linux/drivers/connector/cn_proc.c
Anjali Kulkarni bfdfdc2f3b connector/cn_proc: Allow non-root users access
There were a couple of reasons for not allowing non-root users access
initially  - one is there was some point no proper receive buffer
management in place for netlink multicast. But that should be long
fixed. See link below for more context.

Second is that some of the messages may contain data that is root only. But
this should be handled with a finer granularity, which is being done at the
protocol layer.  The only problematic protocols are nf_queue and the
firewall netlink. Hence, this restriction for non-root access was relaxed
for NETLINK_ROUTE initially:
https://lore.kernel.org/all/20020612013101.A22399@wotan.suse.de/

This restriction has also been removed for following protocols:
NETLINK_KOBJECT_UEVENT, NETLINK_AUDIT, NETLINK_SOCK_DIAG,
NETLINK_GENERIC, NETLINK_SELINUX.

Since process connector messages are not sensitive (process fork, exit
notifications etc.), and anyone can read /proc data, we can allow non-root
access here. However, since process event notification is not the only
consumer of NETLINK_CONNECTOR, we can make this change even more
fine grained than the protocol level, by checking for multicast group
within the protocol.

Allow non-root access for NETLINK_CONNECTOR via NL_CFG_F_NONROOT_RECV
but add new bind function cn_bind(), which allows non-root access only
for CN_IDX_PROC multicast group.

Signed-off-by: Anjali Kulkarni <anjali.k.kulkarni@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-23 11:34:22 +01:00

485 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* cn_proc.c - process events connector
*
* Copyright (C) Matt Helsley, IBM Corp. 2005
* Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
* Original copyright notice follows:
* Copyright (C) 2005 BULL SA.
*/
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/init.h>
#include <linux/connector.h>
#include <linux/gfp.h>
#include <linux/ptrace.h>
#include <linux/atomic.h>
#include <linux/pid_namespace.h>
#include <linux/cn_proc.h>
#include <linux/local_lock.h>
/*
* Size of a cn_msg followed by a proc_event structure. Since the
* sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
* add one 4-byte word to the size here, and then start the actual
* cn_msg structure 4 bytes into the stack buffer. The result is that
* the immediately following proc_event structure is aligned to 8 bytes.
*/
#define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
/* See comment above; we test our assumption about sizeof struct cn_msg here. */
static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
{
BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
return (struct cn_msg *)(buffer + 4);
}
static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
/* local_event.count is used as the sequence number of the netlink message */
struct local_event {
local_lock_t lock;
__u32 count;
};
static DEFINE_PER_CPU(struct local_event, local_event) = {
.lock = INIT_LOCAL_LOCK(lock),
};
static int cn_filter(struct sock *dsk, struct sk_buff *skb, void *data)
{
__u32 what, exit_code, *ptr;
enum proc_cn_mcast_op mc_op;
uintptr_t val;
if (!dsk || !data)
return 0;
ptr = (__u32 *)data;
what = *ptr++;
exit_code = *ptr;
val = ((struct proc_input *)(dsk->sk_user_data))->event_type;
mc_op = ((struct proc_input *)(dsk->sk_user_data))->mcast_op;
if (mc_op == PROC_CN_MCAST_IGNORE)
return 1;
if ((__u32)val == PROC_EVENT_ALL)
return 0;
/*
* Drop packet if we have to report only non-zero exit status
* (PROC_EVENT_NONZERO_EXIT) and exit status is 0
*/
if (((__u32)val & PROC_EVENT_NONZERO_EXIT) &&
(what == PROC_EVENT_EXIT)) {
if (exit_code)
return 0;
}
if ((__u32)val & what)
return 0;
return 1;
}
static inline void send_msg(struct cn_msg *msg)
{
__u32 filter_data[2];
local_lock(&local_event.lock);
msg->seq = __this_cpu_inc_return(local_event.count) - 1;
((struct proc_event *)msg->data)->cpu = smp_processor_id();
/*
* local_lock() disables preemption during send to ensure the messages
* are ordered according to their sequence numbers.
*
* If cn_netlink_send() fails, the data is not sent.
*/
filter_data[0] = ((struct proc_event *)msg->data)->what;
if (filter_data[0] == PROC_EVENT_EXIT) {
filter_data[1] =
((struct proc_event *)msg->data)->event_data.exit.exit_code;
} else {
filter_data[1] = 0;
}
cn_netlink_send_mult(msg, msg->len, 0, CN_IDX_PROC, GFP_NOWAIT,
cn_filter, (void *)filter_data);
local_unlock(&local_event.lock);
}
void proc_fork_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct task_struct *parent;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_FORK;
rcu_read_lock();
parent = rcu_dereference(task->real_parent);
ev->event_data.fork.parent_pid = parent->pid;
ev->event_data.fork.parent_tgid = parent->tgid;
rcu_read_unlock();
ev->event_data.fork.child_pid = task->pid;
ev->event_data.fork.child_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_exec_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_EXEC;
ev->event_data.exec.process_pid = task->pid;
ev->event_data.exec.process_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_id_connector(struct task_struct *task, int which_id)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
const struct cred *cred;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->what = which_id;
ev->event_data.id.process_pid = task->pid;
ev->event_data.id.process_tgid = task->tgid;
rcu_read_lock();
cred = __task_cred(task);
if (which_id == PROC_EVENT_UID) {
ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
} else if (which_id == PROC_EVENT_GID) {
ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
} else {
rcu_read_unlock();
return;
}
rcu_read_unlock();
ev->timestamp_ns = ktime_get_ns();
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_sid_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_SID;
ev->event_data.sid.process_pid = task->pid;
ev->event_data.sid.process_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_PTRACE;
ev->event_data.ptrace.process_pid = task->pid;
ev->event_data.ptrace.process_tgid = task->tgid;
if (ptrace_id == PTRACE_ATTACH) {
ev->event_data.ptrace.tracer_pid = current->pid;
ev->event_data.ptrace.tracer_tgid = current->tgid;
} else if (ptrace_id == PTRACE_DETACH) {
ev->event_data.ptrace.tracer_pid = 0;
ev->event_data.ptrace.tracer_tgid = 0;
} else
return;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_comm_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_COMM;
ev->event_data.comm.process_pid = task->pid;
ev->event_data.comm.process_tgid = task->tgid;
get_task_comm(ev->event_data.comm.comm, task);
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_coredump_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct task_struct *parent;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_COREDUMP;
ev->event_data.coredump.process_pid = task->pid;
ev->event_data.coredump.process_tgid = task->tgid;
rcu_read_lock();
if (pid_alive(task)) {
parent = rcu_dereference(task->real_parent);
ev->event_data.coredump.parent_pid = parent->pid;
ev->event_data.coredump.parent_tgid = parent->tgid;
}
rcu_read_unlock();
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
void proc_exit_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct task_struct *parent;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->timestamp_ns = ktime_get_ns();
ev->what = PROC_EVENT_EXIT;
ev->event_data.exit.process_pid = task->pid;
ev->event_data.exit.process_tgid = task->tgid;
ev->event_data.exit.exit_code = task->exit_code;
ev->event_data.exit.exit_signal = task->exit_signal;
rcu_read_lock();
if (pid_alive(task)) {
parent = rcu_dereference(task->real_parent);
ev->event_data.exit.parent_pid = parent->pid;
ev->event_data.exit.parent_tgid = parent->tgid;
}
rcu_read_unlock();
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
/*
* Send an acknowledgement message to userspace
*
* Use 0 for success, EFOO otherwise.
* Note: this is the negative of conventional kernel error
* values because it's not being returned via syscall return
* mechanisms.
*/
static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
msg->seq = rcvd_seq;
ev->timestamp_ns = ktime_get_ns();
ev->cpu = -1;
ev->what = PROC_EVENT_NONE;
ev->event_data.ack.err = err;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = rcvd_ack + 1;
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
send_msg(msg);
}
/**
* cn_proc_mcast_ctl
* @msg: message sent from userspace via the connector
* @nsp: NETLINK_CB of the client's socket buffer
*/
static void cn_proc_mcast_ctl(struct cn_msg *msg,
struct netlink_skb_parms *nsp)
{
enum proc_cn_mcast_op mc_op = 0, prev_mc_op = 0;
struct proc_input *pinput = NULL;
enum proc_cn_event ev_type = 0;
int err = 0, initial = 0;
struct sock *sk = NULL;
/*
* Events are reported with respect to the initial pid
* and user namespaces so ignore requestors from
* other namespaces.
*/
if ((current_user_ns() != &init_user_ns) ||
!task_is_in_init_pid_ns(current))
return;
if (msg->len == sizeof(*pinput)) {
pinput = (struct proc_input *)msg->data;
mc_op = pinput->mcast_op;
ev_type = pinput->event_type;
} else if (msg->len == sizeof(mc_op)) {
mc_op = *((enum proc_cn_mcast_op *)msg->data);
ev_type = PROC_EVENT_ALL;
} else {
return;
}
ev_type = valid_event((enum proc_cn_event)ev_type);
if (ev_type == PROC_EVENT_NONE)
ev_type = PROC_EVENT_ALL;
if (nsp->sk) {
sk = nsp->sk;
if (sk->sk_user_data == NULL) {
sk->sk_user_data = kzalloc(sizeof(struct proc_input),
GFP_KERNEL);
if (sk->sk_user_data == NULL) {
err = ENOMEM;
goto out;
}
initial = 1;
} else {
prev_mc_op =
((struct proc_input *)(sk->sk_user_data))->mcast_op;
}
((struct proc_input *)(sk->sk_user_data))->event_type =
ev_type;
((struct proc_input *)(sk->sk_user_data))->mcast_op = mc_op;
}
switch (mc_op) {
case PROC_CN_MCAST_LISTEN:
if (initial || (prev_mc_op != PROC_CN_MCAST_LISTEN))
atomic_inc(&proc_event_num_listeners);
break;
case PROC_CN_MCAST_IGNORE:
if (!initial && (prev_mc_op != PROC_CN_MCAST_IGNORE))
atomic_dec(&proc_event_num_listeners);
((struct proc_input *)(sk->sk_user_data))->event_type =
PROC_EVENT_NONE;
break;
default:
err = EINVAL;
break;
}
out:
cn_proc_ack(err, msg->seq, msg->ack);
}
/*
* cn_proc_init - initialization entry point
*
* Adds the connector callback to the connector driver.
*/
static int __init cn_proc_init(void)
{
int err = cn_add_callback(&cn_proc_event_id,
"cn_proc",
&cn_proc_mcast_ctl);
if (err) {
pr_warn("cn_proc failed to register\n");
return err;
}
return 0;
}
device_initcall(cn_proc_init);