dc158d23b3
Before running a guest, the host process (e.g., QEMU) FP/VEC registers
are saved if they were being used, similarly to when the kernel uses FP
registers. The guest values are then loaded into regs, and the host
process registers will be restored lazily when it uses FP/VEC.
KVM HV has a bug here: the host process registers do get saved, but the
user MSR bits remain enabled, which indicates the registers are valid
for the process. After they are clobbered by running the guest, this
valid indication causes the host process to take on the FP/VEC register
values of the guest.
Fixes: 34e119c96b
("KVM: PPC: Book3S HV P9: Reduce mtmsrd instructions required to save host SPRs")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231122025811.2973-1-npiggin@gmail.com
2411 lines
61 KiB
C
2411 lines
61 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Derived from "arch/i386/kernel/process.c"
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
|
|
* Paul Mackerras (paulus@cs.anu.edu.au)
|
|
*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/seq_buf.h>
|
|
|
|
#include <asm/interrupt.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/time.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
#include <asm/debug.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/firmware.h>
|
|
#include <asm/hw_irq.h>
|
|
#endif
|
|
#include <asm/code-patching.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/livepatch.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
/* Transactional Memory debug */
|
|
#ifdef TM_DEBUG_SW
|
|
#define TM_DEBUG(x...) printk(KERN_INFO x)
|
|
#else
|
|
#define TM_DEBUG(x...) do { } while(0)
|
|
#endif
|
|
|
|
extern unsigned long _get_SP(void);
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Are we running in "Suspend disabled" mode? If so we have to block any
|
|
* sigreturn that would get us into suspended state, and we also warn in some
|
|
* other paths that we should never reach with suspend disabled.
|
|
*/
|
|
bool tm_suspend_disabled __ro_after_init = false;
|
|
|
|
static void check_if_tm_restore_required(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* If we are saving the current thread's registers, and the
|
|
* thread is in a transactional state, set the TIF_RESTORE_TM
|
|
* bit so that we know to restore the registers before
|
|
* returning to userspace.
|
|
*/
|
|
if (tsk == current && tsk->thread.regs &&
|
|
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
|
|
!test_thread_flag(TIF_RESTORE_TM)) {
|
|
regs_set_return_msr(&tsk->thread.ckpt_regs,
|
|
tsk->thread.regs->msr);
|
|
set_thread_flag(TIF_RESTORE_TM);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
bool strict_msr_control;
|
|
EXPORT_SYMBOL(strict_msr_control);
|
|
|
|
static int __init enable_strict_msr_control(char *str)
|
|
{
|
|
strict_msr_control = true;
|
|
pr_info("Enabling strict facility control\n");
|
|
|
|
return 0;
|
|
}
|
|
early_param("ppc_strict_facility_enable", enable_strict_msr_control);
|
|
|
|
/* notrace because it's called by restore_math */
|
|
unsigned long notrace msr_check_and_set(unsigned long bits)
|
|
{
|
|
unsigned long oldmsr = mfmsr();
|
|
unsigned long newmsr;
|
|
|
|
newmsr = oldmsr | bits;
|
|
|
|
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
|
|
newmsr |= MSR_VSX;
|
|
|
|
if (oldmsr != newmsr)
|
|
newmsr = mtmsr_isync_irqsafe(newmsr);
|
|
|
|
return newmsr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(msr_check_and_set);
|
|
|
|
/* notrace because it's called by restore_math */
|
|
void notrace __msr_check_and_clear(unsigned long bits)
|
|
{
|
|
unsigned long oldmsr = mfmsr();
|
|
unsigned long newmsr;
|
|
|
|
newmsr = oldmsr & ~bits;
|
|
|
|
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
|
|
newmsr &= ~MSR_VSX;
|
|
|
|
if (oldmsr != newmsr)
|
|
mtmsr_isync_irqsafe(newmsr);
|
|
}
|
|
EXPORT_SYMBOL(__msr_check_and_clear);
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
static void __giveup_fpu(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr;
|
|
|
|
save_fpu(tsk);
|
|
msr = tsk->thread.regs->msr;
|
|
msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr &= ~MSR_VSX;
|
|
regs_set_return_msr(tsk->thread.regs, msr);
|
|
}
|
|
|
|
void giveup_fpu(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_FP);
|
|
__giveup_fpu(tsk);
|
|
msr_check_and_clear(MSR_FP);
|
|
}
|
|
EXPORT_SYMBOL(giveup_fpu);
|
|
|
|
/*
|
|
* Make sure the floating-point register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_fp_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
/*
|
|
* We need to disable preemption here because if we didn't,
|
|
* another process could get scheduled after the regs->msr
|
|
* test but before we have finished saving the FP registers
|
|
* to the thread_struct. That process could take over the
|
|
* FPU, and then when we get scheduled again we would store
|
|
* bogus values for the remaining FP registers.
|
|
*/
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_FP) {
|
|
/*
|
|
* This should only ever be called for current or
|
|
* for a stopped child process. Since we save away
|
|
* the FP register state on context switch,
|
|
* there is something wrong if a stopped child appears
|
|
* to still have its FP state in the CPU registers.
|
|
*/
|
|
BUG_ON(tsk != current);
|
|
giveup_fpu(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
|
|
|
|
void enable_kernel_fp(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_FP);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_fpu(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_fp);
|
|
#else
|
|
static inline void __giveup_fpu(struct task_struct *tsk) { }
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
static void __giveup_altivec(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr;
|
|
|
|
save_altivec(tsk);
|
|
msr = tsk->thread.regs->msr;
|
|
msr &= ~MSR_VEC;
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr &= ~MSR_VSX;
|
|
regs_set_return_msr(tsk->thread.regs, msr);
|
|
}
|
|
|
|
void giveup_altivec(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_VEC);
|
|
__giveup_altivec(tsk);
|
|
msr_check_and_clear(MSR_VEC);
|
|
}
|
|
EXPORT_SYMBOL(giveup_altivec);
|
|
|
|
void enable_kernel_altivec(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_VEC);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_altivec(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_altivec);
|
|
|
|
/*
|
|
* Make sure the VMX/Altivec register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_altivec_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_VEC) {
|
|
BUG_ON(tsk != current);
|
|
giveup_altivec(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_VSX
|
|
static void __giveup_vsx(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr = tsk->thread.regs->msr;
|
|
|
|
/*
|
|
* We should never be setting MSR_VSX without also setting
|
|
* MSR_FP and MSR_VEC
|
|
*/
|
|
WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
|
|
|
|
/* __giveup_fpu will clear MSR_VSX */
|
|
if (msr & MSR_FP)
|
|
__giveup_fpu(tsk);
|
|
if (msr & MSR_VEC)
|
|
__giveup_altivec(tsk);
|
|
}
|
|
|
|
static void giveup_vsx(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
|
|
__giveup_vsx(tsk);
|
|
msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
|
|
}
|
|
|
|
void enable_kernel_vsx(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
|
|
|
|
if (current->thread.regs &&
|
|
(current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_vsx(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_vsx);
|
|
|
|
void flush_vsx_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
|
|
BUG_ON(tsk != current);
|
|
giveup_vsx(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef CONFIG_SPE
|
|
void giveup_spe(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_SPE);
|
|
__giveup_spe(tsk);
|
|
msr_check_and_clear(MSR_SPE);
|
|
}
|
|
EXPORT_SYMBOL(giveup_spe);
|
|
|
|
void enable_kernel_spe(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
msr_check_and_set(MSR_SPE);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
|
|
check_if_tm_restore_required(current);
|
|
__giveup_spe(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_spe);
|
|
|
|
void flush_spe_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_SPE) {
|
|
BUG_ON(tsk != current);
|
|
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
|
|
giveup_spe(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPE */
|
|
|
|
static unsigned long msr_all_available;
|
|
|
|
static int __init init_msr_all_available(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC_FPU))
|
|
msr_all_available |= MSR_FP;
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
msr_all_available |= MSR_VEC;
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr_all_available |= MSR_VSX;
|
|
if (cpu_has_feature(CPU_FTR_SPE))
|
|
msr_all_available |= MSR_SPE;
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_msr_all_available);
|
|
|
|
void giveup_all(struct task_struct *tsk)
|
|
{
|
|
unsigned long usermsr;
|
|
|
|
if (!tsk->thread.regs)
|
|
return;
|
|
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
usermsr = tsk->thread.regs->msr;
|
|
|
|
if ((usermsr & msr_all_available) == 0)
|
|
return;
|
|
|
|
msr_check_and_set(msr_all_available);
|
|
|
|
WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
|
|
|
|
if (usermsr & MSR_FP)
|
|
__giveup_fpu(tsk);
|
|
if (usermsr & MSR_VEC)
|
|
__giveup_altivec(tsk);
|
|
if (usermsr & MSR_SPE)
|
|
__giveup_spe(tsk);
|
|
|
|
msr_check_and_clear(msr_all_available);
|
|
}
|
|
EXPORT_SYMBOL(giveup_all);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
#ifdef CONFIG_PPC_FPU
|
|
static bool should_restore_fp(void)
|
|
{
|
|
if (current->thread.load_fp) {
|
|
current->thread.load_fp++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void do_restore_fp(void)
|
|
{
|
|
load_fp_state(¤t->thread.fp_state);
|
|
}
|
|
#else
|
|
static bool should_restore_fp(void) { return false; }
|
|
static void do_restore_fp(void) { }
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
static bool should_restore_altivec(void)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
|
|
current->thread.load_vec++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void do_restore_altivec(void)
|
|
{
|
|
load_vr_state(¤t->thread.vr_state);
|
|
current->thread.used_vr = 1;
|
|
}
|
|
#else
|
|
static bool should_restore_altivec(void) { return false; }
|
|
static void do_restore_altivec(void) { }
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
static bool should_restore_vsx(void)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
return true;
|
|
return false;
|
|
}
|
|
#ifdef CONFIG_VSX
|
|
static void do_restore_vsx(void)
|
|
{
|
|
current->thread.used_vsr = 1;
|
|
}
|
|
#else
|
|
static void do_restore_vsx(void) { }
|
|
#endif /* CONFIG_VSX */
|
|
|
|
/*
|
|
* The exception exit path calls restore_math() with interrupts hard disabled
|
|
* but the soft irq state not "reconciled". ftrace code that calls
|
|
* local_irq_save/restore causes warnings.
|
|
*
|
|
* Rather than complicate the exit path, just don't trace restore_math. This
|
|
* could be done by having ftrace entry code check for this un-reconciled
|
|
* condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
|
|
* temporarily fix it up for the duration of the ftrace call.
|
|
*/
|
|
void notrace restore_math(struct pt_regs *regs)
|
|
{
|
|
unsigned long msr;
|
|
unsigned long new_msr = 0;
|
|
|
|
msr = regs->msr;
|
|
|
|
/*
|
|
* new_msr tracks the facilities that are to be restored. Only reload
|
|
* if the bit is not set in the user MSR (if it is set, the registers
|
|
* are live for the user thread).
|
|
*/
|
|
if ((!(msr & MSR_FP)) && should_restore_fp())
|
|
new_msr |= MSR_FP;
|
|
|
|
if ((!(msr & MSR_VEC)) && should_restore_altivec())
|
|
new_msr |= MSR_VEC;
|
|
|
|
if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
|
|
if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
|
|
new_msr |= MSR_VSX;
|
|
}
|
|
|
|
if (new_msr) {
|
|
unsigned long fpexc_mode = 0;
|
|
|
|
msr_check_and_set(new_msr);
|
|
|
|
if (new_msr & MSR_FP) {
|
|
do_restore_fp();
|
|
|
|
// This also covers VSX, because VSX implies FP
|
|
fpexc_mode = current->thread.fpexc_mode;
|
|
}
|
|
|
|
if (new_msr & MSR_VEC)
|
|
do_restore_altivec();
|
|
|
|
if (new_msr & MSR_VSX)
|
|
do_restore_vsx();
|
|
|
|
msr_check_and_clear(new_msr);
|
|
|
|
regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
static void save_all(struct task_struct *tsk)
|
|
{
|
|
unsigned long usermsr;
|
|
|
|
if (!tsk->thread.regs)
|
|
return;
|
|
|
|
usermsr = tsk->thread.regs->msr;
|
|
|
|
if ((usermsr & msr_all_available) == 0)
|
|
return;
|
|
|
|
msr_check_and_set(msr_all_available);
|
|
|
|
WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
|
|
|
|
if (usermsr & MSR_FP)
|
|
save_fpu(tsk);
|
|
|
|
if (usermsr & MSR_VEC)
|
|
save_altivec(tsk);
|
|
|
|
if (usermsr & MSR_SPE)
|
|
__giveup_spe(tsk);
|
|
|
|
msr_check_and_clear(msr_all_available);
|
|
}
|
|
|
|
void flush_all_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
BUG_ON(tsk != current);
|
|
#ifdef CONFIG_SPE
|
|
if (tsk->thread.regs->msr & MSR_SPE)
|
|
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
|
|
#endif
|
|
save_all(tsk);
|
|
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(flush_all_to_thread);
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
void do_send_trap(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code, int breakpt)
|
|
{
|
|
current->thread.trap_nr = TRAP_HWBKPT;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
/* Deliver the signal to userspace */
|
|
force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
|
|
(void __user *)address);
|
|
}
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
static void do_break_handler(struct pt_regs *regs)
|
|
{
|
|
struct arch_hw_breakpoint null_brk = {0};
|
|
struct arch_hw_breakpoint *info;
|
|
ppc_inst_t instr = ppc_inst(0);
|
|
int type = 0;
|
|
int size = 0;
|
|
unsigned long ea;
|
|
int i;
|
|
|
|
/*
|
|
* If underneath hw supports only one watchpoint, we know it
|
|
* caused exception. 8xx also falls into this category.
|
|
*/
|
|
if (nr_wp_slots() == 1) {
|
|
__set_breakpoint(0, &null_brk);
|
|
current->thread.hw_brk[0] = null_brk;
|
|
current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
|
|
return;
|
|
}
|
|
|
|
/* Otherwise find out which DAWR caused exception and disable it. */
|
|
wp_get_instr_detail(regs, &instr, &type, &size, &ea);
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
info = ¤t->thread.hw_brk[i];
|
|
if (!info->address)
|
|
continue;
|
|
|
|
if (wp_check_constraints(regs, instr, ea, type, size, info)) {
|
|
__set_breakpoint(i, &null_brk);
|
|
current->thread.hw_brk[i] = null_brk;
|
|
current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
|
|
}
|
|
}
|
|
}
|
|
|
|
DEFINE_INTERRUPT_HANDLER(do_break)
|
|
{
|
|
current->thread.trap_nr = TRAP_HWBKPT;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (debugger_break_match(regs))
|
|
return;
|
|
|
|
/*
|
|
* We reach here only when watchpoint exception is generated by ptrace
|
|
* event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
|
|
* watchpoint is already handled by hw_breakpoint_handler() so we don't
|
|
* have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
|
|
* we need to manually handle the watchpoint here.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
|
|
do_break_handler(regs);
|
|
|
|
/* Deliver the signal to userspace */
|
|
force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
|
|
}
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
/*
|
|
* Set the debug registers back to their default "safe" values.
|
|
*/
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
thread->debug.iac1 = thread->debug.iac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
thread->debug.iac3 = thread->debug.iac4 = 0;
|
|
#endif
|
|
thread->debug.dac1 = thread->debug.dac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
thread->debug.dvc1 = thread->debug.dvc2 = 0;
|
|
#endif
|
|
thread->debug.dbcr0 = 0;
|
|
#ifdef CONFIG_BOOKE
|
|
/*
|
|
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
|
|
*/
|
|
thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
|
|
DBCR1_IAC3US | DBCR1_IAC4US;
|
|
/*
|
|
* Force Data Address Compare User/Supervisor bits to be User-only
|
|
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
|
|
*/
|
|
thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
|
|
#else
|
|
thread->debug.dbcr1 = 0;
|
|
#endif
|
|
}
|
|
|
|
static void prime_debug_regs(struct debug_reg *debug)
|
|
{
|
|
/*
|
|
* We could have inherited MSR_DE from userspace, since
|
|
* it doesn't get cleared on exception entry. Make sure
|
|
* MSR_DE is clear before we enable any debug events.
|
|
*/
|
|
mtmsr(mfmsr() & ~MSR_DE);
|
|
|
|
mtspr(SPRN_IAC1, debug->iac1);
|
|
mtspr(SPRN_IAC2, debug->iac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
mtspr(SPRN_IAC3, debug->iac3);
|
|
mtspr(SPRN_IAC4, debug->iac4);
|
|
#endif
|
|
mtspr(SPRN_DAC1, debug->dac1);
|
|
mtspr(SPRN_DAC2, debug->dac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
mtspr(SPRN_DVC1, debug->dvc1);
|
|
mtspr(SPRN_DVC2, debug->dvc2);
|
|
#endif
|
|
mtspr(SPRN_DBCR0, debug->dbcr0);
|
|
mtspr(SPRN_DBCR1, debug->dbcr1);
|
|
#ifdef CONFIG_BOOKE
|
|
mtspr(SPRN_DBCR2, debug->dbcr2);
|
|
#endif
|
|
}
|
|
/*
|
|
* Unless neither the old or new thread are making use of the
|
|
* debug registers, set the debug registers from the values
|
|
* stored in the new thread.
|
|
*/
|
|
void switch_booke_debug_regs(struct debug_reg *new_debug)
|
|
{
|
|
if ((current->thread.debug.dbcr0 & DBCR0_IDM)
|
|
|| (new_debug->dbcr0 & DBCR0_IDM))
|
|
prime_debug_regs(new_debug);
|
|
}
|
|
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
|
|
{
|
|
preempt_disable();
|
|
__set_breakpoint(i, brk);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
int i;
|
|
struct arch_hw_breakpoint null_brk = {0};
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
thread->hw_brk[i] = null_brk;
|
|
if (ppc_breakpoint_available())
|
|
set_breakpoint(i, &thread->hw_brk[i]);
|
|
}
|
|
}
|
|
|
|
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
|
|
struct arch_hw_breakpoint *b)
|
|
{
|
|
if (a->address != b->address)
|
|
return false;
|
|
if (a->type != b->type)
|
|
return false;
|
|
if (a->len != b->len)
|
|
return false;
|
|
/* no need to check hw_len. it's calculated from address and len */
|
|
return true;
|
|
}
|
|
|
|
static void switch_hw_breakpoint(struct task_struct *new)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
|
|
&new->thread.hw_brk[i])))
|
|
continue;
|
|
|
|
__set_breakpoint(i, &new->thread.hw_brk[i]);
|
|
}
|
|
}
|
|
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
static inline int set_dabr(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long dabr, dabrx;
|
|
|
|
dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
|
|
dabrx = ((brk->type >> 3) & 0x7);
|
|
|
|
if (ppc_md.set_dabr)
|
|
return ppc_md.set_dabr(dabr, dabrx);
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
|
|
mtspr(SPRN_DAC1, dabr);
|
|
if (IS_ENABLED(CONFIG_PPC_47x))
|
|
isync();
|
|
return 0;
|
|
} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
|
|
mtspr(SPRN_DABR, dabr);
|
|
if (cpu_has_feature(CPU_FTR_DABRX))
|
|
mtspr(SPRN_DABRX, dabrx);
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
|
|
LCTRL1_CRWF_RW;
|
|
unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
|
|
unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
|
|
unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
|
|
|
|
if (start_addr == 0)
|
|
lctrl2 |= LCTRL2_LW0LA_F;
|
|
else if (end_addr == 0)
|
|
lctrl2 |= LCTRL2_LW0LA_E;
|
|
else
|
|
lctrl2 |= LCTRL2_LW0LA_EandF;
|
|
|
|
mtspr(SPRN_LCTRL2, 0);
|
|
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
|
|
return 0;
|
|
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
|
|
lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
|
|
lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
|
|
|
|
mtspr(SPRN_CMPE, start_addr - 1);
|
|
mtspr(SPRN_CMPF, end_addr);
|
|
mtspr(SPRN_LCTRL1, lctrl1);
|
|
mtspr(SPRN_LCTRL2, lctrl2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
|
|
{
|
|
if (dawr_enabled())
|
|
// Power8 or later
|
|
set_dawr(nr, brk);
|
|
else if (IS_ENABLED(CONFIG_PPC_8xx))
|
|
set_breakpoint_8xx(brk);
|
|
else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
// Power7 or earlier
|
|
set_dabr(brk);
|
|
else
|
|
// Shouldn't happen due to higher level checks
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
|
|
{
|
|
memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
|
|
set_hw_breakpoint(nr, brk);
|
|
}
|
|
|
|
/* Check if we have DAWR or DABR hardware */
|
|
bool ppc_breakpoint_available(void)
|
|
{
|
|
if (dawr_enabled())
|
|
return true; /* POWER8 DAWR or POWER9 forced DAWR */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return false; /* POWER9 with DAWR disabled */
|
|
/* DABR: Everything but POWER8 and POWER9 */
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
|
|
|
|
/* Disable the breakpoint in hardware without touching current_brk[] */
|
|
void suspend_breakpoints(void)
|
|
{
|
|
struct arch_hw_breakpoint brk = {0};
|
|
int i;
|
|
|
|
if (!ppc_breakpoint_available())
|
|
return;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++)
|
|
set_hw_breakpoint(i, &brk);
|
|
}
|
|
|
|
/*
|
|
* Re-enable breakpoints suspended by suspend_breakpoints() in hardware
|
|
* from current_brk[]
|
|
*/
|
|
void restore_breakpoints(void)
|
|
{
|
|
int i;
|
|
|
|
if (!ppc_breakpoint_available())
|
|
return;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++)
|
|
set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i]));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
static inline bool tm_enabled(struct task_struct *tsk)
|
|
{
|
|
return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
|
|
}
|
|
|
|
static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
|
|
{
|
|
/*
|
|
* Use the current MSR TM suspended bit to track if we have
|
|
* checkpointed state outstanding.
|
|
* On signal delivery, we'd normally reclaim the checkpointed
|
|
* state to obtain stack pointer (see:get_tm_stackpointer()).
|
|
* This will then directly return to userspace without going
|
|
* through __switch_to(). However, if the stack frame is bad,
|
|
* we need to exit this thread which calls __switch_to() which
|
|
* will again attempt to reclaim the already saved tm state.
|
|
* Hence we need to check that we've not already reclaimed
|
|
* this state.
|
|
* We do this using the current MSR, rather tracking it in
|
|
* some specific thread_struct bit, as it has the additional
|
|
* benefit of checking for a potential TM bad thing exception.
|
|
*/
|
|
if (!MSR_TM_SUSPENDED(mfmsr()))
|
|
return;
|
|
|
|
giveup_all(container_of(thr, struct task_struct, thread));
|
|
|
|
tm_reclaim(thr, cause);
|
|
|
|
/*
|
|
* If we are in a transaction and FP is off then we can't have
|
|
* used FP inside that transaction. Hence the checkpointed
|
|
* state is the same as the live state. We need to copy the
|
|
* live state to the checkpointed state so that when the
|
|
* transaction is restored, the checkpointed state is correct
|
|
* and the aborted transaction sees the correct state. We use
|
|
* ckpt_regs.msr here as that's what tm_reclaim will use to
|
|
* determine if it's going to write the checkpointed state or
|
|
* not. So either this will write the checkpointed registers,
|
|
* or reclaim will. Similarly for VMX.
|
|
*/
|
|
if ((thr->ckpt_regs.msr & MSR_FP) == 0)
|
|
memcpy(&thr->ckfp_state, &thr->fp_state,
|
|
sizeof(struct thread_fp_state));
|
|
if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
|
|
memcpy(&thr->ckvr_state, &thr->vr_state,
|
|
sizeof(struct thread_vr_state));
|
|
}
|
|
|
|
void tm_reclaim_current(uint8_t cause)
|
|
{
|
|
tm_enable();
|
|
tm_reclaim_thread(¤t->thread, cause);
|
|
}
|
|
|
|
static inline void tm_reclaim_task(struct task_struct *tsk)
|
|
{
|
|
/* We have to work out if we're switching from/to a task that's in the
|
|
* middle of a transaction.
|
|
*
|
|
* In switching we need to maintain a 2nd register state as
|
|
* oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
|
|
* checkpointed (tbegin) state in ckpt_regs, ckfp_state and
|
|
* ckvr_state
|
|
*
|
|
* We also context switch (save) TFHAR/TEXASR/TFIAR in here.
|
|
*/
|
|
struct thread_struct *thr = &tsk->thread;
|
|
|
|
if (!thr->regs)
|
|
return;
|
|
|
|
if (!MSR_TM_ACTIVE(thr->regs->msr))
|
|
goto out_and_saveregs;
|
|
|
|
WARN_ON(tm_suspend_disabled);
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
|
|
"ccr=%lx, msr=%lx, trap=%lx)\n",
|
|
tsk->pid, thr->regs->nip,
|
|
thr->regs->ccr, thr->regs->msr,
|
|
thr->regs->trap);
|
|
|
|
tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d complete\n",
|
|
tsk->pid);
|
|
|
|
out_and_saveregs:
|
|
/* Always save the regs here, even if a transaction's not active.
|
|
* This context-switches a thread's TM info SPRs. We do it here to
|
|
* be consistent with the restore path (in recheckpoint) which
|
|
* cannot happen later in _switch().
|
|
*/
|
|
tm_save_sprs(thr);
|
|
}
|
|
|
|
extern void __tm_recheckpoint(struct thread_struct *thread);
|
|
|
|
void tm_recheckpoint(struct thread_struct *thread)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!(thread->regs->msr & MSR_TM))
|
|
return;
|
|
|
|
/* We really can't be interrupted here as the TEXASR registers can't
|
|
* change and later in the trecheckpoint code, we have a userspace R1.
|
|
* So let's hard disable over this region.
|
|
*/
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
|
|
/* The TM SPRs are restored here, so that TEXASR.FS can be set
|
|
* before the trecheckpoint and no explosion occurs.
|
|
*/
|
|
tm_restore_sprs(thread);
|
|
|
|
__tm_recheckpoint(thread);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void tm_recheckpoint_new_task(struct task_struct *new)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
return;
|
|
|
|
/* Recheckpoint the registers of the thread we're about to switch to.
|
|
*
|
|
* If the task was using FP, we non-lazily reload both the original and
|
|
* the speculative FP register states. This is because the kernel
|
|
* doesn't see if/when a TM rollback occurs, so if we take an FP
|
|
* unavailable later, we are unable to determine which set of FP regs
|
|
* need to be restored.
|
|
*/
|
|
if (!tm_enabled(new))
|
|
return;
|
|
|
|
if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
|
|
tm_restore_sprs(&new->thread);
|
|
return;
|
|
}
|
|
/* Recheckpoint to restore original checkpointed register state. */
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
|
|
new->pid, new->thread.regs->msr);
|
|
|
|
tm_recheckpoint(&new->thread);
|
|
|
|
/*
|
|
* The checkpointed state has been restored but the live state has
|
|
* not, ensure all the math functionality is turned off to trigger
|
|
* restore_math() to reload.
|
|
*/
|
|
new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
|
|
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d complete "
|
|
"(kernel msr 0x%lx)\n",
|
|
new->pid, mfmsr());
|
|
}
|
|
|
|
static inline void __switch_to_tm(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_TM)) {
|
|
if (tm_enabled(prev) || tm_enabled(new))
|
|
tm_enable();
|
|
|
|
if (tm_enabled(prev)) {
|
|
prev->thread.load_tm++;
|
|
tm_reclaim_task(prev);
|
|
if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
|
|
prev->thread.regs->msr &= ~MSR_TM;
|
|
}
|
|
|
|
tm_recheckpoint_new_task(new);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called if we are on the way out to userspace and the
|
|
* TIF_RESTORE_TM flag is set. It checks if we need to reload
|
|
* FP and/or vector state and does so if necessary.
|
|
* If userspace is inside a transaction (whether active or
|
|
* suspended) and FP/VMX/VSX instructions have ever been enabled
|
|
* inside that transaction, then we have to keep them enabled
|
|
* and keep the FP/VMX/VSX state loaded while ever the transaction
|
|
* continues. The reason is that if we didn't, and subsequently
|
|
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
|
|
* we don't know whether it's the same transaction, and thus we
|
|
* don't know which of the checkpointed state and the transactional
|
|
* state to use.
|
|
*/
|
|
void restore_tm_state(struct pt_regs *regs)
|
|
{
|
|
unsigned long msr_diff;
|
|
|
|
/*
|
|
* This is the only moment we should clear TIF_RESTORE_TM as
|
|
* it is here that ckpt_regs.msr and pt_regs.msr become the same
|
|
* again, anything else could lead to an incorrect ckpt_msr being
|
|
* saved and therefore incorrect signal contexts.
|
|
*/
|
|
clear_thread_flag(TIF_RESTORE_TM);
|
|
if (!MSR_TM_ACTIVE(regs->msr))
|
|
return;
|
|
|
|
msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
|
|
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
|
|
|
|
/* Ensure that restore_math() will restore */
|
|
if (msr_diff & MSR_FP)
|
|
current->thread.load_fp = 1;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
|
|
current->thread.load_vec = 1;
|
|
#endif
|
|
restore_math(regs);
|
|
|
|
regs_set_return_msr(regs, regs->msr | msr_diff);
|
|
}
|
|
|
|
#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
#define tm_recheckpoint_new_task(new)
|
|
#define __switch_to_tm(prev, new)
|
|
void tm_reclaim_current(uint8_t cause) {}
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
static inline void save_sprs(struct thread_struct *t)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
t->vrsave = mfspr(SPRN_VRSAVE);
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE))
|
|
t->spefscr = mfspr(SPRN_SPEFSCR);
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DSCR))
|
|
t->dscr = mfspr(SPRN_DSCR);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
t->bescr = mfspr(SPRN_BESCR);
|
|
t->ebbhr = mfspr(SPRN_EBBHR);
|
|
t->ebbrr = mfspr(SPRN_EBBRR);
|
|
|
|
t->fscr = mfspr(SPRN_FSCR);
|
|
|
|
/*
|
|
* Note that the TAR is not available for use in the kernel.
|
|
* (To provide this, the TAR should be backed up/restored on
|
|
* exception entry/exit instead, and be in pt_regs. FIXME,
|
|
* this should be in pt_regs anyway (for debug).)
|
|
*/
|
|
t->tar = mfspr(SPRN_TAR);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
|
|
t->hashkeyr = mfspr(SPRN_HASHKEYR);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
void kvmppc_save_user_regs(void)
|
|
{
|
|
unsigned long usermsr;
|
|
|
|
if (!current->thread.regs)
|
|
return;
|
|
|
|
usermsr = current->thread.regs->msr;
|
|
|
|
/* Caller has enabled FP/VEC/VSX/TM in MSR */
|
|
if (usermsr & MSR_FP)
|
|
__giveup_fpu(current);
|
|
if (usermsr & MSR_VEC)
|
|
__giveup_altivec(current);
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (usermsr & MSR_TM) {
|
|
current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
|
|
current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
|
|
current->thread.tm_texasr = mfspr(SPRN_TEXASR);
|
|
current->thread.regs->msr &= ~MSR_TM;
|
|
}
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
|
|
|
|
void kvmppc_save_current_sprs(void)
|
|
{
|
|
save_sprs(¤t->thread);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
|
|
static inline void restore_sprs(struct thread_struct *old_thread,
|
|
struct thread_struct *new_thread)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
|
|
old_thread->vrsave != new_thread->vrsave)
|
|
mtspr(SPRN_VRSAVE, new_thread->vrsave);
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE) &&
|
|
old_thread->spefscr != new_thread->spefscr)
|
|
mtspr(SPRN_SPEFSCR, new_thread->spefscr);
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DSCR)) {
|
|
u64 dscr = get_paca()->dscr_default;
|
|
if (new_thread->dscr_inherit)
|
|
dscr = new_thread->dscr;
|
|
|
|
if (old_thread->dscr != dscr)
|
|
mtspr(SPRN_DSCR, dscr);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
if (old_thread->bescr != new_thread->bescr)
|
|
mtspr(SPRN_BESCR, new_thread->bescr);
|
|
if (old_thread->ebbhr != new_thread->ebbhr)
|
|
mtspr(SPRN_EBBHR, new_thread->ebbhr);
|
|
if (old_thread->ebbrr != new_thread->ebbrr)
|
|
mtspr(SPRN_EBBRR, new_thread->ebbrr);
|
|
|
|
if (old_thread->fscr != new_thread->fscr)
|
|
mtspr(SPRN_FSCR, new_thread->fscr);
|
|
|
|
if (old_thread->tar != new_thread->tar)
|
|
mtspr(SPRN_TAR, new_thread->tar);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
|
|
old_thread->tidr != new_thread->tidr)
|
|
mtspr(SPRN_TIDR, new_thread->tidr);
|
|
|
|
if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
|
|
old_thread->hashkeyr != new_thread->hashkeyr)
|
|
mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
|
|
#endif
|
|
|
|
}
|
|
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
struct thread_struct *new_thread, *old_thread;
|
|
struct task_struct *last;
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
struct ppc64_tlb_batch *batch;
|
|
#endif
|
|
|
|
new_thread = &new->thread;
|
|
old_thread = ¤t->thread;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
batch = this_cpu_ptr(&ppc64_tlb_batch);
|
|
if (batch->active) {
|
|
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
|
|
if (batch->index)
|
|
__flush_tlb_pending(batch);
|
|
batch->active = 0;
|
|
}
|
|
|
|
/*
|
|
* On POWER9 the copy-paste buffer can only paste into
|
|
* foreign real addresses, so unprivileged processes can not
|
|
* see the data or use it in any way unless they have
|
|
* foreign real mappings. If the new process has the foreign
|
|
* real address mappings, we must issue a cp_abort to clear
|
|
* any state and prevent snooping, corruption or a covert
|
|
* channel. ISA v3.1 supports paste into local memory.
|
|
*/
|
|
if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
|
|
atomic_read(&new->mm->context.vas_windows)))
|
|
asm volatile(PPC_CP_ABORT);
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
switch_booke_debug_regs(&new->thread.debug);
|
|
#else
|
|
/*
|
|
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
|
|
* schedule DABR
|
|
*/
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
switch_hw_breakpoint(new);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif
|
|
|
|
/*
|
|
* We need to save SPRs before treclaim/trecheckpoint as these will
|
|
* change a number of them.
|
|
*/
|
|
save_sprs(&prev->thread);
|
|
|
|
/* Save FPU, Altivec, VSX and SPE state */
|
|
giveup_all(prev);
|
|
|
|
__switch_to_tm(prev, new);
|
|
|
|
if (!radix_enabled()) {
|
|
/*
|
|
* We can't take a PMU exception inside _switch() since there
|
|
* is a window where the kernel stack SLB and the kernel stack
|
|
* are out of sync. Hard disable here.
|
|
*/
|
|
hard_irq_disable();
|
|
}
|
|
|
|
/*
|
|
* Call restore_sprs() and set_return_regs_changed() before calling
|
|
* _switch(). If we move it after _switch() then we miss out on calling
|
|
* it for new tasks. The reason for this is we manually create a stack
|
|
* frame for new tasks that directly returns through ret_from_fork() or
|
|
* ret_from_kernel_thread(). See copy_thread() for details.
|
|
*/
|
|
restore_sprs(old_thread, new_thread);
|
|
|
|
set_return_regs_changed(); /* _switch changes stack (and regs) */
|
|
|
|
if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
|
|
kuap_assert_locked();
|
|
|
|
last = _switch(old_thread, new_thread);
|
|
|
|
/*
|
|
* Nothing after _switch will be run for newly created tasks,
|
|
* because they switch directly to ret_from_fork/ret_from_kernel_thread
|
|
* etc. Code added here should have a comment explaining why that is
|
|
* okay.
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
/*
|
|
* This applies to a process that was context switched while inside
|
|
* arch_enter_lazy_mmu_mode(), to re-activate the batch that was
|
|
* deactivated above, before _switch(). This will never be the case
|
|
* for new tasks.
|
|
*/
|
|
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
|
|
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
|
|
batch = this_cpu_ptr(&ppc64_tlb_batch);
|
|
batch->active = 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Math facilities are masked out of the child MSR in copy_thread.
|
|
* A new task does not need to restore_math because it will
|
|
* demand fault them.
|
|
*/
|
|
if (current->thread.regs)
|
|
restore_math(current->thread.regs);
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
return last;
|
|
}
|
|
|
|
#define NR_INSN_TO_PRINT 16
|
|
|
|
static void show_instructions(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
unsigned long nip = regs->nip;
|
|
unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
|
|
|
|
printk("Code: ");
|
|
|
|
/*
|
|
* If we were executing with the MMU off for instructions, adjust pc
|
|
* rather than printing XXXXXXXX.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
|
|
pc = (unsigned long)phys_to_virt(pc);
|
|
nip = (unsigned long)phys_to_virt(regs->nip);
|
|
}
|
|
|
|
for (i = 0; i < NR_INSN_TO_PRINT; i++) {
|
|
int instr;
|
|
|
|
if (get_kernel_nofault(instr, (const void *)pc)) {
|
|
pr_cont("XXXXXXXX ");
|
|
} else {
|
|
if (nip == pc)
|
|
pr_cont("<%08x> ", instr);
|
|
else
|
|
pr_cont("%08x ", instr);
|
|
}
|
|
|
|
pc += sizeof(int);
|
|
}
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
void show_user_instructions(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc;
|
|
int n = NR_INSN_TO_PRINT;
|
|
struct seq_buf s;
|
|
char buf[96]; /* enough for 8 times 9 + 2 chars */
|
|
|
|
pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
|
|
|
|
seq_buf_init(&s, buf, sizeof(buf));
|
|
|
|
while (n) {
|
|
int i;
|
|
|
|
seq_buf_clear(&s);
|
|
|
|
for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
|
|
int instr;
|
|
|
|
if (copy_from_user_nofault(&instr, (void __user *)pc,
|
|
sizeof(instr))) {
|
|
seq_buf_printf(&s, "XXXXXXXX ");
|
|
continue;
|
|
}
|
|
seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
|
|
}
|
|
|
|
if (!seq_buf_has_overflowed(&s))
|
|
pr_info("%s[%d]: code: %s\n", current->comm,
|
|
current->pid, s.buffer);
|
|
}
|
|
}
|
|
|
|
struct regbit {
|
|
unsigned long bit;
|
|
const char *name;
|
|
};
|
|
|
|
static struct regbit msr_bits[] = {
|
|
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
|
|
{MSR_SF, "SF"},
|
|
{MSR_HV, "HV"},
|
|
#endif
|
|
{MSR_VEC, "VEC"},
|
|
{MSR_VSX, "VSX"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_CE, "CE"},
|
|
#endif
|
|
{MSR_EE, "EE"},
|
|
{MSR_PR, "PR"},
|
|
{MSR_FP, "FP"},
|
|
{MSR_ME, "ME"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_DE, "DE"},
|
|
#else
|
|
{MSR_SE, "SE"},
|
|
{MSR_BE, "BE"},
|
|
#endif
|
|
{MSR_IR, "IR"},
|
|
{MSR_DR, "DR"},
|
|
{MSR_PMM, "PMM"},
|
|
#ifndef CONFIG_BOOKE
|
|
{MSR_RI, "RI"},
|
|
{MSR_LE, "LE"},
|
|
#endif
|
|
{0, NULL}
|
|
};
|
|
|
|
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
|
|
{
|
|
const char *s = "";
|
|
|
|
for (; bits->bit; ++bits)
|
|
if (val & bits->bit) {
|
|
pr_cont("%s%s", s, bits->name);
|
|
s = sep;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static struct regbit msr_tm_bits[] = {
|
|
{MSR_TS_T, "T"},
|
|
{MSR_TS_S, "S"},
|
|
{MSR_TM, "E"},
|
|
{0, NULL}
|
|
};
|
|
|
|
static void print_tm_bits(unsigned long val)
|
|
{
|
|
/*
|
|
* This only prints something if at least one of the TM bit is set.
|
|
* Inside the TM[], the output means:
|
|
* E: Enabled (bit 32)
|
|
* S: Suspended (bit 33)
|
|
* T: Transactional (bit 34)
|
|
*/
|
|
if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
|
|
pr_cont(",TM[");
|
|
print_bits(val, msr_tm_bits, "");
|
|
pr_cont("]");
|
|
}
|
|
}
|
|
#else
|
|
static void print_tm_bits(unsigned long val) {}
|
|
#endif
|
|
|
|
static void print_msr_bits(unsigned long val)
|
|
{
|
|
pr_cont("<");
|
|
print_bits(val, msr_bits, ",");
|
|
print_tm_bits(val);
|
|
pr_cont(">");
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define REG "%016lx"
|
|
#define REGS_PER_LINE 4
|
|
#else
|
|
#define REG "%08lx"
|
|
#define REGS_PER_LINE 8
|
|
#endif
|
|
|
|
static void __show_regs(struct pt_regs *regs)
|
|
{
|
|
int i, trap;
|
|
|
|
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
|
|
regs->nip, regs->link, regs->ctr);
|
|
printk("REGS: %px TRAP: %04lx %s (%s)\n",
|
|
regs, regs->trap, print_tainted(), init_utsname()->release);
|
|
printk("MSR: "REG" ", regs->msr);
|
|
print_msr_bits(regs->msr);
|
|
pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
|
|
trap = TRAP(regs);
|
|
if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
|
|
pr_cont("CFAR: "REG" ", regs->orig_gpr3);
|
|
if (trap == INTERRUPT_MACHINE_CHECK ||
|
|
trap == INTERRUPT_DATA_STORAGE ||
|
|
trap == INTERRUPT_ALIGNMENT) {
|
|
if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
|
|
pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
|
|
else
|
|
pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
pr_cont("IRQMASK: %lx ", regs->softe);
|
|
#endif
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (MSR_TM_ACTIVE(regs->msr))
|
|
pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
|
|
#endif
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
if ((i % REGS_PER_LINE) == 0)
|
|
pr_cont("\nGPR%02d: ", i);
|
|
pr_cont(REG " ", regs->gpr[i]);
|
|
}
|
|
pr_cont("\n");
|
|
/*
|
|
* Lookup NIP late so we have the best change of getting the
|
|
* above info out without failing
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KALLSYMS)) {
|
|
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
|
|
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
__show_regs(regs);
|
|
show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
|
|
if (!user_mode(regs))
|
|
show_instructions(regs);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
flush_ptrace_hw_breakpoint(current);
|
|
#else /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
set_debug_reg_defaults(¤t->thread);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
}
|
|
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (!radix_enabled())
|
|
hash__setup_new_exec();
|
|
#endif
|
|
/*
|
|
* If we exec out of a kernel thread then thread.regs will not be
|
|
* set. Do it now.
|
|
*/
|
|
if (!current->thread.regs) {
|
|
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
|
|
current->thread.regs = regs - 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_MEM_KEYS
|
|
current->thread.regs->amr = default_amr;
|
|
current->thread.regs->iamr = default_iamr;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* Assign a TIDR (thread ID) for task @t and set it in the thread
|
|
* structure. For now, we only support setting TIDR for 'current' task.
|
|
*
|
|
* Since the TID value is a truncated form of it PID, it is possible
|
|
* (but unlikely) for 2 threads to have the same TID. In the unlikely event
|
|
* that 2 threads share the same TID and are waiting, one of the following
|
|
* cases will happen:
|
|
*
|
|
* 1. The correct thread is running, the wrong thread is not
|
|
* In this situation, the correct thread is woken and proceeds to pass it's
|
|
* condition check.
|
|
*
|
|
* 2. Neither threads are running
|
|
* In this situation, neither thread will be woken. When scheduled, the waiting
|
|
* threads will execute either a wait, which will return immediately, followed
|
|
* by a condition check, which will pass for the correct thread and fail
|
|
* for the wrong thread, or they will execute the condition check immediately.
|
|
*
|
|
* 3. The wrong thread is running, the correct thread is not
|
|
* The wrong thread will be woken, but will fail it's condition check and
|
|
* re-execute wait. The correct thread, when scheduled, will execute either
|
|
* it's condition check (which will pass), or wait, which returns immediately
|
|
* when called the first time after the thread is scheduled, followed by it's
|
|
* condition check (which will pass).
|
|
*
|
|
* 4. Both threads are running
|
|
* Both threads will be woken. The wrong thread will fail it's condition check
|
|
* and execute another wait, while the correct thread will pass it's condition
|
|
* check.
|
|
*
|
|
* @t: the task to set the thread ID for
|
|
*/
|
|
int set_thread_tidr(struct task_struct *t)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_P9_TIDR))
|
|
return -EINVAL;
|
|
|
|
if (t != current)
|
|
return -EINVAL;
|
|
|
|
if (t->thread.tidr)
|
|
return 0;
|
|
|
|
t->thread.tidr = (u16)task_pid_nr(t);
|
|
mtspr(SPRN_TIDR, t->thread.tidr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_thread_tidr);
|
|
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
/*
|
|
* this gets called so that we can store coprocessor state into memory and
|
|
* copy the current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
flush_all_to_thread(src);
|
|
/*
|
|
* Flush TM state out so we can copy it. __switch_to_tm() does this
|
|
* flush but it removes the checkpointed state from the current CPU and
|
|
* transitions the CPU out of TM mode. Hence we need to call
|
|
* tm_recheckpoint_new_task() (on the same task) to restore the
|
|
* checkpointed state back and the TM mode.
|
|
*
|
|
* Can't pass dst because it isn't ready. Doesn't matter, passing
|
|
* dst is only important for __switch_to()
|
|
*/
|
|
__switch_to_tm(src, src);
|
|
|
|
*dst = *src;
|
|
|
|
clear_task_ebb(dst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
|
|
{
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
unsigned long sp_vsid;
|
|
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
|
|
if (radix_enabled())
|
|
return;
|
|
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
|
|
<< SLB_VSID_SHIFT_1T;
|
|
else
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
|
|
<< SLB_VSID_SHIFT;
|
|
sp_vsid |= SLB_VSID_KERNEL | llp;
|
|
p->thread.ksp_vsid = sp_vsid;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Copy a thread..
|
|
*/
|
|
|
|
/*
|
|
* Copy architecture-specific thread state
|
|
*/
|
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
|
{
|
|
struct pt_regs *kregs; /* Switch frame regs */
|
|
extern void ret_from_fork(void);
|
|
extern void ret_from_fork_scv(void);
|
|
extern void ret_from_kernel_user_thread(void);
|
|
extern void start_kernel_thread(void);
|
|
void (*f)(void);
|
|
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
int i;
|
|
#endif
|
|
|
|
klp_init_thread_info(p);
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
|
|
/* Create initial minimum stack frame. */
|
|
sp -= STACK_FRAME_MIN_SIZE;
|
|
((unsigned long *)sp)[0] = 0;
|
|
|
|
f = start_kernel_thread;
|
|
p->thread.regs = NULL; /* no user register state */
|
|
clear_tsk_compat_task(p);
|
|
} else {
|
|
/* user thread */
|
|
struct pt_regs *childregs;
|
|
|
|
/* Create initial user return stack frame. */
|
|
sp -= STACK_USER_INT_FRAME_SIZE;
|
|
*(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
|
|
|
|
childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
|
|
|
|
if (unlikely(args->fn)) {
|
|
/*
|
|
* A user space thread, but it first runs a kernel
|
|
* thread, and then returns as though it had called
|
|
* execve rather than fork, so user regs will be
|
|
* filled in (e.g., by kernel_execve()).
|
|
*/
|
|
((unsigned long *)sp)[0] = 0;
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
#ifdef CONFIG_PPC64
|
|
childregs->softe = IRQS_ENABLED;
|
|
#endif
|
|
f = ret_from_kernel_user_thread;
|
|
} else {
|
|
struct pt_regs *regs = current_pt_regs();
|
|
unsigned long clone_flags = args->flags;
|
|
unsigned long usp = args->stack;
|
|
|
|
/* Copy registers */
|
|
*childregs = *regs;
|
|
if (usp)
|
|
childregs->gpr[1] = usp;
|
|
((unsigned long *)sp)[0] = childregs->gpr[1];
|
|
#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
|
|
WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
|
|
#endif
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
unsigned long tls = args->tls;
|
|
|
|
if (!is_32bit_task())
|
|
childregs->gpr[13] = tls;
|
|
else
|
|
childregs->gpr[2] = tls;
|
|
}
|
|
|
|
if (trap_is_scv(regs))
|
|
f = ret_from_fork_scv;
|
|
else
|
|
f = ret_from_fork;
|
|
}
|
|
|
|
childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
|
|
p->thread.regs = childregs;
|
|
}
|
|
|
|
/*
|
|
* The way this works is that at some point in the future
|
|
* some task will call _switch to switch to the new task.
|
|
* That will pop off the stack frame created below and start
|
|
* the new task running at ret_from_fork. The new task will
|
|
* do some house keeping and then return from the fork or clone
|
|
* system call, using the stack frame created above.
|
|
*/
|
|
((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
|
|
sp -= STACK_SWITCH_FRAME_SIZE;
|
|
((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
|
|
kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
|
|
kregs->nip = ppc_function_entry(f);
|
|
if (unlikely(args->fn)) {
|
|
/*
|
|
* Put kthread fn, arg parameters in non-volatile GPRs in the
|
|
* switch frame so they are loaded by _switch before it returns
|
|
* to ret_from_kernel_thread.
|
|
*/
|
|
kregs->gpr[14] = ppc_function_entry((void *)args->fn);
|
|
kregs->gpr[15] = (unsigned long)args->fn_arg;
|
|
}
|
|
p->thread.ksp = sp;
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
for (i = 0; i < nr_wp_slots(); i++)
|
|
p->thread.ptrace_bps[i] = NULL;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_FPU_REGS
|
|
p->thread.fp_save_area = NULL;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
p->thread.vr_save_area = NULL;
|
|
#endif
|
|
#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
|
|
p->thread.kuap = KUAP_NONE;
|
|
#endif
|
|
#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
|
|
p->thread.pid = MMU_NO_CONTEXT;
|
|
#endif
|
|
|
|
setup_ksp_vsid(p, sp);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (cpu_has_feature(CPU_FTR_DSCR)) {
|
|
p->thread.dscr_inherit = current->thread.dscr_inherit;
|
|
p->thread.dscr = mfspr(SPRN_DSCR);
|
|
}
|
|
|
|
p->thread.tidr = 0;
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
|
|
p->thread.hashkeyr = current->thread.hashkeyr;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void preload_new_slb_context(unsigned long start, unsigned long sp);
|
|
|
|
/*
|
|
* Set up a thread for executing a new program
|
|
*/
|
|
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
|
|
preload_new_slb_context(start, sp);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Clear any transactional state, we're exec()ing. The cause is
|
|
* not important as there will never be a recheckpoint so it's not
|
|
* user visible.
|
|
*/
|
|
if (MSR_TM_SUSPENDED(mfmsr()))
|
|
tm_reclaim_current(0);
|
|
#endif
|
|
|
|
memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
|
|
regs->ctr = 0;
|
|
regs->link = 0;
|
|
regs->xer = 0;
|
|
regs->ccr = 0;
|
|
regs->gpr[1] = sp;
|
|
|
|
#ifdef CONFIG_PPC32
|
|
regs->mq = 0;
|
|
regs->nip = start;
|
|
regs->msr = MSR_USER;
|
|
#else
|
|
if (!is_32bit_task()) {
|
|
unsigned long entry;
|
|
|
|
if (is_elf2_task()) {
|
|
/* Look ma, no function descriptors! */
|
|
entry = start;
|
|
|
|
/*
|
|
* Ulrich says:
|
|
* The latest iteration of the ABI requires that when
|
|
* calling a function (at its global entry point),
|
|
* the caller must ensure r12 holds the entry point
|
|
* address (so that the function can quickly
|
|
* establish addressability).
|
|
*/
|
|
regs->gpr[12] = start;
|
|
/* Make sure that's restored on entry to userspace. */
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
} else {
|
|
unsigned long toc;
|
|
|
|
/* start is a relocated pointer to the function
|
|
* descriptor for the elf _start routine. The first
|
|
* entry in the function descriptor is the entry
|
|
* address of _start and the second entry is the TOC
|
|
* value we need to use.
|
|
*/
|
|
__get_user(entry, (unsigned long __user *)start);
|
|
__get_user(toc, (unsigned long __user *)start+1);
|
|
|
|
/* Check whether the e_entry function descriptor entries
|
|
* need to be relocated before we can use them.
|
|
*/
|
|
if (load_addr != 0) {
|
|
entry += load_addr;
|
|
toc += load_addr;
|
|
}
|
|
regs->gpr[2] = toc;
|
|
}
|
|
regs_set_return_ip(regs, entry);
|
|
regs_set_return_msr(regs, MSR_USER64);
|
|
} else {
|
|
regs->gpr[2] = 0;
|
|
regs_set_return_ip(regs, start);
|
|
regs_set_return_msr(regs, MSR_USER32);
|
|
}
|
|
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
current->thread.used_vsr = 0;
|
|
#endif
|
|
current->thread.load_slb = 0;
|
|
current->thread.load_fp = 0;
|
|
#ifdef CONFIG_PPC_FPU_REGS
|
|
memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
|
|
current->thread.fp_save_area = NULL;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
|
|
current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
|
|
current->thread.vr_save_area = NULL;
|
|
current->thread.vrsave = 0;
|
|
current->thread.used_vr = 0;
|
|
current->thread.load_vec = 0;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
memset(current->thread.evr, 0, sizeof(current->thread.evr));
|
|
current->thread.acc = 0;
|
|
current->thread.spefscr = 0;
|
|
current->thread.used_spe = 0;
|
|
#endif /* CONFIG_SPE */
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
current->thread.tm_tfhar = 0;
|
|
current->thread.tm_texasr = 0;
|
|
current->thread.tm_tfiar = 0;
|
|
current->thread.load_tm = 0;
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
|
|
current->thread.hashkeyr = get_random_long();
|
|
mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
}
|
|
EXPORT_SYMBOL(start_thread);
|
|
|
|
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
|
|
| PR_FP_EXC_RES | PR_FP_EXC_INV)
|
|
|
|
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
/* This is a bit hairy. If we are an SPE enabled processor
|
|
* (have embedded fp) we store the IEEE exception enable flags in
|
|
* fpexc_mode. fpexc_mode is also used for setting FP exception
|
|
* mode (asyn, precise, disabled) for 'Classic' FP. */
|
|
if (val & PR_FP_EXC_SW_ENABLE) {
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
#ifdef CONFIG_SPE
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
tsk->thread.fpexc_mode = val &
|
|
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
|
|
#endif
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* on a CONFIG_SPE this does not hurt us. The bits that
|
|
* __pack_fe01 use do not overlap with bits used for
|
|
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
|
|
* on CONFIG_SPE implementations are reserved so writing to
|
|
* them does not change anything */
|
|
if (val > PR_FP_EXC_PRECISE)
|
|
return -EINVAL;
|
|
tsk->thread.fpexc_mode = __pack_fe01(val);
|
|
if (regs != NULL && (regs->msr & MSR_FP) != 0) {
|
|
regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
|
|
| tsk->thread.fpexc_mode);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
unsigned int val = 0;
|
|
|
|
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
#ifdef CONFIG_SPE
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
val = tsk->thread.fpexc_mode;
|
|
#endif
|
|
} else
|
|
return -EINVAL;
|
|
} else {
|
|
val = __unpack_fe01(tsk->thread.fpexc_mode);
|
|
}
|
|
return put_user(val, (unsigned int __user *) adr);
|
|
}
|
|
|
|
int set_endian(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
|
|
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (val == PR_ENDIAN_BIG)
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_LE);
|
|
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
|
|
regs_set_return_msr(regs, regs->msr | MSR_LE);
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int get_endian(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
unsigned int val;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
|
|
!cpu_has_feature(CPU_FTR_REAL_LE))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (regs->msr & MSR_LE) {
|
|
if (cpu_has_feature(CPU_FTR_REAL_LE))
|
|
val = PR_ENDIAN_LITTLE;
|
|
else
|
|
val = PR_ENDIAN_PPC_LITTLE;
|
|
} else
|
|
val = PR_ENDIAN_BIG;
|
|
|
|
return put_user(val, (unsigned int __user *)adr);
|
|
}
|
|
|
|
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
tsk->thread.align_ctl = val;
|
|
return 0;
|
|
}
|
|
|
|
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
|
|
}
|
|
|
|
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page;
|
|
unsigned long cpu = task_cpu(p);
|
|
|
|
if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
|
|
return 0;
|
|
|
|
stack_page = (unsigned long)hardirq_ctx[cpu];
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
stack_page = (unsigned long)softirq_ctx[cpu];
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long stack_page;
|
|
unsigned long cpu = task_cpu(p);
|
|
|
|
if (!paca_ptrs)
|
|
return 0;
|
|
|
|
if (!paca_ptrs[cpu]->emergency_sp)
|
|
return 0;
|
|
|
|
# ifdef CONFIG_PPC_BOOK3S_64
|
|
if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
|
|
return 0;
|
|
#endif
|
|
|
|
stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
# ifdef CONFIG_PPC_BOOK3S_64
|
|
stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
# endif
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* validate the stack frame of a particular minimum size, used for when we are
|
|
* looking at a certain object in the stack beyond the minimum.
|
|
*/
|
|
int validate_sp_size(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page = (unsigned long)task_stack_page(p);
|
|
|
|
if (sp < THREAD_SIZE)
|
|
return 0;
|
|
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
if (valid_irq_stack(sp, p, nbytes))
|
|
return 1;
|
|
|
|
return valid_emergency_stack(sp, p, nbytes);
|
|
}
|
|
|
|
int validate_sp(unsigned long sp, struct task_struct *p)
|
|
{
|
|
return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
|
|
}
|
|
|
|
static unsigned long ___get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ip, sp;
|
|
int count = 0;
|
|
|
|
sp = p->thread.ksp;
|
|
if (!validate_sp(sp, p))
|
|
return 0;
|
|
|
|
do {
|
|
sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
|
|
if (!validate_sp(sp, p) || task_is_running(p))
|
|
return 0;
|
|
if (count > 0) {
|
|
ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
}
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
unsigned long __get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ret;
|
|
|
|
if (!try_get_task_stack(p))
|
|
return 0;
|
|
|
|
ret = ___get_wchan(p);
|
|
|
|
put_task_stack(p);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
|
|
{
|
|
unsigned long stack_page;
|
|
|
|
// A non-empty pt_regs should never have a zero MSR or TRAP value.
|
|
if (regs->msr || regs->trap)
|
|
return false;
|
|
|
|
// Check it sits at the very base of the stack
|
|
stack_page = (unsigned long)task_stack_page(tsk);
|
|
if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
|
|
|
|
void __no_sanitize_address show_stack(struct task_struct *tsk,
|
|
unsigned long *stack,
|
|
const char *loglvl)
|
|
{
|
|
unsigned long sp, ip, lr, newsp;
|
|
int count = 0;
|
|
int firstframe = 1;
|
|
unsigned long ret_addr;
|
|
int ftrace_idx = 0;
|
|
|
|
if (tsk == NULL)
|
|
tsk = current;
|
|
|
|
if (!try_get_task_stack(tsk))
|
|
return;
|
|
|
|
sp = (unsigned long) stack;
|
|
if (sp == 0) {
|
|
if (tsk == current)
|
|
sp = current_stack_frame();
|
|
else
|
|
sp = tsk->thread.ksp;
|
|
}
|
|
|
|
lr = 0;
|
|
printk("%sCall Trace:\n", loglvl);
|
|
do {
|
|
if (!validate_sp(sp, tsk))
|
|
break;
|
|
|
|
stack = (unsigned long *) sp;
|
|
newsp = stack[0];
|
|
ip = stack[STACK_FRAME_LR_SAVE];
|
|
if (!firstframe || ip != lr) {
|
|
printk("%s["REG"] ["REG"] %pS",
|
|
loglvl, sp, ip, (void *)ip);
|
|
ret_addr = ftrace_graph_ret_addr(current,
|
|
&ftrace_idx, ip, stack);
|
|
if (ret_addr != ip)
|
|
pr_cont(" (%pS)", (void *)ret_addr);
|
|
if (firstframe)
|
|
pr_cont(" (unreliable)");
|
|
pr_cont("\n");
|
|
}
|
|
firstframe = 0;
|
|
|
|
/*
|
|
* See if this is an exception frame.
|
|
* We look for the "regs" marker in the current frame.
|
|
*
|
|
* STACK_SWITCH_FRAME_SIZE being the smallest frame that
|
|
* could hold a pt_regs, if that does not fit then it can't
|
|
* have regs.
|
|
*/
|
|
if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
|
|
&& stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
|
|
struct pt_regs *regs = (struct pt_regs *)
|
|
(sp + STACK_INT_FRAME_REGS);
|
|
|
|
lr = regs->link;
|
|
printk("%s--- interrupt: %lx at %pS\n",
|
|
loglvl, regs->trap, (void *)regs->nip);
|
|
|
|
// Detect the case of an empty pt_regs at the very base
|
|
// of the stack and suppress showing it in full.
|
|
if (!empty_user_regs(regs, tsk)) {
|
|
__show_regs(regs);
|
|
printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
|
|
}
|
|
|
|
firstframe = 1;
|
|
}
|
|
|
|
sp = newsp;
|
|
} while (count++ < kstack_depth_to_print);
|
|
|
|
put_task_stack(tsk);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_on(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
/*
|
|
* Least significant bit (RUN) is the only writable bit of
|
|
* the CTRL register, so we can avoid mfspr. 2.06 is not the
|
|
* earliest ISA where this is the case, but it's convenient.
|
|
*/
|
|
mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
|
|
} else {
|
|
unsigned long ctrl;
|
|
|
|
/*
|
|
* Some architectures (e.g., Cell) have writable fields other
|
|
* than RUN, so do the read-modify-write.
|
|
*/
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl |= CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
}
|
|
|
|
ti->local_flags |= _TLF_RUNLATCH;
|
|
}
|
|
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_off(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
|
|
ti->local_flags &= ~_TLF_RUNLATCH;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
mtspr(SPRN_CTRLT, 0);
|
|
} else {
|
|
unsigned long ctrl;
|
|
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl &= ~CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_u32_below(PAGE_SIZE);
|
|
return sp & ~0xf;
|
|
}
|