dabf6b36b8
There's an OF helper called of_dma_is_coherent(), which checks if a device has a "dma-coherent" property to see if the device is coherent for DMA. But on some platforms devices are coherent by default, and on some platforms it's not possible to update existing device trees to add the "dma-coherent" property. So add a Kconfig symbol to allow arch code to tell of_dma_is_coherent() that devices are coherent by default, regardless of the presence of the property. Select that symbol on powerpc when NOT_COHERENT_CACHE is not set, ie. when the system has a coherent cache. Fixes: 92ea637edea3 ("of: introduce of_dma_is_coherent() helper") Cc: stable@vger.kernel.org # v3.16+ Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de> Tested-by: Christian Zigotzky <chzigotzky@xenosoft.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rob Herring <robh@kernel.org>
1019 lines
25 KiB
C
1019 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define pr_fmt(fmt) "OF: " fmt
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/fwnode.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/logic_pio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
|
|
#include "of_private.h"
|
|
|
|
/* Max address size we deal with */
|
|
#define OF_MAX_ADDR_CELLS 4
|
|
#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
|
|
#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
|
|
|
|
static struct of_bus *of_match_bus(struct device_node *np);
|
|
static int __of_address_to_resource(struct device_node *dev,
|
|
const __be32 *addrp, u64 size, unsigned int flags,
|
|
const char *name, struct resource *r);
|
|
|
|
/* Debug utility */
|
|
#ifdef DEBUG
|
|
static void of_dump_addr(const char *s, const __be32 *addr, int na)
|
|
{
|
|
pr_debug("%s", s);
|
|
while (na--)
|
|
pr_cont(" %08x", be32_to_cpu(*(addr++)));
|
|
pr_cont("\n");
|
|
}
|
|
#else
|
|
static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
|
|
#endif
|
|
|
|
/* Callbacks for bus specific translators */
|
|
struct of_bus {
|
|
const char *name;
|
|
const char *addresses;
|
|
int (*match)(struct device_node *parent);
|
|
void (*count_cells)(struct device_node *child,
|
|
int *addrc, int *sizec);
|
|
u64 (*map)(__be32 *addr, const __be32 *range,
|
|
int na, int ns, int pna);
|
|
int (*translate)(__be32 *addr, u64 offset, int na);
|
|
unsigned int (*get_flags)(const __be32 *addr);
|
|
};
|
|
|
|
/*
|
|
* Default translator (generic bus)
|
|
*/
|
|
|
|
static void of_bus_default_count_cells(struct device_node *dev,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = of_n_addr_cells(dev);
|
|
if (sizec)
|
|
*sizec = of_n_size_cells(dev);
|
|
}
|
|
|
|
static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
|
|
int na, int ns, int pna)
|
|
{
|
|
u64 cp, s, da;
|
|
|
|
cp = of_read_number(range, na);
|
|
s = of_read_number(range + na + pna, ns);
|
|
da = of_read_number(addr, na);
|
|
|
|
pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
|
|
(unsigned long long)cp, (unsigned long long)s,
|
|
(unsigned long long)da);
|
|
|
|
if (da < cp || da >= (cp + s))
|
|
return OF_BAD_ADDR;
|
|
return da - cp;
|
|
}
|
|
|
|
static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
|
|
{
|
|
u64 a = of_read_number(addr, na);
|
|
memset(addr, 0, na * 4);
|
|
a += offset;
|
|
if (na > 1)
|
|
addr[na - 2] = cpu_to_be32(a >> 32);
|
|
addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int of_bus_default_get_flags(const __be32 *addr)
|
|
{
|
|
return IORESOURCE_MEM;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* PCI bus specific translator
|
|
*/
|
|
|
|
static int of_bus_pci_match(struct device_node *np)
|
|
{
|
|
/*
|
|
* "pciex" is PCI Express
|
|
* "vci" is for the /chaos bridge on 1st-gen PCI powermacs
|
|
* "ht" is hypertransport
|
|
*/
|
|
return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
|
|
of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
|
|
}
|
|
|
|
static void of_bus_pci_count_cells(struct device_node *np,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = 3;
|
|
if (sizec)
|
|
*sizec = 2;
|
|
}
|
|
|
|
static unsigned int of_bus_pci_get_flags(const __be32 *addr)
|
|
{
|
|
unsigned int flags = 0;
|
|
u32 w = be32_to_cpup(addr);
|
|
|
|
switch((w >> 24) & 0x03) {
|
|
case 0x01:
|
|
flags |= IORESOURCE_IO;
|
|
break;
|
|
case 0x02: /* 32 bits */
|
|
case 0x03: /* 64 bits */
|
|
flags |= IORESOURCE_MEM;
|
|
break;
|
|
}
|
|
if (w & 0x40000000)
|
|
flags |= IORESOURCE_PREFETCH;
|
|
return flags;
|
|
}
|
|
|
|
static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
|
|
int pna)
|
|
{
|
|
u64 cp, s, da;
|
|
unsigned int af, rf;
|
|
|
|
af = of_bus_pci_get_flags(addr);
|
|
rf = of_bus_pci_get_flags(range);
|
|
|
|
/* Check address type match */
|
|
if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
|
|
return OF_BAD_ADDR;
|
|
|
|
/* Read address values, skipping high cell */
|
|
cp = of_read_number(range + 1, na - 1);
|
|
s = of_read_number(range + na + pna, ns);
|
|
da = of_read_number(addr + 1, na - 1);
|
|
|
|
pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
|
|
(unsigned long long)cp, (unsigned long long)s,
|
|
(unsigned long long)da);
|
|
|
|
if (da < cp || da >= (cp + s))
|
|
return OF_BAD_ADDR;
|
|
return da - cp;
|
|
}
|
|
|
|
static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
|
|
{
|
|
return of_bus_default_translate(addr + 1, offset, na - 1);
|
|
}
|
|
|
|
const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
|
|
unsigned int *flags)
|
|
{
|
|
const __be32 *prop;
|
|
unsigned int psize;
|
|
struct device_node *parent;
|
|
struct of_bus *bus;
|
|
int onesize, i, na, ns;
|
|
|
|
/* Get parent & match bus type */
|
|
parent = of_get_parent(dev);
|
|
if (parent == NULL)
|
|
return NULL;
|
|
bus = of_match_bus(parent);
|
|
if (strcmp(bus->name, "pci")) {
|
|
of_node_put(parent);
|
|
return NULL;
|
|
}
|
|
bus->count_cells(dev, &na, &ns);
|
|
of_node_put(parent);
|
|
if (!OF_CHECK_ADDR_COUNT(na))
|
|
return NULL;
|
|
|
|
/* Get "reg" or "assigned-addresses" property */
|
|
prop = of_get_property(dev, bus->addresses, &psize);
|
|
if (prop == NULL)
|
|
return NULL;
|
|
psize /= 4;
|
|
|
|
onesize = na + ns;
|
|
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
|
|
u32 val = be32_to_cpu(prop[0]);
|
|
if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
|
|
if (size)
|
|
*size = of_read_number(prop + na, ns);
|
|
if (flags)
|
|
*flags = bus->get_flags(prop);
|
|
return prop;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(of_get_pci_address);
|
|
|
|
int of_pci_address_to_resource(struct device_node *dev, int bar,
|
|
struct resource *r)
|
|
{
|
|
const __be32 *addrp;
|
|
u64 size;
|
|
unsigned int flags;
|
|
|
|
addrp = of_get_pci_address(dev, bar, &size, &flags);
|
|
if (addrp == NULL)
|
|
return -EINVAL;
|
|
return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
|
|
|
|
static int parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node, const char *name)
|
|
{
|
|
const int na = 3, ns = 2;
|
|
int rlen;
|
|
|
|
parser->node = node;
|
|
parser->pna = of_n_addr_cells(node);
|
|
parser->np = parser->pna + na + ns;
|
|
parser->dma = !strcmp(name, "dma-ranges");
|
|
|
|
parser->range = of_get_property(node, name, &rlen);
|
|
if (parser->range == NULL)
|
|
return -ENOENT;
|
|
|
|
parser->end = parser->range + rlen / sizeof(__be32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int of_pci_range_parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node)
|
|
{
|
|
return parser_init(parser, node, "ranges");
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
|
|
|
|
int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node)
|
|
{
|
|
return parser_init(parser, node, "dma-ranges");
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
|
|
|
|
struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
|
|
struct of_pci_range *range)
|
|
{
|
|
const int na = 3, ns = 2;
|
|
|
|
if (!range)
|
|
return NULL;
|
|
|
|
if (!parser->range || parser->range + parser->np > parser->end)
|
|
return NULL;
|
|
|
|
range->pci_space = be32_to_cpup(parser->range);
|
|
range->flags = of_bus_pci_get_flags(parser->range);
|
|
range->pci_addr = of_read_number(parser->range + 1, ns);
|
|
if (parser->dma)
|
|
range->cpu_addr = of_translate_dma_address(parser->node,
|
|
parser->range + na);
|
|
else
|
|
range->cpu_addr = of_translate_address(parser->node,
|
|
parser->range + na);
|
|
range->size = of_read_number(parser->range + parser->pna + na, ns);
|
|
|
|
parser->range += parser->np;
|
|
|
|
/* Now consume following elements while they are contiguous */
|
|
while (parser->range + parser->np <= parser->end) {
|
|
u32 flags;
|
|
u64 pci_addr, cpu_addr, size;
|
|
|
|
flags = of_bus_pci_get_flags(parser->range);
|
|
pci_addr = of_read_number(parser->range + 1, ns);
|
|
if (parser->dma)
|
|
cpu_addr = of_translate_dma_address(parser->node,
|
|
parser->range + na);
|
|
else
|
|
cpu_addr = of_translate_address(parser->node,
|
|
parser->range + na);
|
|
size = of_read_number(parser->range + parser->pna + na, ns);
|
|
|
|
if (flags != range->flags)
|
|
break;
|
|
if (pci_addr != range->pci_addr + range->size ||
|
|
cpu_addr != range->cpu_addr + range->size)
|
|
break;
|
|
|
|
range->size += size;
|
|
parser->range += parser->np;
|
|
}
|
|
|
|
return range;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
|
|
|
|
/*
|
|
* of_pci_range_to_resource - Create a resource from an of_pci_range
|
|
* @range: the PCI range that describes the resource
|
|
* @np: device node where the range belongs to
|
|
* @res: pointer to a valid resource that will be updated to
|
|
* reflect the values contained in the range.
|
|
*
|
|
* Returns EINVAL if the range cannot be converted to resource.
|
|
*
|
|
* Note that if the range is an IO range, the resource will be converted
|
|
* using pci_address_to_pio() which can fail if it is called too early or
|
|
* if the range cannot be matched to any host bridge IO space (our case here).
|
|
* To guard against that we try to register the IO range first.
|
|
* If that fails we know that pci_address_to_pio() will do too.
|
|
*/
|
|
int of_pci_range_to_resource(struct of_pci_range *range,
|
|
struct device_node *np, struct resource *res)
|
|
{
|
|
int err;
|
|
res->flags = range->flags;
|
|
res->parent = res->child = res->sibling = NULL;
|
|
res->name = np->full_name;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
unsigned long port;
|
|
err = pci_register_io_range(&np->fwnode, range->cpu_addr,
|
|
range->size);
|
|
if (err)
|
|
goto invalid_range;
|
|
port = pci_address_to_pio(range->cpu_addr);
|
|
if (port == (unsigned long)-1) {
|
|
err = -EINVAL;
|
|
goto invalid_range;
|
|
}
|
|
res->start = port;
|
|
} else {
|
|
if ((sizeof(resource_size_t) < 8) &&
|
|
upper_32_bits(range->cpu_addr)) {
|
|
err = -EINVAL;
|
|
goto invalid_range;
|
|
}
|
|
|
|
res->start = range->cpu_addr;
|
|
}
|
|
res->end = res->start + range->size - 1;
|
|
return 0;
|
|
|
|
invalid_range:
|
|
res->start = (resource_size_t)OF_BAD_ADDR;
|
|
res->end = (resource_size_t)OF_BAD_ADDR;
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(of_pci_range_to_resource);
|
|
#endif /* CONFIG_PCI */
|
|
|
|
/*
|
|
* ISA bus specific translator
|
|
*/
|
|
|
|
static int of_bus_isa_match(struct device_node *np)
|
|
{
|
|
return of_node_name_eq(np, "isa");
|
|
}
|
|
|
|
static void of_bus_isa_count_cells(struct device_node *child,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = 2;
|
|
if (sizec)
|
|
*sizec = 1;
|
|
}
|
|
|
|
static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
|
|
int pna)
|
|
{
|
|
u64 cp, s, da;
|
|
|
|
/* Check address type match */
|
|
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
|
|
return OF_BAD_ADDR;
|
|
|
|
/* Read address values, skipping high cell */
|
|
cp = of_read_number(range + 1, na - 1);
|
|
s = of_read_number(range + na + pna, ns);
|
|
da = of_read_number(addr + 1, na - 1);
|
|
|
|
pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
|
|
(unsigned long long)cp, (unsigned long long)s,
|
|
(unsigned long long)da);
|
|
|
|
if (da < cp || da >= (cp + s))
|
|
return OF_BAD_ADDR;
|
|
return da - cp;
|
|
}
|
|
|
|
static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
|
|
{
|
|
return of_bus_default_translate(addr + 1, offset, na - 1);
|
|
}
|
|
|
|
static unsigned int of_bus_isa_get_flags(const __be32 *addr)
|
|
{
|
|
unsigned int flags = 0;
|
|
u32 w = be32_to_cpup(addr);
|
|
|
|
if (w & 1)
|
|
flags |= IORESOURCE_IO;
|
|
else
|
|
flags |= IORESOURCE_MEM;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Array of bus specific translators
|
|
*/
|
|
|
|
static struct of_bus of_busses[] = {
|
|
#ifdef CONFIG_PCI
|
|
/* PCI */
|
|
{
|
|
.name = "pci",
|
|
.addresses = "assigned-addresses",
|
|
.match = of_bus_pci_match,
|
|
.count_cells = of_bus_pci_count_cells,
|
|
.map = of_bus_pci_map,
|
|
.translate = of_bus_pci_translate,
|
|
.get_flags = of_bus_pci_get_flags,
|
|
},
|
|
#endif /* CONFIG_PCI */
|
|
/* ISA */
|
|
{
|
|
.name = "isa",
|
|
.addresses = "reg",
|
|
.match = of_bus_isa_match,
|
|
.count_cells = of_bus_isa_count_cells,
|
|
.map = of_bus_isa_map,
|
|
.translate = of_bus_isa_translate,
|
|
.get_flags = of_bus_isa_get_flags,
|
|
},
|
|
/* Default */
|
|
{
|
|
.name = "default",
|
|
.addresses = "reg",
|
|
.match = NULL,
|
|
.count_cells = of_bus_default_count_cells,
|
|
.map = of_bus_default_map,
|
|
.translate = of_bus_default_translate,
|
|
.get_flags = of_bus_default_get_flags,
|
|
},
|
|
};
|
|
|
|
static struct of_bus *of_match_bus(struct device_node *np)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(of_busses); i++)
|
|
if (!of_busses[i].match || of_busses[i].match(np))
|
|
return &of_busses[i];
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static int of_empty_ranges_quirk(struct device_node *np)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC)) {
|
|
/* To save cycles, we cache the result for global "Mac" setting */
|
|
static int quirk_state = -1;
|
|
|
|
/* PA-SEMI sdc DT bug */
|
|
if (of_device_is_compatible(np, "1682m-sdc"))
|
|
return true;
|
|
|
|
/* Make quirk cached */
|
|
if (quirk_state < 0)
|
|
quirk_state =
|
|
of_machine_is_compatible("Power Macintosh") ||
|
|
of_machine_is_compatible("MacRISC");
|
|
return quirk_state;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int of_translate_one(struct device_node *parent, struct of_bus *bus,
|
|
struct of_bus *pbus, __be32 *addr,
|
|
int na, int ns, int pna, const char *rprop)
|
|
{
|
|
const __be32 *ranges;
|
|
unsigned int rlen;
|
|
int rone;
|
|
u64 offset = OF_BAD_ADDR;
|
|
|
|
/*
|
|
* Normally, an absence of a "ranges" property means we are
|
|
* crossing a non-translatable boundary, and thus the addresses
|
|
* below the current cannot be converted to CPU physical ones.
|
|
* Unfortunately, while this is very clear in the spec, it's not
|
|
* what Apple understood, and they do have things like /uni-n or
|
|
* /ht nodes with no "ranges" property and a lot of perfectly
|
|
* useable mapped devices below them. Thus we treat the absence of
|
|
* "ranges" as equivalent to an empty "ranges" property which means
|
|
* a 1:1 translation at that level. It's up to the caller not to try
|
|
* to translate addresses that aren't supposed to be translated in
|
|
* the first place. --BenH.
|
|
*
|
|
* As far as we know, this damage only exists on Apple machines, so
|
|
* This code is only enabled on powerpc. --gcl
|
|
*
|
|
* This quirk also applies for 'dma-ranges' which frequently exist in
|
|
* child nodes without 'dma-ranges' in the parent nodes. --RobH
|
|
*/
|
|
ranges = of_get_property(parent, rprop, &rlen);
|
|
if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
|
|
strcmp(rprop, "dma-ranges")) {
|
|
pr_debug("no ranges; cannot translate\n");
|
|
return 1;
|
|
}
|
|
if (ranges == NULL || rlen == 0) {
|
|
offset = of_read_number(addr, na);
|
|
memset(addr, 0, pna * 4);
|
|
pr_debug("empty ranges; 1:1 translation\n");
|
|
goto finish;
|
|
}
|
|
|
|
pr_debug("walking ranges...\n");
|
|
|
|
/* Now walk through the ranges */
|
|
rlen /= 4;
|
|
rone = na + pna + ns;
|
|
for (; rlen >= rone; rlen -= rone, ranges += rone) {
|
|
offset = bus->map(addr, ranges, na, ns, pna);
|
|
if (offset != OF_BAD_ADDR)
|
|
break;
|
|
}
|
|
if (offset == OF_BAD_ADDR) {
|
|
pr_debug("not found !\n");
|
|
return 1;
|
|
}
|
|
memcpy(addr, ranges + na, 4 * pna);
|
|
|
|
finish:
|
|
of_dump_addr("parent translation for:", addr, pna);
|
|
pr_debug("with offset: %llx\n", (unsigned long long)offset);
|
|
|
|
/* Translate it into parent bus space */
|
|
return pbus->translate(addr, offset, pna);
|
|
}
|
|
|
|
/*
|
|
* Translate an address from the device-tree into a CPU physical address,
|
|
* this walks up the tree and applies the various bus mappings on the
|
|
* way.
|
|
*
|
|
* Note: We consider that crossing any level with #size-cells == 0 to mean
|
|
* that translation is impossible (that is we are not dealing with a value
|
|
* that can be mapped to a cpu physical address). This is not really specified
|
|
* that way, but this is traditionally the way IBM at least do things
|
|
*
|
|
* Whenever the translation fails, the *host pointer will be set to the
|
|
* device that had registered logical PIO mapping, and the return code is
|
|
* relative to that node.
|
|
*/
|
|
static u64 __of_translate_address(struct device_node *dev,
|
|
struct device_node *(*get_parent)(const struct device_node *),
|
|
const __be32 *in_addr, const char *rprop,
|
|
struct device_node **host)
|
|
{
|
|
struct device_node *parent = NULL;
|
|
struct of_bus *bus, *pbus;
|
|
__be32 addr[OF_MAX_ADDR_CELLS];
|
|
int na, ns, pna, pns;
|
|
u64 result = OF_BAD_ADDR;
|
|
|
|
pr_debug("** translation for device %pOF **\n", dev);
|
|
|
|
/* Increase refcount at current level */
|
|
of_node_get(dev);
|
|
|
|
*host = NULL;
|
|
/* Get parent & match bus type */
|
|
parent = get_parent(dev);
|
|
if (parent == NULL)
|
|
goto bail;
|
|
bus = of_match_bus(parent);
|
|
|
|
/* Count address cells & copy address locally */
|
|
bus->count_cells(dev, &na, &ns);
|
|
if (!OF_CHECK_COUNTS(na, ns)) {
|
|
pr_debug("Bad cell count for %pOF\n", dev);
|
|
goto bail;
|
|
}
|
|
memcpy(addr, in_addr, na * 4);
|
|
|
|
pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
|
|
bus->name, na, ns, parent);
|
|
of_dump_addr("translating address:", addr, na);
|
|
|
|
/* Translate */
|
|
for (;;) {
|
|
struct logic_pio_hwaddr *iorange;
|
|
|
|
/* Switch to parent bus */
|
|
of_node_put(dev);
|
|
dev = parent;
|
|
parent = get_parent(dev);
|
|
|
|
/* If root, we have finished */
|
|
if (parent == NULL) {
|
|
pr_debug("reached root node\n");
|
|
result = of_read_number(addr, na);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For indirectIO device which has no ranges property, get
|
|
* the address from reg directly.
|
|
*/
|
|
iorange = find_io_range_by_fwnode(&dev->fwnode);
|
|
if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
|
|
result = of_read_number(addr + 1, na - 1);
|
|
pr_debug("indirectIO matched(%pOF) 0x%llx\n",
|
|
dev, result);
|
|
*host = of_node_get(dev);
|
|
break;
|
|
}
|
|
|
|
/* Get new parent bus and counts */
|
|
pbus = of_match_bus(parent);
|
|
pbus->count_cells(dev, &pna, &pns);
|
|
if (!OF_CHECK_COUNTS(pna, pns)) {
|
|
pr_err("Bad cell count for %pOF\n", dev);
|
|
break;
|
|
}
|
|
|
|
pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
|
|
pbus->name, pna, pns, parent);
|
|
|
|
/* Apply bus translation */
|
|
if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
|
|
break;
|
|
|
|
/* Complete the move up one level */
|
|
na = pna;
|
|
ns = pns;
|
|
bus = pbus;
|
|
|
|
of_dump_addr("one level translation:", addr, na);
|
|
}
|
|
bail:
|
|
of_node_put(parent);
|
|
of_node_put(dev);
|
|
|
|
return result;
|
|
}
|
|
|
|
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
|
|
{
|
|
struct device_node *host;
|
|
u64 ret;
|
|
|
|
ret = __of_translate_address(dev, of_get_parent,
|
|
in_addr, "ranges", &host);
|
|
if (host) {
|
|
of_node_put(host);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(of_translate_address);
|
|
|
|
static struct device_node *__of_get_dma_parent(const struct device_node *np)
|
|
{
|
|
struct of_phandle_args args;
|
|
int ret, index;
|
|
|
|
index = of_property_match_string(np, "interconnect-names", "dma-mem");
|
|
if (index < 0)
|
|
return of_get_parent(np);
|
|
|
|
ret = of_parse_phandle_with_args(np, "interconnects",
|
|
"#interconnect-cells",
|
|
index, &args);
|
|
if (ret < 0)
|
|
return of_get_parent(np);
|
|
|
|
return of_node_get(args.np);
|
|
}
|
|
|
|
static struct device_node *of_get_next_dma_parent(struct device_node *np)
|
|
{
|
|
struct device_node *parent;
|
|
|
|
parent = __of_get_dma_parent(np);
|
|
of_node_put(np);
|
|
|
|
return parent;
|
|
}
|
|
|
|
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
|
|
{
|
|
struct device_node *host;
|
|
u64 ret;
|
|
|
|
ret = __of_translate_address(dev, __of_get_dma_parent,
|
|
in_addr, "dma-ranges", &host);
|
|
|
|
if (host) {
|
|
of_node_put(host);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(of_translate_dma_address);
|
|
|
|
const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
|
|
unsigned int *flags)
|
|
{
|
|
const __be32 *prop;
|
|
unsigned int psize;
|
|
struct device_node *parent;
|
|
struct of_bus *bus;
|
|
int onesize, i, na, ns;
|
|
|
|
/* Get parent & match bus type */
|
|
parent = of_get_parent(dev);
|
|
if (parent == NULL)
|
|
return NULL;
|
|
bus = of_match_bus(parent);
|
|
bus->count_cells(dev, &na, &ns);
|
|
of_node_put(parent);
|
|
if (!OF_CHECK_ADDR_COUNT(na))
|
|
return NULL;
|
|
|
|
/* Get "reg" or "assigned-addresses" property */
|
|
prop = of_get_property(dev, bus->addresses, &psize);
|
|
if (prop == NULL)
|
|
return NULL;
|
|
psize /= 4;
|
|
|
|
onesize = na + ns;
|
|
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
|
|
if (i == index) {
|
|
if (size)
|
|
*size = of_read_number(prop + na, ns);
|
|
if (flags)
|
|
*flags = bus->get_flags(prop);
|
|
return prop;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(of_get_address);
|
|
|
|
static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
|
|
u64 size)
|
|
{
|
|
u64 taddr;
|
|
unsigned long port;
|
|
struct device_node *host;
|
|
|
|
taddr = __of_translate_address(dev, of_get_parent,
|
|
in_addr, "ranges", &host);
|
|
if (host) {
|
|
/* host-specific port access */
|
|
port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
|
|
of_node_put(host);
|
|
} else {
|
|
/* memory-mapped I/O range */
|
|
port = pci_address_to_pio(taddr);
|
|
}
|
|
|
|
if (port == (unsigned long)-1)
|
|
return OF_BAD_ADDR;
|
|
|
|
return port;
|
|
}
|
|
|
|
static int __of_address_to_resource(struct device_node *dev,
|
|
const __be32 *addrp, u64 size, unsigned int flags,
|
|
const char *name, struct resource *r)
|
|
{
|
|
u64 taddr;
|
|
|
|
if (flags & IORESOURCE_MEM)
|
|
taddr = of_translate_address(dev, addrp);
|
|
else if (flags & IORESOURCE_IO)
|
|
taddr = of_translate_ioport(dev, addrp, size);
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (taddr == OF_BAD_ADDR)
|
|
return -EINVAL;
|
|
memset(r, 0, sizeof(struct resource));
|
|
|
|
r->start = taddr;
|
|
r->end = taddr + size - 1;
|
|
r->flags = flags;
|
|
r->name = name ? name : dev->full_name;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_address_to_resource - Translate device tree address and return as resource
|
|
*
|
|
* Note that if your address is a PIO address, the conversion will fail if
|
|
* the physical address can't be internally converted to an IO token with
|
|
* pci_address_to_pio(), that is because it's either called too early or it
|
|
* can't be matched to any host bridge IO space
|
|
*/
|
|
int of_address_to_resource(struct device_node *dev, int index,
|
|
struct resource *r)
|
|
{
|
|
const __be32 *addrp;
|
|
u64 size;
|
|
unsigned int flags;
|
|
const char *name = NULL;
|
|
|
|
addrp = of_get_address(dev, index, &size, &flags);
|
|
if (addrp == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Get optional "reg-names" property to add a name to a resource */
|
|
of_property_read_string_index(dev, "reg-names", index, &name);
|
|
|
|
return __of_address_to_resource(dev, addrp, size, flags, name, r);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_address_to_resource);
|
|
|
|
/**
|
|
* of_iomap - Maps the memory mapped IO for a given device_node
|
|
* @device: the device whose io range will be mapped
|
|
* @index: index of the io range
|
|
*
|
|
* Returns a pointer to the mapped memory
|
|
*/
|
|
void __iomem *of_iomap(struct device_node *np, int index)
|
|
{
|
|
struct resource res;
|
|
|
|
if (of_address_to_resource(np, index, &res))
|
|
return NULL;
|
|
|
|
return ioremap(res.start, resource_size(&res));
|
|
}
|
|
EXPORT_SYMBOL(of_iomap);
|
|
|
|
/*
|
|
* of_io_request_and_map - Requests a resource and maps the memory mapped IO
|
|
* for a given device_node
|
|
* @device: the device whose io range will be mapped
|
|
* @index: index of the io range
|
|
* @name: name "override" for the memory region request or NULL
|
|
*
|
|
* Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
|
|
* error code on failure. Usage example:
|
|
*
|
|
* base = of_io_request_and_map(node, 0, "foo");
|
|
* if (IS_ERR(base))
|
|
* return PTR_ERR(base);
|
|
*/
|
|
void __iomem *of_io_request_and_map(struct device_node *np, int index,
|
|
const char *name)
|
|
{
|
|
struct resource res;
|
|
void __iomem *mem;
|
|
|
|
if (of_address_to_resource(np, index, &res))
|
|
return IOMEM_ERR_PTR(-EINVAL);
|
|
|
|
if (!name)
|
|
name = res.name;
|
|
if (!request_mem_region(res.start, resource_size(&res), name))
|
|
return IOMEM_ERR_PTR(-EBUSY);
|
|
|
|
mem = ioremap(res.start, resource_size(&res));
|
|
if (!mem) {
|
|
release_mem_region(res.start, resource_size(&res));
|
|
return IOMEM_ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(of_io_request_and_map);
|
|
|
|
/**
|
|
* of_dma_get_range - Get DMA range info
|
|
* @np: device node to get DMA range info
|
|
* @dma_addr: pointer to store initial DMA address of DMA range
|
|
* @paddr: pointer to store initial CPU address of DMA range
|
|
* @size: pointer to store size of DMA range
|
|
*
|
|
* Look in bottom up direction for the first "dma-ranges" property
|
|
* and parse it.
|
|
* dma-ranges format:
|
|
* DMA addr (dma_addr) : naddr cells
|
|
* CPU addr (phys_addr_t) : pna cells
|
|
* size : nsize cells
|
|
*
|
|
* It returns -ENODEV if "dma-ranges" property was not found
|
|
* for this device in DT.
|
|
*/
|
|
int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
|
|
{
|
|
struct device_node *node = of_node_get(np);
|
|
const __be32 *ranges = NULL;
|
|
int len, naddr, nsize, pna;
|
|
int ret = 0;
|
|
bool found_dma_ranges = false;
|
|
u64 dmaaddr;
|
|
|
|
while (node) {
|
|
ranges = of_get_property(node, "dma-ranges", &len);
|
|
|
|
/* Ignore empty ranges, they imply no translation required */
|
|
if (ranges && len > 0)
|
|
break;
|
|
|
|
/* Once we find 'dma-ranges', then a missing one is an error */
|
|
if (found_dma_ranges && !ranges) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
found_dma_ranges = true;
|
|
|
|
node = of_get_next_dma_parent(node);
|
|
}
|
|
|
|
if (!node || !ranges) {
|
|
pr_debug("no dma-ranges found for node(%pOF)\n", np);
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
naddr = of_bus_n_addr_cells(node);
|
|
nsize = of_bus_n_size_cells(node);
|
|
pna = of_n_addr_cells(node);
|
|
if ((len / sizeof(__be32)) % (pna + naddr + nsize)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* dma-ranges format:
|
|
* DMA addr : naddr cells
|
|
* CPU addr : pna cells
|
|
* size : nsize cells
|
|
*/
|
|
dmaaddr = of_read_number(ranges, naddr);
|
|
*paddr = of_translate_dma_address(node, ranges + naddr);
|
|
if (*paddr == OF_BAD_ADDR) {
|
|
pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
|
|
dmaaddr, np);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
*dma_addr = dmaaddr;
|
|
|
|
*size = of_read_number(ranges + naddr + pna, nsize);
|
|
|
|
pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
|
|
*dma_addr, *paddr, *size);
|
|
|
|
out:
|
|
of_node_put(node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* of_dma_is_coherent - Check if device is coherent
|
|
* @np: device node
|
|
*
|
|
* It returns true if "dma-coherent" property was found
|
|
* for this device in the DT, or if DMA is coherent by
|
|
* default for OF devices on the current platform.
|
|
*/
|
|
bool of_dma_is_coherent(struct device_node *np)
|
|
{
|
|
struct device_node *node = of_node_get(np);
|
|
|
|
if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
|
|
return true;
|
|
|
|
while (node) {
|
|
if (of_property_read_bool(node, "dma-coherent")) {
|
|
of_node_put(node);
|
|
return true;
|
|
}
|
|
node = of_get_next_dma_parent(node);
|
|
}
|
|
of_node_put(node);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_dma_is_coherent);
|