f486287d23
The nand_scan_ident() iterates over maxchips, and calls nand_reset() for each. This driver currently passes the maximum number of banks (=chip selects) supported by the controller as maxchips. So, maxchips is typically 4 or 8. Usually, less number of NAND chips are connected to the controller. This can be a problem for ONFi devices. Now, this driver implements ->setup_data_interface() hook, so nand_setup_data_interface() issues Set Features (0xEF) command, which waits until the chip returns R/B# response. If no chip there, we know it never happens, but the driver still ends up with waiting for a long time. It will finally bail-out with timeout error and the driver will work with existing chips, but unnecessary wait will give a bad user experience. The denali_nand_reset() polls the INTR__RST_COMP and INTR__TIME_OUT bits, but they are always set even if not NAND chip is connected to that bank. To know the chip existence, INTR__INT_ACT bit must be checked; this flag is set only when R/B# is toggled. Since the Reset (0xFF) command toggles the R/B# pin, this can be used to know the actual number of chips, and update denali->max_banks. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
1417 lines
39 KiB
C
1417 lines
39 KiB
C
/*
|
|
* NAND Flash Controller Device Driver
|
|
* Copyright © 2009-2010, Intel Corporation and its suppliers.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "denali.h"
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define DENALI_NAND_NAME "denali-nand"
|
|
|
|
/*
|
|
* indicates whether or not the internal value for the flash bank is
|
|
* valid or not
|
|
*/
|
|
#define CHIP_SELECT_INVALID -1
|
|
|
|
#define DENALI_NR_BANKS 4
|
|
|
|
/*
|
|
* The bus interface clock, clk_x, is phase aligned with the core clock. The
|
|
* clk_x is an integral multiple N of the core clk. The value N is configured
|
|
* at IP delivery time, and its available value is 4, 5, or 6. We need to align
|
|
* to the largest value to make it work with any possible configuration.
|
|
*/
|
|
#define DENALI_CLK_X_MULT 6
|
|
|
|
/*
|
|
* this macro allows us to convert from an MTD structure to our own
|
|
* device context (denali) structure.
|
|
*/
|
|
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
|
|
}
|
|
|
|
/*
|
|
* These constants are defined by the driver to enable common driver
|
|
* configuration options.
|
|
*/
|
|
#define SPARE_ACCESS 0x41
|
|
#define MAIN_ACCESS 0x42
|
|
#define MAIN_SPARE_ACCESS 0x43
|
|
|
|
#define DENALI_READ 0
|
|
#define DENALI_WRITE 0x100
|
|
|
|
/*
|
|
* this is a helper macro that allows us to
|
|
* format the bank into the proper bits for the controller
|
|
*/
|
|
#define BANK(x) ((x) << 24)
|
|
|
|
/*
|
|
* Certain operations for the denali NAND controller use an indexed mode to
|
|
* read/write data. The operation is performed by writing the address value
|
|
* of the command to the device memory followed by the data. This function
|
|
* abstracts this common operation.
|
|
*/
|
|
static void index_addr(struct denali_nand_info *denali,
|
|
uint32_t address, uint32_t data)
|
|
{
|
|
iowrite32(address, denali->flash_mem);
|
|
iowrite32(data, denali->flash_mem + 0x10);
|
|
}
|
|
|
|
/*
|
|
* Use the configuration feature register to determine the maximum number of
|
|
* banks that the hardware supports.
|
|
*/
|
|
static void detect_max_banks(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t features = ioread32(denali->flash_reg + FEATURES);
|
|
|
|
denali->max_banks = 1 << (features & FEATURES__N_BANKS);
|
|
|
|
/* the encoding changed from rev 5.0 to 5.1 */
|
|
if (denali->revision < 0x0501)
|
|
denali->max_banks <<= 1;
|
|
}
|
|
|
|
static void denali_enable_irq(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
iowrite32(U32_MAX, denali->flash_reg + INTR_EN(i));
|
|
iowrite32(GLOBAL_INT_EN_FLAG, denali->flash_reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void denali_disable_irq(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
iowrite32(0, denali->flash_reg + INTR_EN(i));
|
|
iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void denali_clear_irq(struct denali_nand_info *denali,
|
|
int bank, uint32_t irq_status)
|
|
{
|
|
/* write one to clear bits */
|
|
iowrite32(irq_status, denali->flash_reg + INTR_STATUS(bank));
|
|
}
|
|
|
|
static void denali_clear_irq_all(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
denali_clear_irq(denali, i, U32_MAX);
|
|
}
|
|
|
|
static irqreturn_t denali_isr(int irq, void *dev_id)
|
|
{
|
|
struct denali_nand_info *denali = dev_id;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
uint32_t irq_status;
|
|
int i;
|
|
|
|
spin_lock(&denali->irq_lock);
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++) {
|
|
irq_status = ioread32(denali->flash_reg + INTR_STATUS(i));
|
|
if (irq_status)
|
|
ret = IRQ_HANDLED;
|
|
|
|
denali_clear_irq(denali, i, irq_status);
|
|
|
|
if (i != denali->flash_bank)
|
|
continue;
|
|
|
|
denali->irq_status |= irq_status;
|
|
|
|
if (denali->irq_status & denali->irq_mask)
|
|
complete(&denali->complete);
|
|
}
|
|
|
|
spin_unlock(&denali->irq_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void denali_reset_irq(struct denali_nand_info *denali)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&denali->irq_lock, flags);
|
|
denali->irq_status = 0;
|
|
denali->irq_mask = 0;
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
}
|
|
|
|
static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
|
|
uint32_t irq_mask)
|
|
{
|
|
unsigned long time_left, flags;
|
|
uint32_t irq_status;
|
|
|
|
spin_lock_irqsave(&denali->irq_lock, flags);
|
|
|
|
irq_status = denali->irq_status;
|
|
|
|
if (irq_mask & irq_status) {
|
|
/* return immediately if the IRQ has already happened. */
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
return irq_status;
|
|
}
|
|
|
|
denali->irq_mask = irq_mask;
|
|
reinit_completion(&denali->complete);
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
|
|
time_left = wait_for_completion_timeout(&denali->complete,
|
|
msecs_to_jiffies(1000));
|
|
if (!time_left) {
|
|
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
|
|
denali->irq_mask);
|
|
return 0;
|
|
}
|
|
|
|
return denali->irq_status;
|
|
}
|
|
|
|
static uint32_t denali_check_irq(struct denali_nand_info *denali)
|
|
{
|
|
unsigned long flags;
|
|
uint32_t irq_status;
|
|
|
|
spin_lock_irqsave(&denali->irq_lock, flags);
|
|
irq_status = denali->irq_status;
|
|
spin_unlock_irqrestore(&denali->irq_lock, flags);
|
|
|
|
return irq_status;
|
|
}
|
|
|
|
/*
|
|
* This helper function setups the registers for ECC and whether or not
|
|
* the spare area will be transferred.
|
|
*/
|
|
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
|
bool transfer_spare)
|
|
{
|
|
int ecc_en_flag, transfer_spare_flag;
|
|
|
|
/* set ECC, transfer spare bits if needed */
|
|
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
|
|
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
|
|
|
|
/* Enable spare area/ECC per user's request. */
|
|
iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
|
|
iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
|
|
}
|
|
|
|
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int i;
|
|
|
|
iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ioread32(denali->flash_mem + 0x10);
|
|
}
|
|
|
|
static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int i;
|
|
|
|
iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
|
|
|
|
for (i = 0; i < len; i++)
|
|
iowrite32(buf[i], denali->flash_mem + 0x10);
|
|
}
|
|
|
|
static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint16_t *buf16 = (uint16_t *)buf;
|
|
int i;
|
|
|
|
iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
|
|
|
|
for (i = 0; i < len / 2; i++)
|
|
buf16[i] = ioread32(denali->flash_mem + 0x10);
|
|
}
|
|
|
|
static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
const uint16_t *buf16 = (const uint16_t *)buf;
|
|
int i;
|
|
|
|
iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
|
|
|
|
for (i = 0; i < len / 2; i++)
|
|
iowrite32(buf16[i], denali->flash_mem + 0x10);
|
|
}
|
|
|
|
static uint8_t denali_read_byte(struct mtd_info *mtd)
|
|
{
|
|
uint8_t byte;
|
|
|
|
denali_read_buf(mtd, &byte, 1);
|
|
|
|
return byte;
|
|
}
|
|
|
|
static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
|
|
{
|
|
denali_write_buf(mtd, &byte, 1);
|
|
}
|
|
|
|
static uint16_t denali_read_word(struct mtd_info *mtd)
|
|
{
|
|
uint16_t word;
|
|
|
|
denali_read_buf16(mtd, (uint8_t *)&word, 2);
|
|
|
|
return word;
|
|
}
|
|
|
|
static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t type;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
type = 0;
|
|
else if (ctrl & NAND_ALE)
|
|
type = 1;
|
|
else
|
|
return;
|
|
|
|
/*
|
|
* Some commands are followed by chip->dev_ready or chip->waitfunc.
|
|
* irq_status must be cleared here to catch the R/B# interrupt later.
|
|
*/
|
|
if (ctrl & NAND_CTRL_CHANGE)
|
|
denali_reset_irq(denali);
|
|
|
|
index_addr(denali, MODE_11 | BANK(denali->flash_bank) | type, dat);
|
|
}
|
|
|
|
static int denali_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
return !!(denali_check_irq(denali) & INTR__INT_ACT);
|
|
}
|
|
|
|
/*
|
|
* sends a pipeline command operation to the controller. See the Denali NAND
|
|
* controller's user guide for more information (section 4.2.3.6).
|
|
*/
|
|
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
|
|
bool ecc_en, bool transfer_spare,
|
|
int access_type, int op)
|
|
{
|
|
int status = PASS;
|
|
uint32_t addr, cmd;
|
|
|
|
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
|
|
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
|
|
cmd = MODE_01 | addr;
|
|
iowrite32(cmd, denali->flash_mem);
|
|
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
|
|
/* read spare area */
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, access_type);
|
|
|
|
cmd = MODE_01 | addr;
|
|
iowrite32(cmd, denali->flash_mem);
|
|
} else if (op == DENALI_READ) {
|
|
/* setup page read request for access type */
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, access_type);
|
|
|
|
cmd = MODE_01 | addr;
|
|
iowrite32(cmd, denali->flash_mem);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* helper function that simply writes a buffer to the flash */
|
|
static int write_data_to_flash_mem(struct denali_nand_info *denali,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
uint32_t *buf32;
|
|
int i;
|
|
|
|
/*
|
|
* verify that the len is a multiple of 4.
|
|
* see comment in read_data_from_flash_mem()
|
|
*/
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* write the data to the flash memory */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
iowrite32(*buf32++, denali->flash_mem + 0x10);
|
|
return i * 4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
/* helper function that simply reads a buffer from the flash */
|
|
static int read_data_from_flash_mem(struct denali_nand_info *denali,
|
|
uint8_t *buf, int len)
|
|
{
|
|
uint32_t *buf32;
|
|
int i;
|
|
|
|
/*
|
|
* we assume that len will be a multiple of 4, if not it would be nice
|
|
* to know about it ASAP rather than have random failures...
|
|
* This assumption is based on the fact that this function is designed
|
|
* to be used to read flash pages, which are typically multiples of 4.
|
|
*/
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* transfer the data from the flash */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
*buf32++ = ioread32(denali->flash_mem + 0x10);
|
|
return i * 4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
/* writes OOB data to the device */
|
|
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status;
|
|
uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
|
|
int status = 0;
|
|
|
|
denali->page = page;
|
|
|
|
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
|
|
DENALI_WRITE) == PASS) {
|
|
write_data_to_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
|
|
if (!(irq_status & INTR__PROGRAM_COMP)) {
|
|
dev_err(denali->dev, "OOB write failed\n");
|
|
status = -EIO;
|
|
}
|
|
} else {
|
|
dev_err(denali->dev, "unable to send pipeline command\n");
|
|
status = -EIO;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* reads OOB data from the device */
|
|
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_mask = INTR__LOAD_COMP;
|
|
uint32_t irq_status, addr, cmd;
|
|
|
|
denali->page = page;
|
|
|
|
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
|
DENALI_READ) == PASS) {
|
|
read_data_from_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
/*
|
|
* wait for command to be accepted
|
|
* can always use status0 bit as the
|
|
* mask is identical for each bank.
|
|
*/
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
|
|
if (!(irq_status & INTR__LOAD_COMP))
|
|
dev_err(denali->dev, "page on OOB timeout %d\n",
|
|
denali->page);
|
|
|
|
/*
|
|
* We set the device back to MAIN_ACCESS here as I observed
|
|
* instability with the controller if you do a block erase
|
|
* and the last transaction was a SPARE_ACCESS. Block erase
|
|
* is reliable (according to the MTD test infrastructure)
|
|
* if you are in MAIN_ACCESS.
|
|
*/
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, MAIN_ACCESS);
|
|
}
|
|
}
|
|
|
|
static int denali_check_erased_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf,
|
|
unsigned long uncor_ecc_flags,
|
|
unsigned int max_bitflips)
|
|
{
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int i, ret, stat;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
if (!(uncor_ecc_flags & BIT(i)))
|
|
continue;
|
|
|
|
stat = nand_check_erased_ecc_chunk(buf, ecc_size,
|
|
ecc_code, ecc_bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
|
|
buf += ecc_size;
|
|
ecc_code += ecc_bytes;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
|
|
struct denali_nand_info *denali,
|
|
unsigned long *uncor_ecc_flags)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bank = denali->flash_bank;
|
|
uint32_t ecc_cor;
|
|
unsigned int max_bitflips;
|
|
|
|
ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
|
|
ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
|
|
|
|
if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
|
|
/*
|
|
* This flag is set when uncorrectable error occurs at least in
|
|
* one ECC sector. We can not know "how many sectors", or
|
|
* "which sector(s)". We need erase-page check for all sectors.
|
|
*/
|
|
*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
|
|
return 0;
|
|
}
|
|
|
|
max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
|
|
|
|
/*
|
|
* The register holds the maximum of per-sector corrected bitflips.
|
|
* This is suitable for the return value of the ->read_page() callback.
|
|
* Unfortunately, we can not know the total number of corrected bits in
|
|
* the page. Increase the stats by max_bitflips. (compromised solution)
|
|
*/
|
|
mtd->ecc_stats.corrected += max_bitflips;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
|
|
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
|
|
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
|
|
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
|
|
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
|
|
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
|
|
|
|
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
|
struct denali_nand_info *denali,
|
|
unsigned long *uncor_ecc_flags, uint8_t *buf)
|
|
{
|
|
unsigned int ecc_size = denali->nand.ecc.size;
|
|
unsigned int bitflips = 0;
|
|
unsigned int max_bitflips = 0;
|
|
uint32_t err_addr, err_cor_info;
|
|
unsigned int err_byte, err_sector, err_device;
|
|
uint8_t err_cor_value;
|
|
unsigned int prev_sector = 0;
|
|
uint32_t irq_status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
do {
|
|
err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
|
|
err_sector = ECC_SECTOR(err_addr);
|
|
err_byte = ECC_BYTE(err_addr);
|
|
|
|
err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
|
|
err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
|
|
err_device = ECC_ERR_DEVICE(err_cor_info);
|
|
|
|
/* reset the bitflip counter when crossing ECC sector */
|
|
if (err_sector != prev_sector)
|
|
bitflips = 0;
|
|
|
|
if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
|
|
/*
|
|
* Check later if this is a real ECC error, or
|
|
* an erased sector.
|
|
*/
|
|
*uncor_ecc_flags |= BIT(err_sector);
|
|
} else if (err_byte < ecc_size) {
|
|
/*
|
|
* If err_byte is larger than ecc_size, means error
|
|
* happened in OOB, so we ignore it. It's no need for
|
|
* us to correct it err_device is represented the NAND
|
|
* error bits are happened in if there are more than
|
|
* one NAND connected.
|
|
*/
|
|
int offset;
|
|
unsigned int flips_in_byte;
|
|
|
|
offset = (err_sector * ecc_size + err_byte) *
|
|
denali->devnum + err_device;
|
|
|
|
/* correct the ECC error */
|
|
flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
|
|
buf[offset] ^= err_cor_value;
|
|
mtd->ecc_stats.corrected += flips_in_byte;
|
|
bitflips += flips_in_byte;
|
|
|
|
max_bitflips = max(max_bitflips, bitflips);
|
|
}
|
|
|
|
prev_sector = err_sector;
|
|
} while (!ECC_LAST_ERR(err_cor_info));
|
|
|
|
/*
|
|
* Once handle all ecc errors, controller will trigger a
|
|
* ECC_TRANSACTION_DONE interrupt, so here just wait for
|
|
* a while for this interrupt
|
|
*/
|
|
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
|
|
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
|
|
return -EIO;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/* programs the controller to either enable/disable DMA transfers */
|
|
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
|
|
{
|
|
iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
|
|
ioread32(denali->flash_reg + DMA_ENABLE);
|
|
}
|
|
|
|
static void denali_setup_dma64(struct denali_nand_info *denali, int op)
|
|
{
|
|
uint32_t mode;
|
|
const int page_count = 1;
|
|
uint64_t addr = denali->buf.dma_buf;
|
|
|
|
mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
|
|
|
|
/* DMA is a three step process */
|
|
|
|
/*
|
|
* 1. setup transfer type, interrupt when complete,
|
|
* burst len = 64 bytes, the number of pages
|
|
*/
|
|
index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
|
|
|
|
/* 2. set memory low address */
|
|
index_addr(denali, mode, addr);
|
|
|
|
/* 3. set memory high address */
|
|
index_addr(denali, mode, addr >> 32);
|
|
}
|
|
|
|
static void denali_setup_dma32(struct denali_nand_info *denali, int op)
|
|
{
|
|
uint32_t mode;
|
|
const int page_count = 1;
|
|
uint32_t addr = denali->buf.dma_buf;
|
|
|
|
mode = MODE_10 | BANK(denali->flash_bank);
|
|
|
|
/* DMA is a four step process */
|
|
|
|
/* 1. setup transfer type and # of pages */
|
|
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
|
|
|
|
/* 2. set memory high address bits 23:8 */
|
|
index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
|
|
|
|
/* 3. set memory low address bits 23:8 */
|
|
index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
|
|
|
|
/* 4. interrupt when complete, burst len = 64 bytes */
|
|
index_addr(denali, mode | 0x14000, 0x2400);
|
|
}
|
|
|
|
static void denali_setup_dma(struct denali_nand_info *denali, int op)
|
|
{
|
|
if (denali->caps & DENALI_CAP_DMA_64BIT)
|
|
denali_setup_dma64(denali, op);
|
|
else
|
|
denali_setup_dma32(denali, op);
|
|
}
|
|
|
|
/*
|
|
* writes a page. user specifies type, and this function handles the
|
|
* configuration details.
|
|
*/
|
|
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int page, bool raw_xfer)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = mtd->writesize + mtd->oobsize;
|
|
uint32_t irq_status;
|
|
uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
|
|
int ret = 0;
|
|
|
|
denali->page = page;
|
|
|
|
/*
|
|
* if it is a raw xfer, we want to disable ecc and send the spare area.
|
|
* !raw_xfer - enable ecc
|
|
* raw_xfer - transfer spare
|
|
*/
|
|
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
|
|
|
|
/* copy buffer into DMA buffer */
|
|
memcpy(denali->buf.buf, buf, mtd->writesize);
|
|
|
|
if (raw_xfer) {
|
|
/* transfer the data to the spare area */
|
|
memcpy(denali->buf.buf + mtd->writesize,
|
|
chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
|
|
|
|
denali_reset_irq(denali);
|
|
denali_enable_dma(denali, true);
|
|
|
|
denali_setup_dma(denali, DENALI_WRITE);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
if (!(irq_status & INTR__DMA_CMD_COMP)) {
|
|
dev_err(denali->dev, "timeout on write_page (type = %d)\n",
|
|
raw_xfer);
|
|
ret = -EIO;
|
|
}
|
|
|
|
denali_enable_dma(denali, false);
|
|
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* NAND core entry points */
|
|
|
|
/*
|
|
* this is the callback that the NAND core calls to write a page. Since
|
|
* writing a page with ECC or without is similar, all the work is done
|
|
* by write_page above.
|
|
*/
|
|
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
/*
|
|
* for regular page writes, we let HW handle all the ECC
|
|
* data written to the device.
|
|
*/
|
|
return write_page(mtd, chip, buf, page, false);
|
|
}
|
|
|
|
/*
|
|
* This is the callback that the NAND core calls to write a page without ECC.
|
|
* raw access is similar to ECC page writes, so all the work is done in the
|
|
* write_page() function above.
|
|
*/
|
|
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
/*
|
|
* for raw page writes, we want to disable ECC and simply write
|
|
* whatever data is in the buffer.
|
|
*/
|
|
return write_page(mtd, chip, buf, page, true);
|
|
}
|
|
|
|
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return write_oob_data(mtd, chip->oob_poi, page);
|
|
}
|
|
|
|
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
read_oob_data(mtd, chip->oob_poi, page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = mtd->writesize + mtd->oobsize;
|
|
uint32_t irq_status;
|
|
uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
|
|
INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
|
|
INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
|
|
unsigned long uncor_ecc_flags = 0;
|
|
int stat = 0;
|
|
|
|
denali->page = page;
|
|
|
|
setup_ecc_for_xfer(denali, true, false);
|
|
|
|
denali_enable_dma(denali, true);
|
|
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
|
|
|
|
denali_reset_irq(denali);
|
|
denali_setup_dma(denali, DENALI_READ);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
|
|
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
|
|
|
|
memcpy(buf, denali->buf.buf, mtd->writesize);
|
|
|
|
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
|
|
stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
|
|
else if (irq_status & INTR__ECC_ERR)
|
|
stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
|
|
denali_enable_dma(denali, false);
|
|
|
|
if (stat < 0)
|
|
return stat;
|
|
|
|
if (uncor_ecc_flags) {
|
|
read_oob_data(mtd, chip->oob_poi, denali->page);
|
|
|
|
stat = denali_check_erased_page(mtd, chip, buf,
|
|
uncor_ecc_flags, stat);
|
|
}
|
|
|
|
return stat;
|
|
}
|
|
|
|
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = mtd->writesize + mtd->oobsize;
|
|
uint32_t irq_mask = INTR__DMA_CMD_COMP;
|
|
uint32_t irq_status;
|
|
|
|
denali->page = page;
|
|
|
|
setup_ecc_for_xfer(denali, false, true);
|
|
denali_enable_dma(denali, true);
|
|
|
|
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
|
|
|
|
denali_reset_irq(denali);
|
|
denali_setup_dma(denali, DENALI_READ);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
if (irq_status & INTR__DMA_CMD_COMP)
|
|
return -ETIMEDOUT;
|
|
|
|
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
|
|
|
|
denali_enable_dma(denali, false);
|
|
|
|
memcpy(buf, denali->buf.buf, mtd->writesize);
|
|
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void denali_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
denali->flash_bank = chip;
|
|
}
|
|
|
|
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status;
|
|
|
|
/* R/B# pin transitioned from low to high? */
|
|
irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
|
|
|
|
return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
|
|
}
|
|
|
|
static int denali_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t cmd, irq_status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
/* setup page read request for access type */
|
|
cmd = MODE_10 | BANK(denali->flash_bank) | page;
|
|
index_addr(denali, cmd, 0x1);
|
|
|
|
/* wait for erase to complete or failure to occur */
|
|
irq_status = denali_wait_for_irq(denali,
|
|
INTR__ERASE_COMP | INTR__ERASE_FAIL);
|
|
|
|
return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
|
|
}
|
|
|
|
#define DIV_ROUND_DOWN_ULL(ll, d) \
|
|
({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
|
|
|
|
static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
const struct nand_sdr_timings *timings;
|
|
unsigned long t_clk;
|
|
int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
|
|
int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
|
|
int addr_2_data_mask;
|
|
uint32_t tmp;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return PTR_ERR(timings);
|
|
|
|
/* clk_x period in picoseconds */
|
|
t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
|
|
if (!t_clk)
|
|
return -EINVAL;
|
|
|
|
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
/* tREA -> ACC_CLKS */
|
|
acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
|
|
acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + ACC_CLKS);
|
|
tmp &= ~ACC_CLKS__VALUE;
|
|
tmp |= acc_clks;
|
|
iowrite32(tmp, denali->flash_reg + ACC_CLKS);
|
|
|
|
/* tRWH -> RE_2_WE */
|
|
re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
|
|
re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + RE_2_WE);
|
|
tmp &= ~RE_2_WE__VALUE;
|
|
tmp |= re_2_we;
|
|
iowrite32(tmp, denali->flash_reg + RE_2_WE);
|
|
|
|
/* tRHZ -> RE_2_RE */
|
|
re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
|
|
re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + RE_2_RE);
|
|
tmp &= ~RE_2_RE__VALUE;
|
|
tmp |= re_2_re;
|
|
iowrite32(tmp, denali->flash_reg + RE_2_RE);
|
|
|
|
/* tWHR -> WE_2_RE */
|
|
we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
|
|
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
|
|
|
|
tmp = ioread32(denali->flash_reg + TWHR2_AND_WE_2_RE);
|
|
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
|
|
tmp |= we_2_re;
|
|
iowrite32(tmp, denali->flash_reg + TWHR2_AND_WE_2_RE);
|
|
|
|
/* tADL -> ADDR_2_DATA */
|
|
|
|
/* for older versions, ADDR_2_DATA is only 6 bit wide */
|
|
addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
|
if (denali->revision < 0x0501)
|
|
addr_2_data_mask >>= 1;
|
|
|
|
addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
|
|
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
|
|
|
|
tmp = ioread32(denali->flash_reg + TCWAW_AND_ADDR_2_DATA);
|
|
tmp &= ~addr_2_data_mask;
|
|
tmp |= addr_2_data;
|
|
iowrite32(tmp, denali->flash_reg + TCWAW_AND_ADDR_2_DATA);
|
|
|
|
/* tREH, tWH -> RDWR_EN_HI_CNT */
|
|
rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
|
|
t_clk);
|
|
rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + RDWR_EN_HI_CNT);
|
|
tmp &= ~RDWR_EN_HI_CNT__VALUE;
|
|
tmp |= rdwr_en_hi;
|
|
iowrite32(tmp, denali->flash_reg + RDWR_EN_HI_CNT);
|
|
|
|
/* tRP, tWP -> RDWR_EN_LO_CNT */
|
|
rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
|
|
t_clk);
|
|
rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
|
|
t_clk);
|
|
rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
|
|
rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
|
|
rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + RDWR_EN_LO_CNT);
|
|
tmp &= ~RDWR_EN_LO_CNT__VALUE;
|
|
tmp |= rdwr_en_lo;
|
|
iowrite32(tmp, denali->flash_reg + RDWR_EN_LO_CNT);
|
|
|
|
/* tCS, tCEA -> CS_SETUP_CNT */
|
|
cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
|
|
(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
|
|
0);
|
|
cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->flash_reg + CS_SETUP_CNT);
|
|
tmp &= ~CS_SETUP_CNT__VALUE;
|
|
tmp |= cs_setup;
|
|
iowrite32(tmp, denali->flash_reg + CS_SETUP_CNT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void denali_reset_banks(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
denali_clear_irq_all(denali);
|
|
|
|
for (i = 0; i < denali->max_banks; i++) {
|
|
iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
|
|
while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
|
|
(INTR__RST_COMP | INTR__TIME_OUT)))
|
|
cpu_relax();
|
|
if (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
|
|
INTR__INT_ACT))
|
|
break;
|
|
}
|
|
|
|
dev_dbg(denali->dev, "%d chips connected\n", i);
|
|
denali->max_banks = i;
|
|
|
|
denali_clear_irq_all(denali);
|
|
}
|
|
|
|
static void denali_hw_init(struct denali_nand_info *denali)
|
|
{
|
|
/*
|
|
* The REVISION register may not be reliable. Platforms are allowed to
|
|
* override it.
|
|
*/
|
|
if (!denali->revision)
|
|
denali->revision =
|
|
swab16(ioread32(denali->flash_reg + REVISION));
|
|
|
|
/*
|
|
* tell driver how many bit controller will skip before
|
|
* writing ECC code in OOB, this register may be already
|
|
* set by firmware. So we read this value out.
|
|
* if this value is 0, just let it be.
|
|
*/
|
|
denali->bbtskipbytes = ioread32(denali->flash_reg +
|
|
SPARE_AREA_SKIP_BYTES);
|
|
detect_max_banks(denali);
|
|
denali_reset_banks(denali);
|
|
iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
|
|
iowrite32(CHIP_EN_DONT_CARE__FLAG,
|
|
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
|
|
|
|
iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
|
|
|
|
/* Should set value for these registers when init */
|
|
iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
|
|
iowrite32(1, denali->flash_reg + ECC_ENABLE);
|
|
}
|
|
|
|
int denali_calc_ecc_bytes(int step_size, int strength)
|
|
{
|
|
/* BCH code. Denali requires ecc.bytes to be multiple of 2 */
|
|
return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
|
|
}
|
|
EXPORT_SYMBOL(denali_calc_ecc_bytes);
|
|
|
|
static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
|
|
struct denali_nand_info *denali)
|
|
{
|
|
int oobavail = mtd->oobsize - denali->bbtskipbytes;
|
|
int ret;
|
|
|
|
/*
|
|
* If .size and .strength are already set (usually by DT),
|
|
* check if they are supported by this controller.
|
|
*/
|
|
if (chip->ecc.size && chip->ecc.strength)
|
|
return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
|
|
|
|
/*
|
|
* We want .size and .strength closest to the chip's requirement
|
|
* unless NAND_ECC_MAXIMIZE is requested.
|
|
*/
|
|
if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
|
|
ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
/* Max ECC strength is the last thing we can do */
|
|
return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
|
|
}
|
|
|
|
static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = denali->bbtskipbytes;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
|
|
.ecc = denali_ooblayout_ecc,
|
|
.free = denali_ooblayout_free,
|
|
};
|
|
|
|
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 8,
|
|
.len = 4,
|
|
.veroffs = 12,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 8,
|
|
.len = 4,
|
|
.veroffs = 12,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
/* initialize driver data structures */
|
|
static void denali_drv_init(struct denali_nand_info *denali)
|
|
{
|
|
/*
|
|
* the completion object will be used to notify
|
|
* the callee that the interrupt is done
|
|
*/
|
|
init_completion(&denali->complete);
|
|
|
|
/*
|
|
* the spinlock will be used to synchronize the ISR with any
|
|
* element that might be access shared data (interrupt status)
|
|
*/
|
|
spin_lock_init(&denali->irq_lock);
|
|
|
|
/* indicate that MTD has not selected a valid bank yet */
|
|
denali->flash_bank = CHIP_SELECT_INVALID;
|
|
}
|
|
|
|
static int denali_multidev_fixup(struct denali_nand_info *denali)
|
|
{
|
|
struct nand_chip *chip = &denali->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/*
|
|
* Support for multi device:
|
|
* When the IP configuration is x16 capable and two x8 chips are
|
|
* connected in parallel, DEVICES_CONNECTED should be set to 2.
|
|
* In this case, the core framework knows nothing about this fact,
|
|
* so we should tell it the _logical_ pagesize and anything necessary.
|
|
*/
|
|
denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
|
|
|
|
/*
|
|
* On some SoCs, DEVICES_CONNECTED is not auto-detected.
|
|
* For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
|
|
*/
|
|
if (denali->devnum == 0) {
|
|
denali->devnum = 1;
|
|
iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
|
|
}
|
|
|
|
if (denali->devnum == 1)
|
|
return 0;
|
|
|
|
if (denali->devnum != 2) {
|
|
dev_err(denali->dev, "unsupported number of devices %d\n",
|
|
denali->devnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 2 chips in parallel */
|
|
mtd->size <<= 1;
|
|
mtd->erasesize <<= 1;
|
|
mtd->writesize <<= 1;
|
|
mtd->oobsize <<= 1;
|
|
chip->chipsize <<= 1;
|
|
chip->page_shift += 1;
|
|
chip->phys_erase_shift += 1;
|
|
chip->bbt_erase_shift += 1;
|
|
chip->chip_shift += 1;
|
|
chip->pagemask <<= 1;
|
|
chip->ecc.size <<= 1;
|
|
chip->ecc.bytes <<= 1;
|
|
chip->ecc.strength <<= 1;
|
|
denali->bbtskipbytes <<= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int denali_init(struct denali_nand_info *denali)
|
|
{
|
|
struct nand_chip *chip = &denali->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
mtd->dev.parent = denali->dev;
|
|
denali_hw_init(denali);
|
|
denali_drv_init(denali);
|
|
|
|
denali_clear_irq_all(denali);
|
|
|
|
/* Request IRQ after all the hardware initialization is finished */
|
|
ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
|
|
IRQF_SHARED, DENALI_NAND_NAME, denali);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Unable to request IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
denali_enable_irq(denali);
|
|
|
|
nand_set_flash_node(chip, denali->dev->of_node);
|
|
/* Fallback to the default name if DT did not give "label" property */
|
|
if (!mtd->name)
|
|
mtd->name = "denali-nand";
|
|
|
|
/* register the driver with the NAND core subsystem */
|
|
chip->select_chip = denali_select_chip;
|
|
chip->read_byte = denali_read_byte;
|
|
chip->write_byte = denali_write_byte;
|
|
chip->read_word = denali_read_word;
|
|
chip->cmd_ctrl = denali_cmd_ctrl;
|
|
chip->dev_ready = denali_dev_ready;
|
|
chip->waitfunc = denali_waitfunc;
|
|
|
|
/* clk rate info is needed for setup_data_interface */
|
|
if (denali->clk_x_rate)
|
|
chip->setup_data_interface = denali_setup_data_interface;
|
|
|
|
/*
|
|
* scan for NAND devices attached to the controller
|
|
* this is the first stage in a two step process to register
|
|
* with the nand subsystem
|
|
*/
|
|
ret = nand_scan_ident(mtd, denali->max_banks, NULL);
|
|
if (ret)
|
|
goto disable_irq;
|
|
|
|
denali->buf.buf = devm_kzalloc(denali->dev,
|
|
mtd->writesize + mtd->oobsize,
|
|
GFP_KERNEL);
|
|
if (!denali->buf.buf) {
|
|
ret = -ENOMEM;
|
|
goto disable_irq;
|
|
}
|
|
|
|
ret = dma_set_mask(denali->dev,
|
|
DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
|
|
64 : 32));
|
|
if (ret) {
|
|
dev_err(denali->dev, "No usable DMA configuration\n");
|
|
goto disable_irq;
|
|
}
|
|
|
|
denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
|
|
mtd->writesize + mtd->oobsize,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
|
|
dev_err(denali->dev, "Failed to map DMA buffer\n");
|
|
ret = -EIO;
|
|
goto disable_irq;
|
|
}
|
|
|
|
/*
|
|
* second stage of the NAND scan
|
|
* this stage requires information regarding ECC and
|
|
* bad block management.
|
|
*/
|
|
|
|
/* Bad block management */
|
|
chip->bbt_td = &bbt_main_descr;
|
|
chip->bbt_md = &bbt_mirror_descr;
|
|
|
|
/* skip the scan for now until we have OOB read and write support */
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->options |= NAND_SKIP_BBTSCAN;
|
|
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
|
|
/* no subpage writes on denali */
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
ret = denali_ecc_setup(mtd, chip, denali);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to setup ECC settings.\n");
|
|
goto disable_irq;
|
|
}
|
|
|
|
dev_dbg(denali->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
iowrite32(chip->ecc.strength, denali->flash_reg + ECC_CORRECTION);
|
|
iowrite32(mtd->erasesize / mtd->writesize,
|
|
denali->flash_reg + PAGES_PER_BLOCK);
|
|
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
|
|
denali->flash_reg + DEVICE_WIDTH);
|
|
iowrite32(mtd->writesize, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
|
|
iowrite32(mtd->oobsize, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
|
|
iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
|
|
iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
|
|
/* chip->ecc.steps is set by nand_scan_tail(); not available here */
|
|
iowrite32(mtd->writesize / chip->ecc.size,
|
|
denali->flash_reg + CFG_NUM_DATA_BLOCKS);
|
|
|
|
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
chip->read_buf = denali_read_buf16;
|
|
chip->write_buf = denali_write_buf16;
|
|
} else {
|
|
chip->read_buf = denali_read_buf;
|
|
chip->write_buf = denali_write_buf;
|
|
}
|
|
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
|
|
chip->ecc.read_page = denali_read_page;
|
|
chip->ecc.read_page_raw = denali_read_page_raw;
|
|
chip->ecc.write_page = denali_write_page;
|
|
chip->ecc.write_page_raw = denali_write_page_raw;
|
|
chip->ecc.read_oob = denali_read_oob;
|
|
chip->ecc.write_oob = denali_write_oob;
|
|
chip->erase = denali_erase;
|
|
|
|
ret = denali_multidev_fixup(denali);
|
|
if (ret)
|
|
goto disable_irq;
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
goto disable_irq;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
|
|
goto disable_irq;
|
|
}
|
|
return 0;
|
|
|
|
disable_irq:
|
|
denali_disable_irq(denali);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(denali_init);
|
|
|
|
/* driver exit point */
|
|
void denali_remove(struct denali_nand_info *denali)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(&denali->nand);
|
|
/*
|
|
* Pre-compute DMA buffer size to avoid any problems in case
|
|
* nand_release() ever changes in a way that mtd->writesize and
|
|
* mtd->oobsize are not reliable after this call.
|
|
*/
|
|
int bufsize = mtd->writesize + mtd->oobsize;
|
|
|
|
nand_release(mtd);
|
|
denali_disable_irq(denali);
|
|
dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
EXPORT_SYMBOL(denali_remove);
|