Viresh Kumar 8c7d7b4bb1 video: pxafb: Remove cpufreq policy notifier
The cpufreq policy notifier's CPUFREQ_ADJUST notification is going to
get removed soon.

The notifier callback pxafb_freq_policy() isn't doing anything apart
from printing a debug message on CPUFREQ_ADJUST notification. There is
no point in keeping an otherwise empty callback and registering the
notifier.

Remove it.

Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-08-26 10:02:02 +02:00

2472 lines
65 KiB
C

/*
* linux/drivers/video/pxafb.c
*
* Copyright (C) 1999 Eric A. Thomas.
* Copyright (C) 2004 Jean-Frederic Clere.
* Copyright (C) 2004 Ian Campbell.
* Copyright (C) 2004 Jeff Lackey.
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
* which in turn is
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* Intel PXA250/210 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
* Add support for overlay1 and overlay2 based on pxafb_overlay.c:
*
* Copyright (C) 2004, Intel Corporation
*
* 2003/08/27: <yu.tang@intel.com>
* 2004/03/10: <stanley.cai@intel.com>
* 2004/10/28: <yan.yin@intel.com>
*
* Copyright (C) 2006-2008 Marvell International Ltd.
* All Rights Reserved
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/console.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <video/of_display_timing.h>
#include <video/videomode.h>
#include <mach/hardware.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <mach/bitfield.h>
#include <linux/platform_data/video-pxafb.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "pxafb.h"
/* Bits which should not be set in machine configuration structures */
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
LCCR3_PCD | LCCR3_BPP(0xf))
static int pxafb_activate_var(struct fb_var_screeninfo *var,
struct pxafb_info *);
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
static void setup_base_frame(struct pxafb_info *fbi,
struct fb_var_screeninfo *var, int branch);
static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
unsigned long offset, size_t size);
static unsigned long video_mem_size = 0;
static inline unsigned long
lcd_readl(struct pxafb_info *fbi, unsigned int off)
{
return __raw_readl(fbi->mmio_base + off);
}
static inline void
lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
{
__raw_writel(val, fbi->mmio_base + off);
}
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking
* (C_ENABLE) We must perform the unblanking, which will
* do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before
* we have blanked. We do the "REENABLE" thing here as
* well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
u_int val;
if (regno >= fbi->palette_size)
return 1;
if (fbi->fb.var.grayscale) {
fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
return 0;
}
switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
case LCCR4_PAL_FOR_0:
val = ((red >> 0) & 0xf800);
val |= ((green >> 5) & 0x07e0);
val |= ((blue >> 11) & 0x001f);
fbi->palette_cpu[regno] = val;
break;
case LCCR4_PAL_FOR_1:
val = ((red << 8) & 0x00f80000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000f8);
((u32 *)(fbi->palette_cpu))[regno] = val;
break;
case LCCR4_PAL_FOR_2:
val = ((red << 8) & 0x00fc0000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000fc);
((u32 *)(fbi->palette_cpu))[regno] = val;
break;
case LCCR4_PAL_FOR_3:
val = ((red << 8) & 0x00ff0000);
val |= ((green >> 0) & 0x0000ff00);
val |= ((blue >> 8) & 0x000000ff);
((u32 *)(fbi->palette_cpu))[regno] = val;
break;
}
return 0;
}
static int
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
/* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
static inline int var_to_depth(struct fb_var_screeninfo *var)
{
return var->red.length + var->green.length +
var->blue.length + var->transp.length;
}
/* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
{
int bpp = -EINVAL;
switch (var->bits_per_pixel) {
case 1: bpp = 0; break;
case 2: bpp = 1; break;
case 4: bpp = 2; break;
case 8: bpp = 3; break;
case 16: bpp = 4; break;
case 24:
switch (var_to_depth(var)) {
case 18: bpp = 6; break; /* 18-bits/pixel packed */
case 19: bpp = 8; break; /* 19-bits/pixel packed */
case 24: bpp = 9; break;
}
break;
case 32:
switch (var_to_depth(var)) {
case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
case 25: bpp = 10; break;
}
break;
}
return bpp;
}
/*
* pxafb_var_to_lccr3():
* Convert a bits per pixel value to the correct bit pattern for LCCR3
*
* NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
* implication of the acutal use of transparency bit, which we handle it
* here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
* Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
*
* Transparency for palette pixel formats is not supported at the moment.
*/
static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
{
int bpp = pxafb_var_to_bpp(var);
uint32_t lccr3;
if (bpp < 0)
return 0;
lccr3 = LCCR3_BPP(bpp);
switch (var_to_depth(var)) {
case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
case 18: lccr3 |= LCCR3_PDFOR_3; break;
case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
break;
case 19:
case 25: lccr3 |= LCCR3_PDFOR_0; break;
}
return lccr3;
}
#define SET_PIXFMT(v, r, g, b, t) \
({ \
(v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
(v)->transp.length = (t) ? (t) : 0; \
(v)->blue.length = (b); (v)->blue.offset = 0; \
(v)->green.length = (g); (v)->green.offset = (b); \
(v)->red.length = (r); (v)->red.offset = (b) + (g); \
})
/* set the RGBT bitfields of fb_var_screeninf according to
* var->bits_per_pixel and given depth
*/
static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
{
if (depth == 0)
depth = var->bits_per_pixel;
if (var->bits_per_pixel < 16) {
/* indexed pixel formats */
var->red.offset = 0; var->red.length = 8;
var->green.offset = 0; var->green.length = 8;
var->blue.offset = 0; var->blue.length = 8;
var->transp.offset = 0; var->transp.length = 8;
}
switch (depth) {
case 16: var->transp.length ?
SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
case 24: var->transp.length ?
SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
}
}
#ifdef CONFIG_CPU_FREQ
/*
* pxafb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
#endif
/*
* Select the smallest mode that allows the desired resolution to be
* displayed. If desired parameters can be rounded up.
*/
static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
struct fb_var_screeninfo *var)
{
struct pxafb_mode_info *mode = NULL;
struct pxafb_mode_info *modelist = mach->modes;
unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
unsigned int i;
for (i = 0; i < mach->num_modes; i++) {
if (modelist[i].xres >= var->xres &&
modelist[i].yres >= var->yres &&
modelist[i].xres < best_x &&
modelist[i].yres < best_y &&
modelist[i].bpp >= var->bits_per_pixel) {
best_x = modelist[i].xres;
best_y = modelist[i].yres;
mode = &modelist[i];
}
}
return mode;
}
static void pxafb_setmode(struct fb_var_screeninfo *var,
struct pxafb_mode_info *mode)
{
var->xres = mode->xres;
var->yres = mode->yres;
var->bits_per_pixel = mode->bpp;
var->pixclock = mode->pixclock;
var->hsync_len = mode->hsync_len;
var->left_margin = mode->left_margin;
var->right_margin = mode->right_margin;
var->vsync_len = mode->vsync_len;
var->upper_margin = mode->upper_margin;
var->lower_margin = mode->lower_margin;
var->sync = mode->sync;
var->grayscale = mode->cmap_greyscale;
var->transp.length = mode->transparency;
/* set the initial RGBA bitfields */
pxafb_set_pixfmt(var, mode->depth);
}
static int pxafb_adjust_timing(struct pxafb_info *fbi,
struct fb_var_screeninfo *var)
{
int line_length;
var->xres = max_t(int, var->xres, MIN_XRES);
var->yres = max_t(int, var->yres, MIN_YRES);
if (!(fbi->lccr0 & LCCR0_LCDT)) {
clamp_val(var->hsync_len, 1, 64);
clamp_val(var->vsync_len, 1, 64);
clamp_val(var->left_margin, 1, 255);
clamp_val(var->right_margin, 1, 255);
clamp_val(var->upper_margin, 1, 255);
clamp_val(var->lower_margin, 1, 255);
}
/* make sure each line is aligned on word boundary */
line_length = var->xres * var->bits_per_pixel / 8;
line_length = ALIGN(line_length, 4);
var->xres = line_length * 8 / var->bits_per_pixel;
/* we don't support xpan, force xres_virtual to be equal to xres */
var->xres_virtual = var->xres;
if (var->accel_flags & FB_ACCELF_TEXT)
var->yres_virtual = fbi->fb.fix.smem_len / line_length;
else
var->yres_virtual = max(var->yres_virtual, var->yres);
/* check for limits */
if (var->xres > MAX_XRES || var->yres > MAX_YRES)
return -EINVAL;
if (var->yres > var->yres_virtual)
return -EINVAL;
return 0;
}
/*
* pxafb_check_var():
* Get the video params out of 'var'. If a value doesn't fit, round it up,
* if it's too big, return -EINVAL.
*
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
struct pxafb_mach_info *inf = fbi->inf;
int err;
if (inf->fixed_modes) {
struct pxafb_mode_info *mode;
mode = pxafb_getmode(inf, var);
if (!mode)
return -EINVAL;
pxafb_setmode(var, mode);
}
/* do a test conversion to BPP fields to check the color formats */
err = pxafb_var_to_bpp(var);
if (err < 0)
return err;
pxafb_set_pixfmt(var, var_to_depth(var));
err = pxafb_adjust_timing(fbi, var);
if (err)
return err;
#ifdef CONFIG_CPU_FREQ
pr_debug("pxafb: dma period = %d ps\n",
pxafb_display_dma_period(var));
#endif
return 0;
}
/*
* pxafb_set_par():
* Set the user defined part of the display for the specified console
*/
static int pxafb_set_par(struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
struct fb_var_screeninfo *var = &info->var;
if (var->bits_per_pixel >= 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
if (var->bits_per_pixel >= 16)
fbi->palette_size = 0;
else
fbi->palette_size = var->bits_per_pixel == 1 ?
4 : 1 << var->bits_per_pixel;
fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
if (fbi->fb.var.bits_per_pixel >= 16)
fb_dealloc_cmap(&fbi->fb.cmap);
else
fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
pxafb_activate_var(var, fbi);
return 0;
}
static int pxafb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
struct fb_var_screeninfo newvar;
int dma = DMA_MAX + DMA_BASE;
if (fbi->state != C_ENABLE)
return 0;
/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
* was passed in and copy the rest from the old screeninfo.
*/
memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
newvar.xoffset = var->xoffset;
newvar.yoffset = var->yoffset;
newvar.vmode &= ~FB_VMODE_YWRAP;
newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
setup_base_frame(fbi, &newvar, 1);
if (fbi->lccr0 & LCCR0_SDS)
lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
return 0;
}
/*
* pxafb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 16 bpp mode does not really use the palette, so this will not
* blank the display in all modes.
*/
static int pxafb_blank(int blank, struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
int i;
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
pxafb_schedule_work(fbi, C_DISABLE);
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
break;
case FB_BLANK_UNBLANK:
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, info);
pxafb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static struct fb_ops pxafb_ops = {
.owner = THIS_MODULE,
.fb_check_var = pxafb_check_var,
.fb_set_par = pxafb_set_par,
.fb_pan_display = pxafb_pan_display,
.fb_setcolreg = pxafb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = pxafb_blank,
};
#ifdef CONFIG_FB_PXA_OVERLAY
static void overlay1fb_setup(struct pxafb_layer *ofb)
{
int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
unsigned long start = ofb->video_mem_phys;
setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
}
/* Depending on the enable status of overlay1/2, the DMA should be
* updated from FDADRx (when disabled) or FBRx (when enabled).
*/
static void overlay1fb_enable(struct pxafb_layer *ofb)
{
int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
}
static void overlay1fb_disable(struct pxafb_layer *ofb)
{
uint32_t lccr5;
if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
return;
lccr5 = lcd_readl(ofb->fbi, LCCR5);
lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
pr_warn("%s: timeout disabling overlay1\n", __func__);
lcd_writel(ofb->fbi, LCCR5, lccr5);
}
static void overlay2fb_setup(struct pxafb_layer *ofb)
{
int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
} else {
size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
switch (pfor) {
case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
}
start[1] = start[0] + size;
start[2] = start[1] + size / div;
setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
}
}
static void overlay2fb_enable(struct pxafb_layer *ofb)
{
int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
else {
lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
}
lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
}
static void overlay2fb_disable(struct pxafb_layer *ofb)
{
uint32_t lccr5;
if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
return;
lccr5 = lcd_readl(ofb->fbi, LCCR5);
lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
pr_warn("%s: timeout disabling overlay2\n", __func__);
}
static struct pxafb_layer_ops ofb_ops[] = {
[0] = {
.enable = overlay1fb_enable,
.disable = overlay1fb_disable,
.setup = overlay1fb_setup,
},
[1] = {
.enable = overlay2fb_enable,
.disable = overlay2fb_disable,
.setup = overlay2fb_setup,
},
};
static int overlayfb_open(struct fb_info *info, int user)
{
struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
/* no support for framebuffer console on overlay */
if (user == 0)
return -ENODEV;
if (ofb->usage++ == 0) {
/* unblank the base framebuffer */
console_lock();
fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
console_unlock();
}
return 0;
}
static int overlayfb_release(struct fb_info *info, int user)
{
struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
if (ofb->usage == 1) {
ofb->ops->disable(ofb);
ofb->fb.var.height = -1;
ofb->fb.var.width = -1;
ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
ofb->usage--;
}
return 0;
}
static int overlayfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
int xpos, ypos, pfor, bpp;
xpos = NONSTD_TO_XPOS(var->nonstd);
ypos = NONSTD_TO_YPOS(var->nonstd);
pfor = NONSTD_TO_PFOR(var->nonstd);
bpp = pxafb_var_to_bpp(var);
if (bpp < 0)
return -EINVAL;
/* no support for YUV format on overlay1 */
if (ofb->id == OVERLAY1 && pfor != 0)
return -EINVAL;
/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
switch (pfor) {
case OVERLAY_FORMAT_RGB:
bpp = pxafb_var_to_bpp(var);
if (bpp < 0)
return -EINVAL;
pxafb_set_pixfmt(var, var_to_depth(var));
break;
case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
default:
return -EINVAL;
}
/* each line must start at a 32-bit word boundary */
if ((xpos * bpp) % 32)
return -EINVAL;
/* xres must align on 32-bit word boundary */
var->xres = roundup(var->xres * bpp, 32) / bpp;
if ((xpos + var->xres > base_var->xres) ||
(ypos + var->yres > base_var->yres))
return -EINVAL;
var->xres_virtual = var->xres;
var->yres_virtual = max(var->yres, var->yres_virtual);
return 0;
}
static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
{
struct fb_var_screeninfo *var = &ofb->fb.var;
int pfor = NONSTD_TO_PFOR(var->nonstd);
int size, bpp = 0;
switch (pfor) {
case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
}
ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
if (ofb->video_mem) {
if (ofb->video_mem_size >= size)
return 0;
}
return -EINVAL;
}
static int overlayfb_set_par(struct fb_info *info)
{
struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
struct fb_var_screeninfo *var = &info->var;
int xpos, ypos, pfor, bpp, ret;
ret = overlayfb_check_video_memory(ofb);
if (ret)
return ret;
bpp = pxafb_var_to_bpp(var);
xpos = NONSTD_TO_XPOS(var->nonstd);
ypos = NONSTD_TO_YPOS(var->nonstd);
pfor = NONSTD_TO_PFOR(var->nonstd);
ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
OVLxC1_BPP(bpp);
ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
if (ofb->id == OVERLAY2)
ofb->control[1] |= OVL2C2_PFOR(pfor);
ofb->ops->setup(ofb);
ofb->ops->enable(ofb);
return 0;
}
static struct fb_ops overlay_fb_ops = {
.owner = THIS_MODULE,
.fb_open = overlayfb_open,
.fb_release = overlayfb_release,
.fb_check_var = overlayfb_check_var,
.fb_set_par = overlayfb_set_par,
};
static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
int id)
{
sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
ofb->fb.fix.xpanstep = 0;
ofb->fb.fix.ypanstep = 1;
ofb->fb.var.activate = FB_ACTIVATE_NOW;
ofb->fb.var.height = -1;
ofb->fb.var.width = -1;
ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
ofb->fb.fbops = &overlay_fb_ops;
ofb->fb.flags = FBINFO_FLAG_DEFAULT;
ofb->fb.node = -1;
ofb->fb.pseudo_palette = NULL;
ofb->id = id;
ofb->ops = &ofb_ops[id];
ofb->usage = 0;
ofb->fbi = fbi;
init_completion(&ofb->branch_done);
}
static inline int pxafb_overlay_supported(void)
{
if (cpu_is_pxa27x() || cpu_is_pxa3xx())
return 1;
return 0;
}
static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
struct pxafb_layer *ofb)
{
/* We assume that user will use at most video_mem_size for overlay fb,
* anyway, it's useless to use 16bpp main plane and 24bpp overlay
*/
ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
GFP_KERNEL | __GFP_ZERO);
if (ofb->video_mem == NULL)
return -ENOMEM;
ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
mutex_lock(&ofb->fb.mm_lock);
ofb->fb.fix.smem_start = ofb->video_mem_phys;
ofb->fb.fix.smem_len = pxafb->video_mem_size;
mutex_unlock(&ofb->fb.mm_lock);
ofb->fb.screen_base = ofb->video_mem;
return 0;
}
static void pxafb_overlay_init(struct pxafb_info *fbi)
{
int i, ret;
if (!pxafb_overlay_supported())
return;
for (i = 0; i < 2; i++) {
struct pxafb_layer *ofb = &fbi->overlay[i];
init_pxafb_overlay(fbi, ofb, i);
ret = register_framebuffer(&ofb->fb);
if (ret) {
dev_err(fbi->dev, "failed to register overlay %d\n", i);
continue;
}
ret = pxafb_overlay_map_video_memory(fbi, ofb);
if (ret) {
dev_err(fbi->dev,
"failed to map video memory for overlay %d\n",
i);
unregister_framebuffer(&ofb->fb);
continue;
}
ofb->registered = 1;
}
/* mask all IU/BS/EOF/SOF interrupts */
lcd_writel(fbi, LCCR5, ~0);
pr_info("PXA Overlay driver loaded successfully!\n");
}
static void pxafb_overlay_exit(struct pxafb_info *fbi)
{
int i;
if (!pxafb_overlay_supported())
return;
for (i = 0; i < 2; i++) {
struct pxafb_layer *ofb = &fbi->overlay[i];
if (ofb->registered) {
if (ofb->video_mem)
free_pages_exact(ofb->video_mem,
ofb->video_mem_size);
unregister_framebuffer(&ofb->fb);
}
}
}
#else
static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
#endif /* CONFIG_FB_PXA_OVERLAY */
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
* From PXA Developer's Manual:
*
* PixelClock = LCLK
* -------------
* 2 ( PCD + 1 )
*
* PCD = LCLK
* ------------- - 1
* 2(PixelClock)
*
* Where:
* LCLK = LCD/Memory Clock
* PCD = LCCR3[7:0]
*
* PixelClock here is in Hz while the pixclock argument given is the
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
*
* The function get_lclk_frequency_10khz returns LCLK in units of
* 10khz. Calling the result of this function lclk gives us the
* following
*
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
* -------------------------------------- - 1
* 2
*
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
*/
static inline unsigned int get_pcd(struct pxafb_info *fbi,
unsigned int pixclock)
{
unsigned long long pcd;
/* FIXME: Need to take into account Double Pixel Clock mode
* (DPC) bit? or perhaps set it based on the various clock
* speeds */
pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
pcd *= pixclock;
do_div(pcd, 100000000 * 2);
/* no need for this, since we should subtract 1 anyway. they cancel */
/* pcd += 1; */ /* make up for integer math truncations */
return (unsigned int)pcd;
}
/*
* Some touchscreens need hsync information from the video driver to
* function correctly. We export it here. Note that 'hsync_time' and
* the value returned from pxafb_get_hsync_time() is the *reciprocal*
* of the hsync period in seconds.
*/
static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
{
unsigned long htime;
if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
fbi->hsync_time = 0;
return;
}
htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
fbi->hsync_time = htime;
}
unsigned long pxafb_get_hsync_time(struct device *dev)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
/* If display is blanked/suspended, hsync isn't active */
if (!fbi || (fbi->state != C_ENABLE))
return 0;
return fbi->hsync_time;
}
EXPORT_SYMBOL(pxafb_get_hsync_time);
static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
unsigned long start, size_t size)
{
struct pxafb_dma_descriptor *dma_desc, *pal_desc;
unsigned int dma_desc_off, pal_desc_off;
if (dma < 0 || dma >= DMA_MAX * 2)
return -EINVAL;
dma_desc = &fbi->dma_buff->dma_desc[dma];
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
dma_desc->fsadr = start;
dma_desc->fidr = 0;
dma_desc->ldcmd = size;
if (pal < 0 || pal >= PAL_MAX * 2) {
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
} else {
pal_desc = &fbi->dma_buff->pal_desc[pal];
pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
pal_desc->fidr = 0;
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
else
pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
pal_desc->ldcmd |= LDCMD_PAL;
/* flip back and forth between palette and frame buffer */
pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
}
return 0;
}
static void setup_base_frame(struct pxafb_info *fbi,
struct fb_var_screeninfo *var,
int branch)
{
struct fb_fix_screeninfo *fix = &fbi->fb.fix;
int nbytes, dma, pal, bpp = var->bits_per_pixel;
unsigned long offset;
dma = DMA_BASE + (branch ? DMA_MAX : 0);
pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
nbytes = fix->line_length * var->yres;
offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
if (fbi->lccr0 & LCCR0_SDS) {
nbytes = nbytes / 2;
setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
}
setup_frame_dma(fbi, dma, pal, offset, nbytes);
}
#ifdef CONFIG_FB_PXA_SMARTPANEL
static int setup_smart_dma(struct pxafb_info *fbi)
{
struct pxafb_dma_descriptor *dma_desc;
unsigned long dma_desc_off, cmd_buff_off;
dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
dma_desc->fidr = 0;
dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
return 0;
}
int pxafb_smart_flush(struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
uint32_t prsr;
int ret = 0;
/* disable controller until all registers are set up */
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
/* 1. make it an even number of commands to align on 32-bit boundary
* 2. add the interrupt command to the end of the chain so we can
* keep track of the end of the transfer
*/
while (fbi->n_smart_cmds & 1)
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
setup_smart_dma(fbi);
/* continue to execute next command */
prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
lcd_writel(fbi, PRSR, prsr);
/* stop the processor in case it executed "wait for sync" cmd */
lcd_writel(fbi, CMDCR, 0x0001);
/* don't send interrupts for fifo underruns on channel 6 */
lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
/* begin sending */
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
pr_warn("%s: timeout waiting for command done\n", __func__);
ret = -ETIMEDOUT;
}
/* quick disable */
prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
lcd_writel(fbi, PRSR, prsr);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
lcd_writel(fbi, FDADR6, 0);
fbi->n_smart_cmds = 0;
return ret;
}
int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
{
int i;
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
for (i = 0; i < n_cmds; i++, cmds++) {
/* if it is a software delay, flush and delay */
if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
pxafb_smart_flush(info);
mdelay(*cmds & 0xff);
continue;
}
/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
pxafb_smart_flush(info);
fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
}
return 0;
}
static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
{
unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
return (t == 0) ? 1 : t;
}
static void setup_smart_timing(struct pxafb_info *fbi,
struct fb_var_screeninfo *var)
{
struct pxafb_mach_info *inf = fbi->inf;
struct pxafb_mode_info *mode = &inf->modes[0];
unsigned long lclk = clk_get_rate(fbi->clk);
unsigned t1, t2, t3, t4;
t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
t3 = mode->op_hold_time;
t4 = mode->cmd_inh_time;
fbi->reg_lccr1 =
LCCR1_DisWdth(var->xres) |
LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
/* FIXME: make this configurable */
fbi->reg_cmdcr = 1;
}
static int pxafb_smart_thread(void *arg)
{
struct pxafb_info *fbi = arg;
struct pxafb_mach_info *inf = fbi->inf;
if (!inf->smart_update) {
pr_err("%s: not properly initialized, thread terminated\n",
__func__);
return -EINVAL;
}
pr_debug("%s(): task starting\n", __func__);
set_freezable();
while (!kthread_should_stop()) {
if (try_to_freeze())
continue;
mutex_lock(&fbi->ctrlr_lock);
if (fbi->state == C_ENABLE) {
inf->smart_update(&fbi->fb);
complete(&fbi->refresh_done);
}
mutex_unlock(&fbi->ctrlr_lock);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(30));
}
pr_debug("%s(): task ending\n", __func__);
return 0;
}
static int pxafb_smart_init(struct pxafb_info *fbi)
{
if (!(fbi->lccr0 & LCCR0_LCDT))
return 0;
fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
fbi->n_smart_cmds = 0;
init_completion(&fbi->command_done);
init_completion(&fbi->refresh_done);
fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
"lcd_refresh");
if (IS_ERR(fbi->smart_thread)) {
pr_err("%s: unable to create kernel thread\n", __func__);
return PTR_ERR(fbi->smart_thread);
}
return 0;
}
#else
static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
#endif /* CONFIG_FB_PXA_SMARTPANEL */
static void setup_parallel_timing(struct pxafb_info *fbi,
struct fb_var_screeninfo *var)
{
unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
fbi->reg_lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
/*
* If we have a dual scan LCD, we need to halve
* the YRES parameter.
*/
lines_per_panel = var->yres;
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
lines_per_panel /= 2;
fbi->reg_lccr2 =
LCCR2_DisHght(lines_per_panel) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
fbi->reg_lccr3 = fbi->lccr3 |
(var->sync & FB_SYNC_HOR_HIGH_ACT ?
LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ?
LCCR3_VrtSnchH : LCCR3_VrtSnchL);
if (pcd) {
fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
set_hsync_time(fbi, pcd);
}
}
/*
* pxafb_activate_var():
* Configures LCD Controller based on entries in var parameter.
* Settings are only written to the controller if changes were made.
*/
static int pxafb_activate_var(struct fb_var_screeninfo *var,
struct pxafb_info *fbi)
{
u_long flags;
/* Update shadow copy atomically */
local_irq_save(flags);
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (fbi->lccr0 & LCCR0_LCDT)
setup_smart_timing(fbi, var);
else
#endif
setup_parallel_timing(fbi, var);
setup_base_frame(fbi, var, 0);
fbi->reg_lccr0 = fbi->lccr0 |
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
(lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
(lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
(lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
(lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
(lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
((fbi->lccr0 & LCCR0_SDS) &&
(lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
pxafb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
if (fbi->backlight_power)
fbi->backlight_power(on);
}
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
if (fbi->lcd_power)
fbi->lcd_power(on, &fbi->fb.var);
if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) {
int ret;
if (on)
ret = regulator_enable(fbi->lcd_supply);
else
ret = regulator_disable(fbi->lcd_supply);
if (ret < 0)
pr_warn("Unable to %s LCD supply regulator: %d\n",
on ? "enable" : "disable", ret);
else
fbi->lcd_supply_enabled = on;
}
}
static void pxafb_enable_controller(struct pxafb_info *fbi)
{
pr_debug("pxafb: Enabling LCD controller\n");
pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
/* enable LCD controller clock */
if (clk_prepare_enable(fbi->clk)) {
pr_err("%s: Failed to prepare clock\n", __func__);
return;
}
if (fbi->lccr0 & LCCR0_LCDT)
return;
/* Sequence from 11.7.10 */
lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
if (fbi->lccr0 & LCCR0_SDS)
lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
}
static void pxafb_disable_controller(struct pxafb_info *fbi)
{
uint32_t lccr0;
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (fbi->lccr0 & LCCR0_LCDT) {
wait_for_completion_timeout(&fbi->refresh_done,
msecs_to_jiffies(200));
return;
}
#endif
/* Clear LCD Status Register */
lcd_writel(fbi, LCSR, 0xffffffff);
lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
lcd_writel(fbi, LCCR0, lccr0);
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
/* disable LCD controller clock */
clk_disable_unprepare(fbi->clk);
}
/*
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
*/
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
{
struct pxafb_info *fbi = dev_id;
unsigned int lccr0, lcsr;
lcsr = lcd_readl(fbi, LCSR);
if (lcsr & LCSR_LDD) {
lccr0 = lcd_readl(fbi, LCCR0);
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
complete(&fbi->disable_done);
}
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (lcsr & LCSR_CMD_INT)
complete(&fbi->command_done);
#endif
lcd_writel(fbi, LCSR, lcsr);
#ifdef CONFIG_FB_PXA_OVERLAY
{
unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
if (lcsr1 & LCSR1_BS(1))
complete(&fbi->overlay[0].branch_done);
if (lcsr1 & LCSR1_BS(2))
complete(&fbi->overlay[1].branch_done);
lcd_writel(fbi, LCSR1, lcsr1);
}
#endif
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
{
u_int old_state;
mutex_lock(&fbi->ctrlr_lock);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
/* TODO __pxafb_lcd_power(fbi, 0); */
pxafb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__pxafb_backlight_power(fbi, 0);
__pxafb_lcd_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
pxafb_disable_controller(fbi);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
pxafb_enable_controller(fbi);
/* TODO __pxafb_lcd_power(fbi, 1); */
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
__pxafb_lcd_power(fbi, 0);
pxafb_disable_controller(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
__pxafb_backlight_power(fbi, 1);
}
break;
}
mutex_unlock(&fbi->ctrlr_lock);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void pxafb_task(struct work_struct *work)
{
struct pxafb_info *fbi =
container_of(work, struct pxafb_info, task);
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
*/
static int
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
/* TODO struct cpufreq_freqs *f = data; */
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
#ifdef CONFIG_FB_PXA_OVERLAY
if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
#endif
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi, fbi->fb.var.pixclock);
set_hsync_time(fbi, pcd);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int pxafb_suspend(struct device *dev)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int pxafb_resume(struct device *dev)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
static const struct dev_pm_ops pxafb_pm_ops = {
.suspend = pxafb_suspend,
.resume = pxafb_resume,
};
#endif
static int pxafb_init_video_memory(struct pxafb_info *fbi)
{
int size = PAGE_ALIGN(fbi->video_mem_size);
fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
if (fbi->video_mem == NULL)
return -ENOMEM;
fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
fbi->video_mem_size = size;
fbi->fb.fix.smem_start = fbi->video_mem_phys;
fbi->fb.fix.smem_len = fbi->video_mem_size;
fbi->fb.screen_base = fbi->video_mem;
return fbi->video_mem ? 0 : -ENOMEM;
}
static void pxafb_decode_mach_info(struct pxafb_info *fbi,
struct pxafb_mach_info *inf)
{
unsigned int lcd_conn = inf->lcd_conn;
struct pxafb_mode_info *m;
int i;
fbi->cmap_inverse = inf->cmap_inverse;
fbi->cmap_static = inf->cmap_static;
fbi->lccr4 = inf->lccr4;
switch (lcd_conn & LCD_TYPE_MASK) {
case LCD_TYPE_MONO_STN:
fbi->lccr0 = LCCR0_CMS;
break;
case LCD_TYPE_MONO_DSTN:
fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
break;
case LCD_TYPE_COLOR_STN:
fbi->lccr0 = 0;
break;
case LCD_TYPE_COLOR_DSTN:
fbi->lccr0 = LCCR0_SDS;
break;
case LCD_TYPE_COLOR_TFT:
fbi->lccr0 = LCCR0_PAS;
break;
case LCD_TYPE_SMART_PANEL:
fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
break;
default:
/* fall back to backward compatibility way */
fbi->lccr0 = inf->lccr0;
fbi->lccr3 = inf->lccr3;
goto decode_mode;
}
if (lcd_conn == LCD_MONO_STN_8BPP)
fbi->lccr0 |= LCCR0_DPD;
fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
decode_mode:
pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
/* decide video memory size as follows:
* 1. default to mode of maximum resolution
* 2. allow platform to override
* 3. allow module parameter to override
*/
for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
m->xres * m->yres * m->bpp / 8);
if (inf->video_mem_size > fbi->video_mem_size)
fbi->video_mem_size = inf->video_mem_size;
if (video_mem_size > fbi->video_mem_size)
fbi->video_mem_size = video_mem_size;
}
static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
struct pxafb_mach_info *inf)
{
struct pxafb_info *fbi;
void *addr;
/* Alloc the pxafb_info and pseudo_palette in one step */
fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16,
GFP_KERNEL);
if (!fbi)
return ERR_PTR(-ENOMEM);
fbi->dev = dev;
fbi->inf = inf;
fbi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(fbi->clk))
return ERR_CAST(fbi->clk);
strcpy(fbi->fb.fix.id, PXA_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 1;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &pxafb_ops;
fbi->fb.flags = FBINFO_DEFAULT;
fbi->fb.node = -1;
addr = fbi;
addr = addr + sizeof(struct pxafb_info);
fbi->fb.pseudo_palette = addr;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
pxafb_decode_mach_info(fbi, inf);
#ifdef CONFIG_FB_PXA_OVERLAY
/* place overlay(s) on top of base */
if (pxafb_overlay_supported())
fbi->lccr0 |= LCCR0_OUC;
#endif
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, pxafb_task);
mutex_init(&fbi->ctrlr_lock);
init_completion(&fbi->disable_done);
return fbi;
}
#ifdef CONFIG_FB_PXA_PARAMETERS
static int parse_opt_mode(struct device *dev, const char *this_opt,
struct pxafb_mach_info *inf)
{
const char *name = this_opt+5;
unsigned int namelen = strlen(name);
int res_specified = 0, bpp_specified = 0;
unsigned int xres = 0, yres = 0, bpp = 0;
int yres_specified = 0;
int i;
for (i = namelen-1; i >= 0; i--) {
switch (name[i]) {
case '-':
namelen = i;
if (!bpp_specified && !yres_specified) {
bpp = simple_strtoul(&name[i+1], NULL, 0);
bpp_specified = 1;
} else
goto done;
break;
case 'x':
if (!yres_specified) {
yres = simple_strtoul(&name[i+1], NULL, 0);
yres_specified = 1;
} else
goto done;
break;
case '0' ... '9':
break;
default:
goto done;
}
}
if (i < 0 && yres_specified) {
xres = simple_strtoul(name, NULL, 0);
res_specified = 1;
}
done:
if (res_specified) {
dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
inf->modes[0].xres = xres; inf->modes[0].yres = yres;
}
if (bpp_specified)
switch (bpp) {
case 1:
case 2:
case 4:
case 8:
case 16:
inf->modes[0].bpp = bpp;
dev_info(dev, "overriding bit depth: %d\n", bpp);
break;
default:
dev_err(dev, "Depth %d is not valid\n", bpp);
return -EINVAL;
}
return 0;
}
static int parse_opt(struct device *dev, char *this_opt,
struct pxafb_mach_info *inf)
{
struct pxafb_mode_info *mode = &inf->modes[0];
char s[64];
s[0] = '\0';
if (!strncmp(this_opt, "vmem:", 5)) {
video_mem_size = memparse(this_opt + 5, NULL);
} else if (!strncmp(this_opt, "mode:", 5)) {
return parse_opt_mode(dev, this_opt, inf);
} else if (!strncmp(this_opt, "pixclock:", 9)) {
mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "pixclock: %ld\n", mode->pixclock);
} else if (!strncmp(this_opt, "left:", 5)) {
mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
sprintf(s, "left: %u\n", mode->left_margin);
} else if (!strncmp(this_opt, "right:", 6)) {
mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "right: %u\n", mode->right_margin);
} else if (!strncmp(this_opt, "upper:", 6)) {
mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "upper: %u\n", mode->upper_margin);
} else if (!strncmp(this_opt, "lower:", 6)) {
mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "lower: %u\n", mode->lower_margin);
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "hsynclen: %u\n", mode->hsync_len);
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "vsynclen: %u\n", mode->vsync_len);
} else if (!strncmp(this_opt, "hsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
sprintf(s, "hsync: Active Low\n");
mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
} else {
sprintf(s, "hsync: Active High\n");
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
}
} else if (!strncmp(this_opt, "vsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
sprintf(s, "vsync: Active Low\n");
mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
} else {
sprintf(s, "vsync: Active High\n");
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
}
} else if (!strncmp(this_opt, "dpc:", 4)) {
if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
sprintf(s, "double pixel clock: false\n");
inf->lccr3 &= ~LCCR3_DPC;
} else {
sprintf(s, "double pixel clock: true\n");
inf->lccr3 |= LCCR3_DPC;
}
} else if (!strncmp(this_opt, "outputen:", 9)) {
if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
sprintf(s, "output enable: active low\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
} else {
sprintf(s, "output enable: active high\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
}
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
sprintf(s, "pixel clock polarity: falling edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
} else {
sprintf(s, "pixel clock polarity: rising edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
}
} else if (!strncmp(this_opt, "color", 5)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
} else if (!strncmp(this_opt, "mono", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
} else if (!strncmp(this_opt, "active", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
} else if (!strncmp(this_opt, "passive", 7)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
} else if (!strncmp(this_opt, "single", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
} else if (!strncmp(this_opt, "dual", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
} else if (!strncmp(this_opt, "4pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
} else if (!strncmp(this_opt, "8pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
} else {
dev_err(dev, "unknown option: %s\n", this_opt);
return -EINVAL;
}
if (s[0] != '\0')
dev_info(dev, "override %s", s);
return 0;
}
static int pxafb_parse_options(struct device *dev, char *options,
struct pxafb_mach_info *inf)
{
char *this_opt;
int ret;
if (!options || !*options)
return 0;
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
/* could be made table driven or similar?... */
while ((this_opt = strsep(&options, ",")) != NULL) {
ret = parse_opt(dev, this_opt, inf);
if (ret)
return ret;
}
return 0;
}
static char g_options[256] = "";
#ifndef MODULE
static int __init pxafb_setup_options(void)
{
char *options = NULL;
if (fb_get_options("pxafb", &options))
return -ENODEV;
if (options)
strlcpy(g_options, options, sizeof(g_options));
return 0;
}
#else
#define pxafb_setup_options() (0)
module_param_string(options, g_options, sizeof(g_options), 0);
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.rst)");
#endif
#else
#define pxafb_parse_options(...) (0)
#define pxafb_setup_options() (0)
#endif
#ifdef DEBUG_VAR
/* Check for various illegal bit-combinations. Currently only
* a warning is given. */
static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
{
if (inf->lcd_conn)
return;
if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
dev_warn(dev, "machine LCCR0 setting contains "
"illegal bits: %08x\n",
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
dev_warn(dev, "machine LCCR3 setting contains "
"illegal bits: %08x\n",
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
if (inf->lccr0 & LCCR0_DPD &&
((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
(inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
(inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
dev_warn(dev, "Double Pixel Data (DPD) mode is "
"only valid in passive mono"
" single panel mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
(inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
dev_warn(dev, "Dual panel only valid in passive mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
(inf->modes->upper_margin || inf->modes->lower_margin))
dev_warn(dev, "Upper and lower margins must be 0 in "
"passive mode\n");
}
#else
#define pxafb_check_options(...) do {} while (0)
#endif
#if defined(CONFIG_OF)
static const char * const lcd_types[] = {
"unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
"color-tft", "smart-panel", NULL
};
static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
struct pxafb_mach_info *info, u32 bus_width)
{
struct display_timings *timings;
struct videomode vm;
int i, ret = -EINVAL;
const char *s;
ret = of_property_read_string(disp, "lcd-type", &s);
if (ret)
s = "color-tft";
i = match_string(lcd_types, -1, s);
if (i < 0) {
dev_err(dev, "lcd-type %s is unknown\n", s);
return i;
}
info->lcd_conn |= LCD_CONN_TYPE(i);
info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
timings = of_get_display_timings(disp);
if (!timings)
return -EINVAL;
ret = -ENOMEM;
info->modes = devm_kcalloc(dev, timings->num_timings,
sizeof(info->modes[0]),
GFP_KERNEL);
if (!info->modes)
goto out;
info->num_modes = timings->num_timings;
for (i = 0; i < timings->num_timings; i++) {
ret = videomode_from_timings(timings, &vm, i);
if (ret) {
dev_err(dev, "videomode_from_timings %d failed: %d\n",
i, ret);
goto out;
}
if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
info->lcd_conn |= LCD_PCLK_EDGE_RISE;
if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
info->lcd_conn |= LCD_PCLK_EDGE_FALL;
if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
if (vm.flags & DISPLAY_FLAGS_DE_LOW)
info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
info->modes[i].xres = vm.hactive;
info->modes[i].yres = vm.vactive;
info->modes[i].hsync_len = vm.hsync_len;
info->modes[i].left_margin = vm.hback_porch;
info->modes[i].right_margin = vm.hfront_porch;
info->modes[i].vsync_len = vm.vsync_len;
info->modes[i].upper_margin = vm.vback_porch;
info->modes[i].lower_margin = vm.vfront_porch;
}
ret = 0;
out:
display_timings_release(timings);
return ret;
}
static int of_get_pxafb_mode_info(struct device *dev,
struct pxafb_mach_info *info)
{
struct device_node *display, *np;
u32 bus_width;
int ret, i;
np = of_graph_get_next_endpoint(dev->of_node, NULL);
if (!np) {
dev_err(dev, "could not find endpoint\n");
return -EINVAL;
}
ret = of_property_read_u32(np, "bus-width", &bus_width);
if (ret) {
dev_err(dev, "no bus-width specified: %d\n", ret);
of_node_put(np);
return ret;
}
display = of_graph_get_remote_port_parent(np);
of_node_put(np);
if (!display) {
dev_err(dev, "no display defined\n");
return -EINVAL;
}
ret = of_get_pxafb_display(dev, display, info, bus_width);
of_node_put(display);
if (ret)
return ret;
for (i = 0; i < info->num_modes; i++)
info->modes[i].bpp = bus_width;
return 0;
}
static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
{
int ret;
struct pxafb_mach_info *info;
if (!dev->of_node)
return NULL;
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = of_get_pxafb_mode_info(dev, info);
if (ret)
return ERR_PTR(ret);
/*
* On purpose, neither lccrX registers nor video memory size can be
* specified through device-tree, they are considered more a debug hack
* available through command line.
*/
return info;
}
#else
static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
{
return NULL;
}
#endif
static int pxafb_probe(struct platform_device *dev)
{
struct pxafb_info *fbi;
struct pxafb_mach_info *inf, *pdata;
struct resource *r;
int i, irq, ret;
dev_dbg(&dev->dev, "pxafb_probe\n");
ret = -ENOMEM;
pdata = dev_get_platdata(&dev->dev);
inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
if (!inf)
goto failed;
if (pdata) {
*inf = *pdata;
inf->modes =
devm_kmalloc_array(&dev->dev, pdata->num_modes,
sizeof(inf->modes[0]), GFP_KERNEL);
if (!inf->modes)
goto failed;
for (i = 0; i < inf->num_modes; i++)
inf->modes[i] = pdata->modes[i];
}
if (!pdata)
inf = of_pxafb_of_mach_info(&dev->dev);
if (IS_ERR_OR_NULL(inf))
goto failed;
ret = pxafb_parse_options(&dev->dev, g_options, inf);
if (ret < 0)
goto failed;
pxafb_check_options(&dev->dev, inf);
dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
inf->modes->xres,
inf->modes->yres,
inf->modes->bpp);
if (inf->modes->xres == 0 ||
inf->modes->yres == 0 ||
inf->modes->bpp == 0) {
dev_err(&dev->dev, "Invalid resolution or bit depth\n");
ret = -EINVAL;
goto failed;
}
fbi = pxafb_init_fbinfo(&dev->dev, inf);
if (IS_ERR(fbi)) {
dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
ret = PTR_ERR(fbi);
goto failed;
}
if (cpu_is_pxa3xx() && inf->acceleration_enabled)
fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
fbi->backlight_power = inf->pxafb_backlight_power;
fbi->lcd_power = inf->pxafb_lcd_power;
fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd");
if (IS_ERR(fbi->lcd_supply)) {
if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER)
return -EPROBE_DEFER;
fbi->lcd_supply = NULL;
}
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&dev->dev, "no I/O memory resource defined\n");
ret = -ENODEV;
goto failed;
}
fbi->mmio_base = devm_ioremap_resource(&dev->dev, r);
if (IS_ERR(fbi->mmio_base)) {
dev_err(&dev->dev, "failed to get I/O memory\n");
ret = -EBUSY;
goto failed;
}
fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
&fbi->dma_buff_phys, GFP_KERNEL);
if (fbi->dma_buff == NULL) {
dev_err(&dev->dev, "failed to allocate memory for DMA\n");
ret = -ENOMEM;
goto failed;
}
ret = pxafb_init_video_memory(fbi);
if (ret) {
dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
ret = -ENOMEM;
goto failed_free_dma;
}
irq = platform_get_irq(dev, 0);
if (irq < 0) {
dev_err(&dev->dev, "no IRQ defined\n");
ret = -ENODEV;
goto failed_free_mem;
}
ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi);
if (ret) {
dev_err(&dev->dev, "request_irq failed: %d\n", ret);
ret = -EBUSY;
goto failed_free_mem;
}
ret = pxafb_smart_init(fbi);
if (ret) {
dev_err(&dev->dev, "failed to initialize smartpanel\n");
goto failed_free_mem;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
if (ret) {
dev_err(&dev->dev, "failed to get suitable mode\n");
goto failed_free_mem;
}
ret = pxafb_set_par(&fbi->fb);
if (ret) {
dev_err(&dev->dev, "Failed to set parameters\n");
goto failed_free_mem;
}
platform_set_drvdata(dev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0) {
dev_err(&dev->dev,
"Failed to register framebuffer device: %d\n", ret);
goto failed_free_cmap;
}
pxafb_overlay_init(fbi);
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = pxafb_freq_transition;
cpufreq_register_notifier(&fbi->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
/*
* Ok, now enable the LCD controller
*/
set_ctrlr_state(fbi, C_ENABLE);
return 0;
failed_free_cmap:
if (fbi->fb.cmap.len)
fb_dealloc_cmap(&fbi->fb.cmap);
failed_free_mem:
free_pages_exact(fbi->video_mem, fbi->video_mem_size);
failed_free_dma:
dma_free_coherent(&dev->dev, fbi->dma_buff_size,
fbi->dma_buff, fbi->dma_buff_phys);
failed:
return ret;
}
static int pxafb_remove(struct platform_device *dev)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
struct fb_info *info;
if (!fbi)
return 0;
info = &fbi->fb;
pxafb_overlay_exit(fbi);
unregister_framebuffer(info);
pxafb_disable_controller(fbi);
if (fbi->fb.cmap.len)
fb_dealloc_cmap(&fbi->fb.cmap);
free_pages_exact(fbi->video_mem, fbi->video_mem_size);
dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
fbi->dma_buff_phys);
return 0;
}
static const struct of_device_id pxafb_of_dev_id[] = {
{ .compatible = "marvell,pxa270-lcdc", },
{ .compatible = "marvell,pxa300-lcdc", },
{ .compatible = "marvell,pxa2xx-lcdc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
static struct platform_driver pxafb_driver = {
.probe = pxafb_probe,
.remove = pxafb_remove,
.driver = {
.name = "pxa2xx-fb",
.of_match_table = pxafb_of_dev_id,
#ifdef CONFIG_PM
.pm = &pxafb_pm_ops,
#endif
},
};
static int __init pxafb_init(void)
{
if (pxafb_setup_options())
return -EINVAL;
return platform_driver_register(&pxafb_driver);
}
static void __exit pxafb_exit(void)
{
platform_driver_unregister(&pxafb_driver);
}
module_init(pxafb_init);
module_exit(pxafb_exit);
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
MODULE_LICENSE("GPL");