5a972474cf
Fix afs_writepages() to always set mapping->writeback_index to a page index and not a byte position[1]. Fixes: 31143d5d515e ("AFS: implement basic file write support") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org Link: https://lore.kernel.org/r/CAB9dFdvHsLsw7CMnB+4cgciWDSqVjuij4mH3TaXnHQB8sz5rHw@mail.gmail.com/ [1] Link: https://lore.kernel.org/r/162610728339.3408253.4604750166391496546.stgit@warthog.procyon.org.uk/ # v2 (no v1)
967 lines
23 KiB
C
967 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* handling of writes to regular files and writing back to the server
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/netfs.h>
|
|
#include <linux/fscache.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* mark a page as having been made dirty and thus needing writeback
|
|
*/
|
|
int afs_set_page_dirty(struct page *page)
|
|
{
|
|
_enter("");
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
/*
|
|
* prepare to perform part of a write to a page
|
|
*/
|
|
int afs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **_page, void **fsdata)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
struct page *page;
|
|
unsigned long priv;
|
|
unsigned f, from;
|
|
unsigned t, to;
|
|
pgoff_t index;
|
|
int ret;
|
|
|
|
_enter("{%llx:%llu},%llx,%x",
|
|
vnode->fid.vid, vnode->fid.vnode, pos, len);
|
|
|
|
/* Prefetch area to be written into the cache if we're caching this
|
|
* file. We need to do this before we get a lock on the page in case
|
|
* there's more than one writer competing for the same cache block.
|
|
*/
|
|
ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
|
|
&afs_req_ops, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index = page->index;
|
|
from = pos - index * PAGE_SIZE;
|
|
to = from + len;
|
|
|
|
try_again:
|
|
/* See if this page is already partially written in a way that we can
|
|
* merge the new write with.
|
|
*/
|
|
if (PagePrivate(page)) {
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
ASSERTCMP(f, <=, t);
|
|
|
|
if (PageWriteback(page)) {
|
|
trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
|
|
goto flush_conflicting_write;
|
|
}
|
|
/* If the file is being filled locally, allow inter-write
|
|
* spaces to be merged into writes. If it's not, only write
|
|
* back what the user gives us.
|
|
*/
|
|
if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
|
|
(to < f || from > t))
|
|
goto flush_conflicting_write;
|
|
}
|
|
|
|
*_page = page;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
/* The previous write and this write aren't adjacent or overlapping, so
|
|
* flush the page out.
|
|
*/
|
|
flush_conflicting_write:
|
|
_debug("flush conflict");
|
|
ret = write_one_page(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = lock_page_killable(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
goto try_again;
|
|
|
|
error:
|
|
put_page(page);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* finalise part of a write to a page
|
|
*/
|
|
int afs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
unsigned long priv;
|
|
unsigned int f, from = pos & (thp_size(page) - 1);
|
|
unsigned int t, to = from + copied;
|
|
loff_t i_size, maybe_i_size;
|
|
|
|
_enter("{%llx:%llu},{%lx}",
|
|
vnode->fid.vid, vnode->fid.vnode, page->index);
|
|
|
|
if (!PageUptodate(page)) {
|
|
if (copied < len) {
|
|
copied = 0;
|
|
goto out;
|
|
}
|
|
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
if (copied == 0)
|
|
goto out;
|
|
|
|
maybe_i_size = pos + copied;
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (maybe_i_size > i_size) {
|
|
write_seqlock(&vnode->cb_lock);
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (maybe_i_size > i_size)
|
|
i_size_write(&vnode->vfs_inode, maybe_i_size);
|
|
write_sequnlock(&vnode->cb_lock);
|
|
}
|
|
|
|
if (PagePrivate(page)) {
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
if (from < f)
|
|
f = from;
|
|
if (to > t)
|
|
t = to;
|
|
priv = afs_page_dirty(page, f, t);
|
|
set_page_private(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
|
|
} else {
|
|
priv = afs_page_dirty(page, from, to);
|
|
attach_page_private(page, (void *)priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
|
|
}
|
|
|
|
if (set_page_dirty(page))
|
|
_debug("dirtied %lx", page->index);
|
|
|
|
out:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* kill all the pages in the given range
|
|
*/
|
|
static void afs_kill_pages(struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct pagevec pv;
|
|
unsigned int loop, psize;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
pagevec_init(&pv);
|
|
|
|
do {
|
|
_debug("kill %llx @%llx", len, start);
|
|
|
|
pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
|
|
PAGEVEC_SIZE, pv.pages);
|
|
if (pv.nr == 0)
|
|
break;
|
|
|
|
for (loop = 0; loop < pv.nr; loop++) {
|
|
struct page *page = pv.pages[loop];
|
|
|
|
if (page->index * PAGE_SIZE >= start + len)
|
|
break;
|
|
|
|
psize = thp_size(page);
|
|
start += psize;
|
|
len -= psize;
|
|
ClearPageUptodate(page);
|
|
end_page_writeback(page);
|
|
lock_page(page);
|
|
generic_error_remove_page(mapping, page);
|
|
unlock_page(page);
|
|
}
|
|
|
|
__pagevec_release(&pv);
|
|
} while (len > 0);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Redirty all the pages in a given range.
|
|
*/
|
|
static void afs_redirty_pages(struct writeback_control *wbc,
|
|
struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct pagevec pv;
|
|
unsigned int loop, psize;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
pagevec_init(&pv);
|
|
|
|
do {
|
|
_debug("redirty %llx @%llx", len, start);
|
|
|
|
pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
|
|
PAGEVEC_SIZE, pv.pages);
|
|
if (pv.nr == 0)
|
|
break;
|
|
|
|
for (loop = 0; loop < pv.nr; loop++) {
|
|
struct page *page = pv.pages[loop];
|
|
|
|
if (page->index * PAGE_SIZE >= start + len)
|
|
break;
|
|
|
|
psize = thp_size(page);
|
|
start += psize;
|
|
len -= psize;
|
|
redirty_page_for_writepage(wbc, page);
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
__pagevec_release(&pv);
|
|
} while (len > 0);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* completion of write to server
|
|
*/
|
|
static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
|
|
{
|
|
struct address_space *mapping = vnode->vfs_inode.i_mapping;
|
|
struct page *page;
|
|
pgoff_t end;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
|
|
|
|
_enter("{%llx:%llu},{%x @%llx}",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
rcu_read_lock();
|
|
|
|
end = (start + len - 1) / PAGE_SIZE;
|
|
xas_for_each(&xas, page, end) {
|
|
if (!PageWriteback(page)) {
|
|
kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
|
|
ASSERT(PageWriteback(page));
|
|
}
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
|
|
detach_page_private(page);
|
|
page_endio(page, true, 0);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
afs_prune_wb_keys(vnode);
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Find a key to use for the writeback. We cached the keys used to author the
|
|
* writes on the vnode. *_wbk will contain the last writeback key used or NULL
|
|
* and we need to start from there if it's set.
|
|
*/
|
|
static int afs_get_writeback_key(struct afs_vnode *vnode,
|
|
struct afs_wb_key **_wbk)
|
|
{
|
|
struct afs_wb_key *wbk = NULL;
|
|
struct list_head *p;
|
|
int ret = -ENOKEY, ret2;
|
|
|
|
spin_lock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
p = (*_wbk)->vnode_link.next;
|
|
else
|
|
p = vnode->wb_keys.next;
|
|
|
|
while (p != &vnode->wb_keys) {
|
|
wbk = list_entry(p, struct afs_wb_key, vnode_link);
|
|
_debug("wbk %u", key_serial(wbk->key));
|
|
ret2 = key_validate(wbk->key);
|
|
if (ret2 == 0) {
|
|
refcount_inc(&wbk->usage);
|
|
_debug("USE WB KEY %u", key_serial(wbk->key));
|
|
break;
|
|
}
|
|
|
|
wbk = NULL;
|
|
if (ret == -ENOKEY)
|
|
ret = ret2;
|
|
p = p->next;
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
afs_put_wb_key(*_wbk);
|
|
*_wbk = wbk;
|
|
return 0;
|
|
}
|
|
|
|
static void afs_store_data_success(struct afs_operation *op)
|
|
{
|
|
struct afs_vnode *vnode = op->file[0].vnode;
|
|
|
|
op->ctime = op->file[0].scb.status.mtime_client;
|
|
afs_vnode_commit_status(op, &op->file[0]);
|
|
if (op->error == 0) {
|
|
if (!op->store.laundering)
|
|
afs_pages_written_back(vnode, op->store.pos, op->store.size);
|
|
afs_stat_v(vnode, n_stores);
|
|
atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
|
|
}
|
|
}
|
|
|
|
static const struct afs_operation_ops afs_store_data_operation = {
|
|
.issue_afs_rpc = afs_fs_store_data,
|
|
.issue_yfs_rpc = yfs_fs_store_data,
|
|
.success = afs_store_data_success,
|
|
};
|
|
|
|
/*
|
|
* write to a file
|
|
*/
|
|
static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
|
|
bool laundering)
|
|
{
|
|
struct afs_operation *op;
|
|
struct afs_wb_key *wbk = NULL;
|
|
loff_t size = iov_iter_count(iter), i_size;
|
|
int ret = -ENOKEY;
|
|
|
|
_enter("%s{%llx:%llu.%u},%llx,%llx",
|
|
vnode->volume->name,
|
|
vnode->fid.vid,
|
|
vnode->fid.vnode,
|
|
vnode->fid.unique,
|
|
size, pos);
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret) {
|
|
_leave(" = %d [no keys]", ret);
|
|
return ret;
|
|
}
|
|
|
|
op = afs_alloc_operation(wbk->key, vnode->volume);
|
|
if (IS_ERR(op)) {
|
|
afs_put_wb_key(wbk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
|
|
afs_op_set_vnode(op, 0, vnode);
|
|
op->file[0].dv_delta = 1;
|
|
op->file[0].modification = true;
|
|
op->store.write_iter = iter;
|
|
op->store.pos = pos;
|
|
op->store.size = size;
|
|
op->store.i_size = max(pos + size, i_size);
|
|
op->store.laundering = laundering;
|
|
op->mtime = vnode->vfs_inode.i_mtime;
|
|
op->flags |= AFS_OPERATION_UNINTR;
|
|
op->ops = &afs_store_data_operation;
|
|
|
|
try_next_key:
|
|
afs_begin_vnode_operation(op);
|
|
afs_wait_for_operation(op);
|
|
|
|
switch (op->error) {
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
_debug("next");
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret == 0) {
|
|
key_put(op->key);
|
|
op->key = key_get(wbk->key);
|
|
goto try_next_key;
|
|
}
|
|
break;
|
|
}
|
|
|
|
afs_put_wb_key(wbk);
|
|
_leave(" = %d", op->error);
|
|
return afs_put_operation(op);
|
|
}
|
|
|
|
/*
|
|
* Extend the region to be written back to include subsequent contiguously
|
|
* dirty pages if possible, but don't sleep while doing so.
|
|
*
|
|
* If this page holds new content, then we can include filler zeros in the
|
|
* writeback.
|
|
*/
|
|
static void afs_extend_writeback(struct address_space *mapping,
|
|
struct afs_vnode *vnode,
|
|
long *_count,
|
|
loff_t start,
|
|
loff_t max_len,
|
|
bool new_content,
|
|
unsigned int *_len)
|
|
{
|
|
struct pagevec pvec;
|
|
struct page *page;
|
|
unsigned long priv;
|
|
unsigned int psize, filler = 0;
|
|
unsigned int f, t;
|
|
loff_t len = *_len;
|
|
pgoff_t index = (start + len) / PAGE_SIZE;
|
|
bool stop = true;
|
|
unsigned int i;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
pagevec_init(&pvec);
|
|
|
|
do {
|
|
/* Firstly, we gather up a batch of contiguous dirty pages
|
|
* under the RCU read lock - but we can't clear the dirty flags
|
|
* there if any of those pages are mapped.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
xas_for_each(&xas, page, ULONG_MAX) {
|
|
stop = true;
|
|
if (xas_retry(&xas, page))
|
|
continue;
|
|
if (xa_is_value(page))
|
|
break;
|
|
if (page->index != index)
|
|
break;
|
|
|
|
if (!page_cache_get_speculative(page)) {
|
|
xas_reset(&xas);
|
|
continue;
|
|
}
|
|
|
|
/* Has the page moved or been split? */
|
|
if (unlikely(page != xas_reload(&xas)))
|
|
break;
|
|
|
|
if (!trylock_page(page))
|
|
break;
|
|
if (!PageDirty(page) || PageWriteback(page)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
|
|
psize = thp_size(page);
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
if (f != 0 && !new_content) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
|
|
len += filler + t;
|
|
filler = psize - t;
|
|
if (len >= max_len || *_count <= 0)
|
|
stop = true;
|
|
else if (t == psize || new_content)
|
|
stop = false;
|
|
|
|
index += thp_nr_pages(page);
|
|
if (!pagevec_add(&pvec, page))
|
|
break;
|
|
if (stop)
|
|
break;
|
|
}
|
|
|
|
if (!stop)
|
|
xas_pause(&xas);
|
|
rcu_read_unlock();
|
|
|
|
/* Now, if we obtained any pages, we can shift them to being
|
|
* writable and mark them for caching.
|
|
*/
|
|
if (!pagevec_count(&pvec))
|
|
break;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
page = pvec.pages[i];
|
|
trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
BUG();
|
|
if (test_set_page_writeback(page))
|
|
BUG();
|
|
|
|
*_count -= thp_nr_pages(page);
|
|
unlock_page(page);
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
} while (!stop);
|
|
|
|
*_len = len;
|
|
}
|
|
|
|
/*
|
|
* Synchronously write back the locked page and any subsequent non-locked dirty
|
|
* pages.
|
|
*/
|
|
static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct page *page,
|
|
loff_t start, loff_t end)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct iov_iter iter;
|
|
unsigned long priv;
|
|
unsigned int offset, to, len, max_len;
|
|
loff_t i_size = i_size_read(&vnode->vfs_inode);
|
|
bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
|
|
long count = wbc->nr_to_write;
|
|
int ret;
|
|
|
|
_enter(",%lx,%llx-%llx", page->index, start, end);
|
|
|
|
if (test_set_page_writeback(page))
|
|
BUG();
|
|
|
|
count -= thp_nr_pages(page);
|
|
|
|
/* Find all consecutive lockable dirty pages that have contiguous
|
|
* written regions, stopping when we find a page that is not
|
|
* immediately lockable, is not dirty or is missing, or we reach the
|
|
* end of the range.
|
|
*/
|
|
priv = page_private(page);
|
|
offset = afs_page_dirty_from(page, priv);
|
|
to = afs_page_dirty_to(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
|
|
|
|
len = to - offset;
|
|
start += offset;
|
|
if (start < i_size) {
|
|
/* Trim the write to the EOF; the extra data is ignored. Also
|
|
* put an upper limit on the size of a single storedata op.
|
|
*/
|
|
max_len = 65536 * 4096;
|
|
max_len = min_t(unsigned long long, max_len, end - start + 1);
|
|
max_len = min_t(unsigned long long, max_len, i_size - start);
|
|
|
|
if (len < max_len &&
|
|
(to == thp_size(page) || new_content))
|
|
afs_extend_writeback(mapping, vnode, &count,
|
|
start, max_len, new_content, &len);
|
|
len = min_t(loff_t, len, max_len);
|
|
}
|
|
|
|
/* We now have a contiguous set of dirty pages, each with writeback
|
|
* set; the first page is still locked at this point, but all the rest
|
|
* have been unlocked.
|
|
*/
|
|
unlock_page(page);
|
|
|
|
if (start < i_size) {
|
|
_debug("write back %x @%llx [%llx]", len, start, i_size);
|
|
|
|
iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
|
|
ret = afs_store_data(vnode, &iter, start, false);
|
|
} else {
|
|
_debug("write discard %x @%llx [%llx]", len, start, i_size);
|
|
|
|
/* The dirty region was entirely beyond the EOF. */
|
|
afs_pages_written_back(vnode, start, len);
|
|
ret = 0;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
wbc->nr_to_write = count;
|
|
ret = len;
|
|
break;
|
|
|
|
default:
|
|
pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
|
|
fallthrough;
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
|
|
case -EDQUOT:
|
|
case -ENOSPC:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, -ENOSPC);
|
|
break;
|
|
|
|
case -EROFS:
|
|
case -EIO:
|
|
case -EREMOTEIO:
|
|
case -EFBIG:
|
|
case -ENOENT:
|
|
case -ENOMEDIUM:
|
|
case -ENXIO:
|
|
trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
|
|
afs_kill_pages(mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
}
|
|
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write a page back to the server
|
|
* - the caller locked the page for us
|
|
*/
|
|
int afs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
ssize_t ret;
|
|
loff_t start;
|
|
|
|
_enter("{%lx},", page->index);
|
|
|
|
start = page->index * PAGE_SIZE;
|
|
ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
|
|
start, LLONG_MAX - start);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
_leave(" = 0");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write a region of pages back to the server
|
|
*/
|
|
static int afs_writepages_region(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
loff_t start, loff_t end, loff_t *_next)
|
|
{
|
|
struct page *page;
|
|
ssize_t ret;
|
|
int n;
|
|
|
|
_enter("%llx,%llx,", start, end);
|
|
|
|
do {
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
|
|
n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
|
|
PAGECACHE_TAG_DIRTY, 1, &page);
|
|
if (!n)
|
|
break;
|
|
|
|
start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
|
|
|
|
_debug("wback %lx", page->index);
|
|
|
|
/* At this point we hold neither the i_pages lock nor the
|
|
* page lock: the page may be truncated or invalidated
|
|
* (changing page->mapping to NULL), or even swizzled
|
|
* back from swapper_space to tmpfs file mapping
|
|
*/
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
ret = lock_page_killable(page);
|
|
if (ret < 0) {
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
} else {
|
|
if (!trylock_page(page)) {
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (page->mapping != mapping || !PageDirty(page)) {
|
|
start += thp_size(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
unlock_page(page);
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
wait_on_page_writeback(page);
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
BUG();
|
|
ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
|
|
put_page(page);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
start += ret;
|
|
|
|
cond_resched();
|
|
} while (wbc->nr_to_write > 0);
|
|
|
|
*_next = start;
|
|
_leave(" = 0 [%llx]", *_next);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write some of the pending data back to the server
|
|
*/
|
|
int afs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
loff_t start, next;
|
|
int ret;
|
|
|
|
_enter("");
|
|
|
|
/* We have to be careful as we can end up racing with setattr()
|
|
* truncating the pagecache since the caller doesn't take a lock here
|
|
* to prevent it.
|
|
*/
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
down_read(&vnode->validate_lock);
|
|
else if (!down_read_trylock(&vnode->validate_lock))
|
|
return 0;
|
|
|
|
if (wbc->range_cyclic) {
|
|
start = mapping->writeback_index * PAGE_SIZE;
|
|
ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
|
|
if (ret == 0) {
|
|
mapping->writeback_index = next / PAGE_SIZE;
|
|
if (start > 0 && wbc->nr_to_write > 0) {
|
|
ret = afs_writepages_region(mapping, wbc, 0,
|
|
start, &next);
|
|
if (ret == 0)
|
|
mapping->writeback_index =
|
|
next / PAGE_SIZE;
|
|
}
|
|
}
|
|
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
|
|
ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
|
|
if (wbc->nr_to_write > 0 && ret == 0)
|
|
mapping->writeback_index = next / PAGE_SIZE;
|
|
} else {
|
|
ret = afs_writepages_region(mapping, wbc,
|
|
wbc->range_start, wbc->range_end, &next);
|
|
}
|
|
|
|
up_read(&vnode->validate_lock);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write to an AFS file
|
|
*/
|
|
ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
|
|
ssize_t result;
|
|
size_t count = iov_iter_count(from);
|
|
|
|
_enter("{%llx:%llu},{%zu},",
|
|
vnode->fid.vid, vnode->fid.vnode, count);
|
|
|
|
if (IS_SWAPFILE(&vnode->vfs_inode)) {
|
|
printk(KERN_INFO
|
|
"AFS: Attempt to write to active swap file!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
result = generic_file_write_iter(iocb, from);
|
|
|
|
_leave(" = %zd", result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* flush any dirty pages for this process, and check for write errors.
|
|
* - the return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*/
|
|
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct afs_vnode *vnode = AFS_FS_I(inode);
|
|
|
|
_enter("{%llx:%llu},{n=%pD},%d",
|
|
vnode->fid.vid, vnode->fid.vnode, file,
|
|
datasync);
|
|
|
|
return file_write_and_wait_range(file, start, end);
|
|
}
|
|
|
|
/*
|
|
* notification that a previously read-only page is about to become writable
|
|
* - if it returns an error, the caller will deliver a bus error signal
|
|
*/
|
|
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = thp_head(vmf->page);
|
|
struct file *file = vmf->vma->vm_file;
|
|
struct inode *inode = file_inode(file);
|
|
struct afs_vnode *vnode = AFS_FS_I(inode);
|
|
unsigned long priv;
|
|
vm_fault_t ret = VM_FAULT_RETRY;
|
|
|
|
_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
/* Wait for the page to be written to the cache before we allow it to
|
|
* be modified. We then assume the entire page will need writing back.
|
|
*/
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
if (PageFsCache(page) &&
|
|
wait_on_page_fscache_killable(page) < 0)
|
|
goto out;
|
|
#endif
|
|
|
|
if (wait_on_page_writeback_killable(page))
|
|
goto out;
|
|
|
|
if (lock_page_killable(page) < 0)
|
|
goto out;
|
|
|
|
/* We mustn't change page->private until writeback is complete as that
|
|
* details the portion of the page we need to write back and we might
|
|
* need to redirty the page if there's a problem.
|
|
*/
|
|
if (wait_on_page_writeback_killable(page) < 0) {
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
|
|
priv = afs_page_dirty(page, 0, thp_size(page));
|
|
priv = afs_page_dirty_mmapped(priv);
|
|
if (PagePrivate(page)) {
|
|
set_page_private(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
|
|
} else {
|
|
attach_page_private(page, (void *)priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
|
|
}
|
|
file_update_time(file);
|
|
|
|
ret = VM_FAULT_LOCKED;
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
|
|
*/
|
|
void afs_prune_wb_keys(struct afs_vnode *vnode)
|
|
{
|
|
LIST_HEAD(graveyard);
|
|
struct afs_wb_key *wbk, *tmp;
|
|
|
|
/* Discard unused keys */
|
|
spin_lock(&vnode->wb_lock);
|
|
|
|
if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
|
|
!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
|
|
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
|
|
if (refcount_read(&wbk->usage) == 1)
|
|
list_move(&wbk->vnode_link, &graveyard);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
|
|
while (!list_empty(&graveyard)) {
|
|
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
|
|
list_del(&wbk->vnode_link);
|
|
afs_put_wb_key(wbk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up a page during invalidation.
|
|
*/
|
|
int afs_launder_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct iov_iter iter;
|
|
struct bio_vec bv[1];
|
|
unsigned long priv;
|
|
unsigned int f, t;
|
|
int ret = 0;
|
|
|
|
_enter("{%lx}", page->index);
|
|
|
|
priv = page_private(page);
|
|
if (clear_page_dirty_for_io(page)) {
|
|
f = 0;
|
|
t = thp_size(page);
|
|
if (PagePrivate(page)) {
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
}
|
|
|
|
bv[0].bv_page = page;
|
|
bv[0].bv_offset = f;
|
|
bv[0].bv_len = t - f;
|
|
iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
|
|
ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
|
|
true);
|
|
}
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
|
|
detach_page_private(page);
|
|
wait_on_page_fscache(page);
|
|
return ret;
|
|
}
|