pkg_header hdr;
u8 romver;
u8 ramver;
u16 security_level;
} __packed;
/* Falcon Ridge & Alpine Ridge common messages */
struct icm_fr_pkg_get_topology {
struct icm_pkg_header hdr;
} __packed;
#define ICM_GET_TOPOLOGY_PACKETS 14
struct icm_fr_pkg_get_topology_response {
struct icm_pkg_header hdr;
u32 route_lo;
u32 route_hi;
u8 first_data;
u8 second_data;
u8 drom_i2c_address_index;
u8 switch_index;
u32 reserved[2];
u32 ports[16];
u32 port_hop_info[16];
} __packed;
#define ICM_SWITCH_USED BIT(0)
#define ICM_SWITCH_UPSTREAM_PORT_MASK GENMASK(7, 1)
#define ICM_SWITCH_UPSTREAM_PORT_SHIFT 1
#define ICM_PORT_TYPE_MASK GENMASK(23, 0)
#define ICM_PORT_INDEX_SHIFT 24
#define ICM_PORT_INDEX_MASK GENMASK(31, 24)
struct icm_fr_event_device_connected {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 link_info;
u32 ep_name[55];
} __packed;
#define ICM_LINK_INFO_LINK_MASK 0x7
#define ICM_LINK_INFO_DEPTH_SHIFT 4
#define ICM_LINK_INFO_DEPTH_MASK GENMASK(7, 4)
#define ICM_LINK_INFO_APPROVED BIT(8)
struct icm_fr_pkg_approve_device {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 reserved;
} __packed;
struct icm_fr_event_device_disconnected {
struct icm_pkg_header hdr;
u16 reserved;
u16 link_info;
} __packed;
struct icm_fr_pkg_add_device_key {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 reserved;
u32 key[8];
} __packed;
struct icm_fr_pkg_add_device_key_response {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 reserved;
} __packed;
struct icm_fr_pkg_challenge_device {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 reserved;
u32 challenge[8];
} __packed;
struct icm_fr_pkg_challenge_device_response {
struct icm_pkg_header hdr;
uuid_be ep_uuid;
u8 connection_key;
u8 connection_id;
u16 reserved;
u32 challenge[8];
u32 response[8];
} __packed;
/* Alpine Ridge only messages */
struct icm_ar_pkg_get_route {
struct icm_pkg_header hdr;
u16 reserved;
u16 link_info;
} __packed;
struct icm_ar_pkg_get_route_response {
struct icm_pkg_header hdr;
u16 reserved;
u16 link_info;
u32 route_hi;
u32 route_lo;
} __packed;
#endif