f849afcc8c
IPA v4.2 has a hardware quirk that requires the AP to allocate GSI channels for the modem to use. It is recommended that these modem channels get stopped (with a HALT generic command) by the AP when its IPA driver gets removed. The AP has no way of knowing the current state of a modem channel. So when the IPA driver issues a HALT command it's possible the channel is not running, and in that case we get an error indication. This error simply means we didn't need to stop the channel, so we can ignore it. This patch adds an explanation for this situation, and arranges for this condition to *not* report an error message. Signed-off-by: Alex Elder <elder@linaro.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2165 lines
62 KiB
C
2165 lines
62 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2018-2020 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bits.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/netdevice.h>
|
|
|
|
#include "gsi.h"
|
|
#include "gsi_reg.h"
|
|
#include "gsi_private.h"
|
|
#include "gsi_trans.h"
|
|
#include "ipa_gsi.h"
|
|
#include "ipa_data.h"
|
|
#include "ipa_version.h"
|
|
|
|
/**
|
|
* DOC: The IPA Generic Software Interface
|
|
*
|
|
* The generic software interface (GSI) is an integral component of the IPA,
|
|
* providing a well-defined communication layer between the AP subsystem
|
|
* and the IPA core. The modem uses the GSI layer as well.
|
|
*
|
|
* -------- ---------
|
|
* | | | |
|
|
* | AP +<---. .----+ Modem |
|
|
* | +--. | | .->+ |
|
|
* | | | | | | | |
|
|
* -------- | | | | ---------
|
|
* v | v |
|
|
* --+-+---+-+--
|
|
* | GSI |
|
|
* |-----------|
|
|
* | |
|
|
* | IPA |
|
|
* | |
|
|
* -------------
|
|
*
|
|
* In the above diagram, the AP and Modem represent "execution environments"
|
|
* (EEs), which are independent operating environments that use the IPA for
|
|
* data transfer.
|
|
*
|
|
* Each EE uses a set of unidirectional GSI "channels," which allow transfer
|
|
* of data to or from the IPA. A channel is implemented as a ring buffer,
|
|
* with a DRAM-resident array of "transfer elements" (TREs) available to
|
|
* describe transfers to or from other EEs through the IPA. A transfer
|
|
* element can also contain an immediate command, requesting the IPA perform
|
|
* actions other than data transfer.
|
|
*
|
|
* Each TRE refers to a block of data--also located DRAM. After writing one
|
|
* or more TREs to a channel, the writer (either the IPA or an EE) writes a
|
|
* doorbell register to inform the receiving side how many elements have
|
|
* been written.
|
|
*
|
|
* Each channel has a GSI "event ring" associated with it. An event ring
|
|
* is implemented very much like a channel ring, but is always directed from
|
|
* the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
|
|
* events by adding an entry to the event ring associated with the channel.
|
|
* The GSI then writes its doorbell for the event ring, causing the target
|
|
* EE to be interrupted. Each entry in an event ring contains a pointer
|
|
* to the channel TRE whose completion the event represents.
|
|
*
|
|
* Each TRE in a channel ring has a set of flags. One flag indicates whether
|
|
* the completion of the transfer operation generates an entry (and possibly
|
|
* an interrupt) in the channel's event ring. Other flags allow transfer
|
|
* elements to be chained together, forming a single logical transaction.
|
|
* TRE flags are used to control whether and when interrupts are generated
|
|
* to signal completion of channel transfers.
|
|
*
|
|
* Elements in channel and event rings are completed (or consumed) strictly
|
|
* in order. Completion of one entry implies the completion of all preceding
|
|
* entries. A single completion interrupt can therefore communicate the
|
|
* completion of many transfers.
|
|
*
|
|
* Note that all GSI registers are little-endian, which is the assumed
|
|
* endianness of I/O space accesses. The accessor functions perform byte
|
|
* swapping if needed (i.e., for a big endian CPU).
|
|
*/
|
|
|
|
/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
|
|
#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
|
|
|
|
#define GSI_CMD_TIMEOUT 5 /* seconds */
|
|
|
|
#define GSI_CHANNEL_STOP_RX_RETRIES 10
|
|
|
|
#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
|
|
#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
|
|
|
|
#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
|
|
|
|
/* An entry in an event ring */
|
|
struct gsi_event {
|
|
__le64 xfer_ptr;
|
|
__le16 len;
|
|
u8 reserved1;
|
|
u8 code;
|
|
__le16 reserved2;
|
|
u8 type;
|
|
u8 chid;
|
|
};
|
|
|
|
/** gsi_channel_scratch_gpi - GPI protocol scratch register
|
|
* @max_outstanding_tre:
|
|
* Defines the maximum number of TREs allowed in a single transaction
|
|
* on a channel (in bytes). This determines the amount of prefetch
|
|
* performed by the hardware. We configure this to equal the size of
|
|
* the TLV FIFO for the channel.
|
|
* @outstanding_threshold:
|
|
* Defines the threshold (in bytes) determining when the sequencer
|
|
* should update the channel doorbell. We configure this to equal
|
|
* the size of two TREs.
|
|
*/
|
|
struct gsi_channel_scratch_gpi {
|
|
u64 reserved1;
|
|
u16 reserved2;
|
|
u16 max_outstanding_tre;
|
|
u16 reserved3;
|
|
u16 outstanding_threshold;
|
|
};
|
|
|
|
/** gsi_channel_scratch - channel scratch configuration area
|
|
*
|
|
* The exact interpretation of this register is protocol-specific.
|
|
* We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
|
|
*/
|
|
union gsi_channel_scratch {
|
|
struct gsi_channel_scratch_gpi gpi;
|
|
struct {
|
|
u32 word1;
|
|
u32 word2;
|
|
u32 word3;
|
|
u32 word4;
|
|
} data;
|
|
};
|
|
|
|
/* Check things that can be validated at build time. */
|
|
static void gsi_validate_build(void)
|
|
{
|
|
/* This is used as a divisor */
|
|
BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
|
|
|
|
/* Code assumes the size of channel and event ring element are
|
|
* the same (and fixed). Make sure the size of an event ring
|
|
* element is what's expected.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
|
|
|
|
/* Hardware requires a 2^n ring size. We ensure the number of
|
|
* elements in an event ring is a power of 2 elsewhere; this
|
|
* ensure the elements themselves meet the requirement.
|
|
*/
|
|
BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
|
|
|
|
/* The channel element size must fit in this field */
|
|
BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
|
|
|
|
/* The event ring element size must fit in this field */
|
|
BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
|
|
}
|
|
|
|
/* Return the channel id associated with a given channel */
|
|
static u32 gsi_channel_id(struct gsi_channel *channel)
|
|
{
|
|
return channel - &channel->gsi->channel[0];
|
|
}
|
|
|
|
/* Update the GSI IRQ type register with the cached value */
|
|
static void gsi_irq_type_update(struct gsi *gsi, u32 val)
|
|
{
|
|
gsi->type_enabled_bitmap = val;
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
|
|
}
|
|
|
|
static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
|
|
{
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
|
|
}
|
|
|
|
static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
|
|
{
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
|
|
}
|
|
|
|
/* Turn off all GSI interrupts initially */
|
|
static void gsi_irq_setup(struct gsi *gsi)
|
|
{
|
|
/* Disable all interrupt types */
|
|
gsi_irq_type_update(gsi, 0);
|
|
|
|
/* Clear all type-specific interrupt masks */
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
|
|
}
|
|
|
|
/* Turn off all GSI interrupts when we're all done */
|
|
static void gsi_irq_teardown(struct gsi *gsi)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
bool enable_ieob = !gsi->ieob_enabled_bitmap;
|
|
u32 val;
|
|
|
|
gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
|
|
val = gsi->ieob_enabled_bitmap;
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
|
|
|
|
/* Enable the interrupt type if this is the first channel enabled */
|
|
if (enable_ieob)
|
|
gsi_irq_type_enable(gsi, GSI_IEOB);
|
|
}
|
|
|
|
static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
u32 val;
|
|
|
|
gsi->ieob_enabled_bitmap &= ~BIT(evt_ring_id);
|
|
|
|
/* Disable the interrupt type if this was the last enabled channel */
|
|
if (!gsi->ieob_enabled_bitmap)
|
|
gsi_irq_type_disable(gsi, GSI_IEOB);
|
|
|
|
val = gsi->ieob_enabled_bitmap;
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
|
|
}
|
|
|
|
/* Enable all GSI_interrupt types */
|
|
static void gsi_irq_enable(struct gsi *gsi)
|
|
{
|
|
u32 val;
|
|
|
|
/* Global interrupts include hardware error reports. Enable
|
|
* that so we can at least report the error should it occur.
|
|
*/
|
|
iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
|
|
|
|
/* General GSI interrupts are reported to all EEs; if they occur
|
|
* they are unrecoverable (without reset). A breakpoint interrupt
|
|
* also exists, but we don't support that. We want to be notified
|
|
* of errors so we can report them, even if they can't be handled.
|
|
*/
|
|
val = BIT(BUS_ERROR);
|
|
val |= BIT(CMD_FIFO_OVRFLOW);
|
|
val |= BIT(MCS_STACK_OVRFLOW);
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
|
|
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
|
|
}
|
|
|
|
/* Disable all GSI interrupt types */
|
|
static void gsi_irq_disable(struct gsi *gsi)
|
|
{
|
|
gsi_irq_type_update(gsi, 0);
|
|
|
|
/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
|
|
}
|
|
|
|
/* Return the virtual address associated with a ring index */
|
|
void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
|
|
{
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Return the 32-bit DMA address associated with a ring index */
|
|
static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
|
|
{
|
|
return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Return the ring index of a 32-bit ring offset */
|
|
static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
|
|
{
|
|
return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
|
|
}
|
|
|
|
/* Issue a GSI command by writing a value to a register, then wait for
|
|
* completion to be signaled. Returns true if the command completes
|
|
* or false if it times out.
|
|
*/
|
|
static bool
|
|
gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
|
|
{
|
|
reinit_completion(completion);
|
|
|
|
iowrite32(val, gsi->virt + reg);
|
|
|
|
return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
|
|
}
|
|
|
|
/* Return the hardware's notion of the current state of an event ring */
|
|
static enum gsi_evt_ring_state
|
|
gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
u32 val;
|
|
|
|
val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
|
|
|
|
return u32_get_bits(val, EV_CHSTATE_FMASK);
|
|
}
|
|
|
|
/* Issue an event ring command and wait for it to complete */
|
|
static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
|
|
enum gsi_evt_cmd_opcode opcode)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
struct completion *completion = &evt_ring->completion;
|
|
struct device *dev = gsi->dev;
|
|
bool success;
|
|
u32 val;
|
|
|
|
/* We only perform one event ring command at a time, and event
|
|
* control interrupts should only occur when such a command
|
|
* is issued here. Only permit *this* event ring to trigger
|
|
* an interrupt, and only enable the event control IRQ type
|
|
* when we expect it to occur.
|
|
*/
|
|
val = BIT(evt_ring_id);
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
|
|
gsi_irq_type_enable(gsi, GSI_EV_CTRL);
|
|
|
|
val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
|
|
val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
|
|
|
|
success = gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
|
|
|
|
/* Disable the interrupt again */
|
|
gsi_irq_type_disable(gsi, GSI_EV_CTRL);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
|
|
|
|
if (success)
|
|
return 0;
|
|
|
|
dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
|
|
opcode, evt_ring_id, evt_ring->state);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Allocate an event ring in NOT_ALLOCATED state */
|
|
static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
int ret;
|
|
|
|
/* Get initial event ring state */
|
|
evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
|
|
dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
|
|
evt_ring_id, evt_ring->state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
|
|
if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
|
|
dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
|
|
evt_ring_id, evt_ring->state);
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reset a GSI event ring in ALLOCATED or ERROR state. */
|
|
static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
enum gsi_evt_ring_state state = evt_ring->state;
|
|
int ret;
|
|
|
|
if (state != GSI_EVT_RING_STATE_ALLOCATED &&
|
|
state != GSI_EVT_RING_STATE_ERROR) {
|
|
dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
|
|
evt_ring_id, evt_ring->state);
|
|
return;
|
|
}
|
|
|
|
ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
|
|
if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
|
|
dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
|
|
evt_ring_id, evt_ring->state);
|
|
}
|
|
|
|
/* Issue a hardware de-allocation request for an allocated event ring */
|
|
static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
int ret;
|
|
|
|
if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
|
|
dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
|
|
evt_ring_id, evt_ring->state);
|
|
return;
|
|
}
|
|
|
|
ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
|
|
if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
|
|
dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
|
|
evt_ring_id, evt_ring->state);
|
|
}
|
|
|
|
/* Fetch the current state of a channel from hardware */
|
|
static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
|
|
{
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
void *virt = channel->gsi->virt;
|
|
u32 val;
|
|
|
|
val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
|
|
|
|
return u32_get_bits(val, CHSTATE_FMASK);
|
|
}
|
|
|
|
/* Issue a channel command and wait for it to complete */
|
|
static int
|
|
gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
|
|
{
|
|
struct completion *completion = &channel->completion;
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
struct gsi *gsi = channel->gsi;
|
|
struct device *dev = gsi->dev;
|
|
bool success;
|
|
u32 val;
|
|
|
|
/* We only perform one channel command at a time, and channel
|
|
* control interrupts should only occur when such a command is
|
|
* issued here. So we only permit *this* channel to trigger
|
|
* an interrupt and only enable the channel control IRQ type
|
|
* when we expect it to occur.
|
|
*/
|
|
val = BIT(channel_id);
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
|
|
gsi_irq_type_enable(gsi, GSI_CH_CTRL);
|
|
|
|
val = u32_encode_bits(channel_id, CH_CHID_FMASK);
|
|
val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
|
|
success = gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
|
|
|
|
/* Disable the interrupt again */
|
|
gsi_irq_type_disable(gsi, GSI_CH_CTRL);
|
|
iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
|
|
|
|
if (success)
|
|
return 0;
|
|
|
|
dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
|
|
opcode, channel_id, gsi_channel_state(channel));
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Allocate GSI channel in NOT_ALLOCATED state */
|
|
static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
struct device *dev = gsi->dev;
|
|
enum gsi_channel_state state;
|
|
int ret;
|
|
|
|
/* Get initial channel state */
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
|
|
dev_err(dev, "channel %u bad state %u before alloc\n",
|
|
channel_id, state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
|
|
|
|
/* Channel state will normally have been updated */
|
|
state = gsi_channel_state(channel);
|
|
if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
|
|
dev_err(dev, "channel %u bad state %u after alloc\n",
|
|
channel_id, state);
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Start an ALLOCATED channel */
|
|
static int gsi_channel_start_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
int ret;
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED &&
|
|
state != GSI_CHANNEL_STATE_STOPPED) {
|
|
dev_err(dev, "channel %u bad state %u before start\n",
|
|
gsi_channel_id(channel), state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = gsi_channel_command(channel, GSI_CH_START);
|
|
|
|
/* Channel state will normally have been updated */
|
|
state = gsi_channel_state(channel);
|
|
if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
|
|
dev_err(dev, "channel %u bad state %u after start\n",
|
|
gsi_channel_id(channel), state);
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Stop a GSI channel in STARTED state */
|
|
static int gsi_channel_stop_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
int ret;
|
|
|
|
state = gsi_channel_state(channel);
|
|
|
|
/* Channel could have entered STOPPED state since last call
|
|
* if it timed out. If so, we're done.
|
|
*/
|
|
if (state == GSI_CHANNEL_STATE_STOPPED)
|
|
return 0;
|
|
|
|
if (state != GSI_CHANNEL_STATE_STARTED &&
|
|
state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
|
|
dev_err(dev, "channel %u bad state %u before stop\n",
|
|
gsi_channel_id(channel), state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = gsi_channel_command(channel, GSI_CH_STOP);
|
|
|
|
/* Channel state will normally have been updated */
|
|
state = gsi_channel_state(channel);
|
|
if (ret || state == GSI_CHANNEL_STATE_STOPPED)
|
|
return ret;
|
|
|
|
/* We may have to try again if stop is in progress */
|
|
if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
|
|
return -EAGAIN;
|
|
|
|
dev_err(dev, "channel %u bad state %u after stop\n",
|
|
gsi_channel_id(channel), state);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Reset a GSI channel in ALLOCATED or ERROR state. */
|
|
static void gsi_channel_reset_command(struct gsi_channel *channel)
|
|
{
|
|
struct device *dev = channel->gsi->dev;
|
|
enum gsi_channel_state state;
|
|
int ret;
|
|
|
|
msleep(1); /* A short delay is required before a RESET command */
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_STOPPED &&
|
|
state != GSI_CHANNEL_STATE_ERROR) {
|
|
/* No need to reset a channel already in ALLOCATED state */
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u before reset\n",
|
|
gsi_channel_id(channel), state);
|
|
return;
|
|
}
|
|
|
|
ret = gsi_channel_command(channel, GSI_CH_RESET);
|
|
|
|
/* Channel state will normally have been updated */
|
|
state = gsi_channel_state(channel);
|
|
if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u after reset\n",
|
|
gsi_channel_id(channel), state);
|
|
}
|
|
|
|
/* Deallocate an ALLOCATED GSI channel */
|
|
static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
struct device *dev = gsi->dev;
|
|
enum gsi_channel_state state;
|
|
int ret;
|
|
|
|
state = gsi_channel_state(channel);
|
|
if (state != GSI_CHANNEL_STATE_ALLOCATED) {
|
|
dev_err(dev, "channel %u bad state %u before dealloc\n",
|
|
channel_id, state);
|
|
return;
|
|
}
|
|
|
|
ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
|
|
|
|
/* Channel state will normally have been updated */
|
|
state = gsi_channel_state(channel);
|
|
if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
|
|
dev_err(dev, "channel %u bad state %u after dealloc\n",
|
|
channel_id, state);
|
|
}
|
|
|
|
/* Ring an event ring doorbell, reporting the last entry processed by the AP.
|
|
* The index argument (modulo the ring count) is the first unfilled entry, so
|
|
* we supply one less than that with the doorbell. Update the event ring
|
|
* index field with the value provided.
|
|
*/
|
|
static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
|
|
{
|
|
struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
|
|
u32 val;
|
|
|
|
ring->index = index; /* Next unused entry */
|
|
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
val = gsi_ring_addr(ring, (index - 1) % ring->count);
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
|
|
}
|
|
|
|
/* Program an event ring for use */
|
|
static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
|
|
u32 val;
|
|
|
|
/* We program all event rings as GPI type/protocol */
|
|
val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
|
|
val |= EV_INTYPE_FMASK;
|
|
val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
|
|
|
|
val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
|
|
|
|
/* The context 2 and 3 registers store the low-order and
|
|
* high-order 32 bits of the address of the event ring,
|
|
* respectively.
|
|
*/
|
|
val = evt_ring->ring.addr & GENMASK(31, 0);
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
|
|
|
|
val = evt_ring->ring.addr >> 32;
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
|
|
|
|
/* Enable interrupt moderation by setting the moderation delay */
|
|
val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
|
|
val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
|
|
iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
|
|
|
|
/* No MSI write data, and MSI address high and low address is 0 */
|
|
iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
|
|
iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
|
|
iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
|
|
|
|
/* We don't need to get event read pointer updates */
|
|
iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
|
|
iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
|
|
|
|
/* Finally, tell the hardware we've completed event 0 (arbitrary) */
|
|
gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
|
|
}
|
|
|
|
/* Return the last (most recent) transaction completed on a channel. */
|
|
static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans_info *trans_info = &channel->trans_info;
|
|
struct gsi_trans *trans;
|
|
|
|
spin_lock_bh(&trans_info->spinlock);
|
|
|
|
if (!list_empty(&trans_info->complete))
|
|
trans = list_last_entry(&trans_info->complete,
|
|
struct gsi_trans, links);
|
|
else if (!list_empty(&trans_info->polled))
|
|
trans = list_last_entry(&trans_info->polled,
|
|
struct gsi_trans, links);
|
|
else
|
|
trans = NULL;
|
|
|
|
/* Caller will wait for this, so take a reference */
|
|
if (trans)
|
|
refcount_inc(&trans->refcount);
|
|
|
|
spin_unlock_bh(&trans_info->spinlock);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/* Wait for transaction activity on a channel to complete */
|
|
static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans *trans;
|
|
|
|
/* Get the last transaction, and wait for it to complete */
|
|
trans = gsi_channel_trans_last(channel);
|
|
if (trans) {
|
|
wait_for_completion(&trans->completion);
|
|
gsi_trans_free(trans);
|
|
}
|
|
}
|
|
|
|
/* Stop channel activity. Transactions may not be allocated until thawed. */
|
|
static void gsi_channel_freeze(struct gsi_channel *channel)
|
|
{
|
|
gsi_channel_trans_quiesce(channel);
|
|
|
|
napi_disable(&channel->napi);
|
|
|
|
gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
|
|
}
|
|
|
|
/* Allow transactions to be used on the channel again. */
|
|
static void gsi_channel_thaw(struct gsi_channel *channel)
|
|
{
|
|
gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
|
|
|
|
napi_enable(&channel->napi);
|
|
}
|
|
|
|
/* Program a channel for use */
|
|
static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
|
|
{
|
|
size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
union gsi_channel_scratch scr = { };
|
|
struct gsi_channel_scratch_gpi *gpi;
|
|
struct gsi *gsi = channel->gsi;
|
|
u32 wrr_weight = 0;
|
|
u32 val;
|
|
|
|
/* Arbitrarily pick TRE 0 as the first channel element to use */
|
|
channel->tre_ring.index = 0;
|
|
|
|
/* We program all channels as GPI type/protocol */
|
|
val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK);
|
|
if (channel->toward_ipa)
|
|
val |= CHTYPE_DIR_FMASK;
|
|
val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
|
|
val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
|
|
iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
|
|
|
|
val = u32_encode_bits(size, R_LENGTH_FMASK);
|
|
iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
|
|
|
|
/* The context 2 and 3 registers store the low-order and
|
|
* high-order 32 bits of the address of the channel ring,
|
|
* respectively.
|
|
*/
|
|
val = channel->tre_ring.addr & GENMASK(31, 0);
|
|
iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
|
|
|
|
val = channel->tre_ring.addr >> 32;
|
|
iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
|
|
|
|
/* Command channel gets low weighted round-robin priority */
|
|
if (channel->command)
|
|
wrr_weight = field_max(WRR_WEIGHT_FMASK);
|
|
val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
|
|
|
|
/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
|
|
|
|
/* We enable the doorbell engine for IPA v3.5.1 */
|
|
if (gsi->version == IPA_VERSION_3_5_1 && doorbell)
|
|
val |= USE_DB_ENG_FMASK;
|
|
|
|
/* Starting with IPA v4.0 the command channel uses the escape buffer */
|
|
if (gsi->version != IPA_VERSION_3_5_1 && channel->command)
|
|
val |= USE_ESCAPE_BUF_ONLY_FMASK;
|
|
|
|
iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
|
|
|
|
/* Now update the scratch registers for GPI protocol */
|
|
gpi = &scr.gpi;
|
|
gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
|
|
GSI_RING_ELEMENT_SIZE;
|
|
gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
|
|
|
|
val = scr.data.word1;
|
|
iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
|
|
|
|
val = scr.data.word2;
|
|
iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
|
|
|
|
val = scr.data.word3;
|
|
iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
|
|
|
|
/* We must preserve the upper 16 bits of the last scratch register.
|
|
* The next sequence assumes those bits remain unchanged between the
|
|
* read and the write.
|
|
*/
|
|
val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
|
|
val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
|
|
iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
|
|
|
|
/* All done! */
|
|
}
|
|
|
|
static void gsi_channel_deprogram(struct gsi_channel *channel)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
/* Start an allocated GSI channel */
|
|
int gsi_channel_start(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
int ret;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
ret = gsi_channel_start_command(channel);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
gsi_channel_thaw(channel);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Stop a started channel */
|
|
int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
u32 retries;
|
|
int ret;
|
|
|
|
gsi_channel_freeze(channel);
|
|
|
|
/* RX channels might require a little time to enter STOPPED state */
|
|
retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
do {
|
|
ret = gsi_channel_stop_command(channel);
|
|
if (ret != -EAGAIN)
|
|
break;
|
|
msleep(1);
|
|
} while (retries--);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
/* Thaw the channel if we need to retry (or on error) */
|
|
if (ret)
|
|
gsi_channel_thaw(channel);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
|
|
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
gsi_channel_reset_command(channel);
|
|
/* Due to a hardware quirk we may need to reset RX channels twice. */
|
|
if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa)
|
|
gsi_channel_reset_command(channel);
|
|
|
|
gsi_channel_program(channel, doorbell);
|
|
gsi_channel_trans_cancel_pending(channel);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
}
|
|
|
|
/* Stop a STARTED channel for suspend (using stop if requested) */
|
|
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
if (stop)
|
|
return gsi_channel_stop(gsi, channel_id);
|
|
|
|
gsi_channel_freeze(channel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Resume a suspended channel (starting will be requested if STOPPED) */
|
|
int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
if (start)
|
|
return gsi_channel_start(gsi, channel_id);
|
|
|
|
gsi_channel_thaw(channel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_tx_queued() - Report queued TX transfers for a channel
|
|
* @channel: Channel for which to report
|
|
*
|
|
* Report to the network stack the number of bytes and transactions that
|
|
* have been queued to hardware since last call. This and the next function
|
|
* supply information used by the network stack for throttling.
|
|
*
|
|
* For each channel we track the number of transactions used and bytes of
|
|
* data those transactions represent. We also track what those values are
|
|
* each time this function is called. Subtracting the two tells us
|
|
* the number of bytes and transactions that have been added between
|
|
* successive calls.
|
|
*
|
|
* Calling this each time we ring the channel doorbell allows us to
|
|
* provide accurate information to the network stack about how much
|
|
* work we've given the hardware at any point in time.
|
|
*/
|
|
void gsi_channel_tx_queued(struct gsi_channel *channel)
|
|
{
|
|
u32 trans_count;
|
|
u32 byte_count;
|
|
|
|
byte_count = channel->byte_count - channel->queued_byte_count;
|
|
trans_count = channel->trans_count - channel->queued_trans_count;
|
|
channel->queued_byte_count = channel->byte_count;
|
|
channel->queued_trans_count = channel->trans_count;
|
|
|
|
ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
|
|
trans_count, byte_count);
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_tx_update() - Report completed TX transfers
|
|
* @channel: Channel that has completed transmitting packets
|
|
* @trans: Last transation known to be complete
|
|
*
|
|
* Compute the number of transactions and bytes that have been transferred
|
|
* over a TX channel since the given transaction was committed. Report this
|
|
* information to the network stack.
|
|
*
|
|
* At the time a transaction is committed, we record its channel's
|
|
* committed transaction and byte counts *in the transaction*.
|
|
* Completions are signaled by the hardware with an interrupt, and
|
|
* we can determine the latest completed transaction at that time.
|
|
*
|
|
* The difference between the byte/transaction count recorded in
|
|
* the transaction and the count last time we recorded a completion
|
|
* tells us exactly how much data has been transferred between
|
|
* completions.
|
|
*
|
|
* Calling this each time we learn of a newly-completed transaction
|
|
* allows us to provide accurate information to the network stack
|
|
* about how much work has been completed by the hardware at a given
|
|
* point in time.
|
|
*/
|
|
static void
|
|
gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
|
|
{
|
|
u64 byte_count = trans->byte_count + trans->len;
|
|
u64 trans_count = trans->trans_count + 1;
|
|
|
|
byte_count -= channel->compl_byte_count;
|
|
channel->compl_byte_count += byte_count;
|
|
trans_count -= channel->compl_trans_count;
|
|
channel->compl_trans_count += trans_count;
|
|
|
|
ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
|
|
trans_count, byte_count);
|
|
}
|
|
|
|
/* Channel control interrupt handler */
|
|
static void gsi_isr_chan_ctrl(struct gsi *gsi)
|
|
{
|
|
u32 channel_mask;
|
|
|
|
channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
|
|
iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
|
|
|
|
while (channel_mask) {
|
|
u32 channel_id = __ffs(channel_mask);
|
|
struct gsi_channel *channel;
|
|
|
|
channel_mask ^= BIT(channel_id);
|
|
|
|
channel = &gsi->channel[channel_id];
|
|
|
|
complete(&channel->completion);
|
|
}
|
|
}
|
|
|
|
/* Event ring control interrupt handler */
|
|
static void gsi_isr_evt_ctrl(struct gsi *gsi)
|
|
{
|
|
u32 event_mask;
|
|
|
|
event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
|
|
iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
|
|
|
|
while (event_mask) {
|
|
u32 evt_ring_id = __ffs(event_mask);
|
|
struct gsi_evt_ring *evt_ring;
|
|
|
|
event_mask ^= BIT(evt_ring_id);
|
|
|
|
evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
|
|
|
|
complete(&evt_ring->completion);
|
|
}
|
|
}
|
|
|
|
/* Global channel error interrupt handler */
|
|
static void
|
|
gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
|
|
{
|
|
if (code == GSI_OUT_OF_RESOURCES) {
|
|
dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
|
|
complete(&gsi->channel[channel_id].completion);
|
|
return;
|
|
}
|
|
|
|
/* Report, but otherwise ignore all other error codes */
|
|
dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
|
|
channel_id, err_ee, code);
|
|
}
|
|
|
|
/* Global event error interrupt handler */
|
|
static void
|
|
gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
|
|
{
|
|
if (code == GSI_OUT_OF_RESOURCES) {
|
|
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
u32 channel_id = gsi_channel_id(evt_ring->channel);
|
|
|
|
complete(&evt_ring->completion);
|
|
dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
|
|
channel_id);
|
|
return;
|
|
}
|
|
|
|
/* Report, but otherwise ignore all other error codes */
|
|
dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
|
|
evt_ring_id, err_ee, code);
|
|
}
|
|
|
|
/* Global error interrupt handler */
|
|
static void gsi_isr_glob_err(struct gsi *gsi)
|
|
{
|
|
enum gsi_err_type type;
|
|
enum gsi_err_code code;
|
|
u32 which;
|
|
u32 val;
|
|
u32 ee;
|
|
|
|
/* Get the logged error, then reinitialize the log */
|
|
val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
|
|
iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
|
|
iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
|
|
|
|
ee = u32_get_bits(val, ERR_EE_FMASK);
|
|
type = u32_get_bits(val, ERR_TYPE_FMASK);
|
|
which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
|
|
code = u32_get_bits(val, ERR_CODE_FMASK);
|
|
|
|
if (type == GSI_ERR_TYPE_CHAN)
|
|
gsi_isr_glob_chan_err(gsi, ee, which, code);
|
|
else if (type == GSI_ERR_TYPE_EVT)
|
|
gsi_isr_glob_evt_err(gsi, ee, which, code);
|
|
else /* type GSI_ERR_TYPE_GLOB should be fatal */
|
|
dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
|
|
}
|
|
|
|
/* Generic EE interrupt handler */
|
|
static void gsi_isr_gp_int1(struct gsi *gsi)
|
|
{
|
|
u32 result;
|
|
u32 val;
|
|
|
|
/* This interrupt is used to handle completions of the two GENERIC
|
|
* GSI commands. We use these to allocate and halt channels on
|
|
* the modem's behalf due to a hardware quirk on IPA v4.2. Once
|
|
* allocated, the modem "owns" these channels, and as a result we
|
|
* have no way of knowing the channel's state at any given time.
|
|
*
|
|
* It is recommended that we halt the modem channels we allocated
|
|
* when shutting down, but it's possible the channel isn't running
|
|
* at the time we issue the HALT command. We'll get an error in
|
|
* that case, but it's harmless (the channel is already halted).
|
|
*
|
|
* For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
|
|
* if we receive it.
|
|
*/
|
|
val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
|
|
result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
|
|
|
|
switch (result) {
|
|
case GENERIC_EE_SUCCESS:
|
|
case GENERIC_EE_CHANNEL_NOT_RUNNING:
|
|
break;
|
|
|
|
default:
|
|
dev_err(gsi->dev, "global INT1 generic result %u\n", result);
|
|
break;
|
|
}
|
|
|
|
complete(&gsi->completion);
|
|
}
|
|
|
|
/* Inter-EE interrupt handler */
|
|
static void gsi_isr_glob_ee(struct gsi *gsi)
|
|
{
|
|
u32 val;
|
|
|
|
val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
|
|
|
|
if (val & BIT(ERROR_INT))
|
|
gsi_isr_glob_err(gsi);
|
|
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
|
|
|
|
val &= ~BIT(ERROR_INT);
|
|
|
|
if (val & BIT(GP_INT1)) {
|
|
val ^= BIT(GP_INT1);
|
|
gsi_isr_gp_int1(gsi);
|
|
}
|
|
|
|
if (val)
|
|
dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
|
|
}
|
|
|
|
/* I/O completion interrupt event */
|
|
static void gsi_isr_ieob(struct gsi *gsi)
|
|
{
|
|
u32 event_mask;
|
|
|
|
event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
|
|
iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
|
|
|
|
while (event_mask) {
|
|
u32 evt_ring_id = __ffs(event_mask);
|
|
|
|
event_mask ^= BIT(evt_ring_id);
|
|
|
|
gsi_irq_ieob_disable(gsi, evt_ring_id);
|
|
napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
|
|
}
|
|
}
|
|
|
|
/* General event interrupts represent serious problems, so report them */
|
|
static void gsi_isr_general(struct gsi *gsi)
|
|
{
|
|
struct device *dev = gsi->dev;
|
|
u32 val;
|
|
|
|
val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
|
|
|
|
dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
|
|
}
|
|
|
|
/**
|
|
* gsi_isr() - Top level GSI interrupt service routine
|
|
* @irq: Interrupt number (ignored)
|
|
* @dev_id: GSI pointer supplied to request_irq()
|
|
*
|
|
* This is the main handler function registered for the GSI IRQ. Each type
|
|
* of interrupt has a separate handler function that is called from here.
|
|
*/
|
|
static irqreturn_t gsi_isr(int irq, void *dev_id)
|
|
{
|
|
struct gsi *gsi = dev_id;
|
|
u32 intr_mask;
|
|
u32 cnt = 0;
|
|
|
|
/* enum gsi_irq_type_id defines GSI interrupt types */
|
|
while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
|
|
/* intr_mask contains bitmask of pending GSI interrupts */
|
|
do {
|
|
u32 gsi_intr = BIT(__ffs(intr_mask));
|
|
|
|
intr_mask ^= gsi_intr;
|
|
|
|
switch (gsi_intr) {
|
|
case BIT(GSI_CH_CTRL):
|
|
gsi_isr_chan_ctrl(gsi);
|
|
break;
|
|
case BIT(GSI_EV_CTRL):
|
|
gsi_isr_evt_ctrl(gsi);
|
|
break;
|
|
case BIT(GSI_GLOB_EE):
|
|
gsi_isr_glob_ee(gsi);
|
|
break;
|
|
case BIT(GSI_IEOB):
|
|
gsi_isr_ieob(gsi);
|
|
break;
|
|
case BIT(GSI_GENERAL):
|
|
gsi_isr_general(gsi);
|
|
break;
|
|
default:
|
|
dev_err(gsi->dev,
|
|
"unrecognized interrupt type 0x%08x\n",
|
|
gsi_intr);
|
|
break;
|
|
}
|
|
} while (intr_mask);
|
|
|
|
if (++cnt > GSI_ISR_MAX_ITER) {
|
|
dev_err(gsi->dev, "interrupt flood\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
unsigned int irq;
|
|
int ret;
|
|
|
|
ret = platform_get_irq_byname(pdev, "gsi");
|
|
if (ret <= 0) {
|
|
dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
|
|
return ret ? : -EINVAL;
|
|
}
|
|
irq = ret;
|
|
|
|
ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
|
|
if (ret) {
|
|
dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
|
|
return ret;
|
|
}
|
|
gsi->irq = irq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gsi_irq_exit(struct gsi *gsi)
|
|
{
|
|
free_irq(gsi->irq, gsi);
|
|
}
|
|
|
|
/* Return the transaction associated with a transfer completion event */
|
|
static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
|
|
struct gsi_event *event)
|
|
{
|
|
u32 tre_offset;
|
|
u32 tre_index;
|
|
|
|
/* Event xfer_ptr records the TRE it's associated with */
|
|
tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
|
|
tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
|
|
|
|
return gsi_channel_trans_mapped(channel, tre_index);
|
|
}
|
|
|
|
/**
|
|
* gsi_evt_ring_rx_update() - Record lengths of received data
|
|
* @evt_ring: Event ring associated with channel that received packets
|
|
* @index: Event index in ring reported by hardware
|
|
*
|
|
* Events for RX channels contain the actual number of bytes received into
|
|
* the buffer. Every event has a transaction associated with it, and here
|
|
* we update transactions to record their actual received lengths.
|
|
*
|
|
* This function is called whenever we learn that the GSI hardware has filled
|
|
* new events since the last time we checked. The ring's index field tells
|
|
* the first entry in need of processing. The index provided is the
|
|
* first *unfilled* event in the ring (following the last filled one).
|
|
*
|
|
* Events are sequential within the event ring, and transactions are
|
|
* sequential within the transaction pool.
|
|
*
|
|
* Note that @index always refers to an element *within* the event ring.
|
|
*/
|
|
static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
|
|
{
|
|
struct gsi_channel *channel = evt_ring->channel;
|
|
struct gsi_ring *ring = &evt_ring->ring;
|
|
struct gsi_trans_info *trans_info;
|
|
struct gsi_event *event_done;
|
|
struct gsi_event *event;
|
|
struct gsi_trans *trans;
|
|
u32 byte_count = 0;
|
|
u32 old_index;
|
|
u32 event_avail;
|
|
|
|
trans_info = &channel->trans_info;
|
|
|
|
/* We'll start with the oldest un-processed event. RX channels
|
|
* replenish receive buffers in single-TRE transactions, so we
|
|
* can just map that event to its transaction. Transactions
|
|
* associated with completion events are consecutive.
|
|
*/
|
|
old_index = ring->index;
|
|
event = gsi_ring_virt(ring, old_index);
|
|
trans = gsi_event_trans(channel, event);
|
|
|
|
/* Compute the number of events to process before we wrap,
|
|
* and determine when we'll be done processing events.
|
|
*/
|
|
event_avail = ring->count - old_index % ring->count;
|
|
event_done = gsi_ring_virt(ring, index);
|
|
do {
|
|
trans->len = __le16_to_cpu(event->len);
|
|
byte_count += trans->len;
|
|
|
|
/* Move on to the next event and transaction */
|
|
if (--event_avail)
|
|
event++;
|
|
else
|
|
event = gsi_ring_virt(ring, 0);
|
|
trans = gsi_trans_pool_next(&trans_info->pool, trans);
|
|
} while (event != event_done);
|
|
|
|
/* We record RX bytes when they are received */
|
|
channel->byte_count += byte_count;
|
|
channel->trans_count++;
|
|
}
|
|
|
|
/* Initialize a ring, including allocating DMA memory for its entries */
|
|
static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
|
|
{
|
|
size_t size = count * GSI_RING_ELEMENT_SIZE;
|
|
struct device *dev = gsi->dev;
|
|
dma_addr_t addr;
|
|
|
|
/* Hardware requires a 2^n ring size, with alignment equal to size */
|
|
ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
|
|
if (ring->virt && addr % size) {
|
|
dma_free_coherent(dev, size, ring->virt, ring->addr);
|
|
dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
|
|
size);
|
|
return -EINVAL; /* Not a good error value, but distinct */
|
|
} else if (!ring->virt) {
|
|
return -ENOMEM;
|
|
}
|
|
ring->addr = addr;
|
|
ring->count = count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free a previously-allocated ring */
|
|
static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
|
|
{
|
|
size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
|
|
|
|
dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
|
|
}
|
|
|
|
/* Allocate an available event ring id */
|
|
static int gsi_evt_ring_id_alloc(struct gsi *gsi)
|
|
{
|
|
u32 evt_ring_id;
|
|
|
|
if (gsi->event_bitmap == ~0U) {
|
|
dev_err(gsi->dev, "event rings exhausted\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
evt_ring_id = ffz(gsi->event_bitmap);
|
|
gsi->event_bitmap |= BIT(evt_ring_id);
|
|
|
|
return (int)evt_ring_id;
|
|
}
|
|
|
|
/* Free a previously-allocated event ring id */
|
|
static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
|
|
{
|
|
gsi->event_bitmap &= ~BIT(evt_ring_id);
|
|
}
|
|
|
|
/* Ring a channel doorbell, reporting the first un-filled entry */
|
|
void gsi_channel_doorbell(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_ring *tre_ring = &channel->tre_ring;
|
|
u32 channel_id = gsi_channel_id(channel);
|
|
struct gsi *gsi = channel->gsi;
|
|
u32 val;
|
|
|
|
/* Note: index *must* be used modulo the ring count here */
|
|
val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
|
|
iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
|
|
}
|
|
|
|
/* Consult hardware, move any newly completed transactions to completed list */
|
|
static void gsi_channel_update(struct gsi_channel *channel)
|
|
{
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
struct gsi_trans *trans;
|
|
struct gsi_ring *ring;
|
|
u32 offset;
|
|
u32 index;
|
|
|
|
evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
ring = &evt_ring->ring;
|
|
|
|
/* See if there's anything new to process; if not, we're done. Note
|
|
* that index always refers to an entry *within* the event ring.
|
|
*/
|
|
offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
|
|
index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
|
|
if (index == ring->index % ring->count)
|
|
return;
|
|
|
|
/* Get the transaction for the latest completed event. Take a
|
|
* reference to keep it from completing before we give the events
|
|
* for this and previous transactions back to the hardware.
|
|
*/
|
|
trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
|
|
refcount_inc(&trans->refcount);
|
|
|
|
/* For RX channels, update each completed transaction with the number
|
|
* of bytes that were actually received. For TX channels, report
|
|
* the number of transactions and bytes this completion represents
|
|
* up the network stack.
|
|
*/
|
|
if (channel->toward_ipa)
|
|
gsi_channel_tx_update(channel, trans);
|
|
else
|
|
gsi_evt_ring_rx_update(evt_ring, index);
|
|
|
|
gsi_trans_move_complete(trans);
|
|
|
|
/* Tell the hardware we've handled these events */
|
|
gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
|
|
|
|
gsi_trans_free(trans);
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_poll_one() - Return a single completed transaction on a channel
|
|
* @channel: Channel to be polled
|
|
*
|
|
* Return: Transaction pointer, or null if none are available
|
|
*
|
|
* This function returns the first entry on a channel's completed transaction
|
|
* list. If that list is empty, the hardware is consulted to determine
|
|
* whether any new transactions have completed. If so, they're moved to the
|
|
* completed list and the new first entry is returned. If there are no more
|
|
* completed transactions, a null pointer is returned.
|
|
*/
|
|
static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
|
|
{
|
|
struct gsi_trans *trans;
|
|
|
|
/* Get the first transaction from the completed list */
|
|
trans = gsi_channel_trans_complete(channel);
|
|
if (!trans) {
|
|
/* List is empty; see if there's more to do */
|
|
gsi_channel_update(channel);
|
|
trans = gsi_channel_trans_complete(channel);
|
|
}
|
|
|
|
if (trans)
|
|
gsi_trans_move_polled(trans);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/**
|
|
* gsi_channel_poll() - NAPI poll function for a channel
|
|
* @napi: NAPI structure for the channel
|
|
* @budget: Budget supplied by NAPI core
|
|
*
|
|
* Return: Number of items polled (<= budget)
|
|
*
|
|
* Single transactions completed by hardware are polled until either
|
|
* the budget is exhausted, or there are no more. Each transaction
|
|
* polled is passed to gsi_trans_complete(), to perform remaining
|
|
* completion processing and retire/free the transaction.
|
|
*/
|
|
static int gsi_channel_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct gsi_channel *channel;
|
|
int count = 0;
|
|
|
|
channel = container_of(napi, struct gsi_channel, napi);
|
|
while (count < budget) {
|
|
struct gsi_trans *trans;
|
|
|
|
count++;
|
|
trans = gsi_channel_poll_one(channel);
|
|
if (!trans)
|
|
break;
|
|
gsi_trans_complete(trans);
|
|
}
|
|
|
|
if (count < budget) {
|
|
napi_complete(&channel->napi);
|
|
gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* The event bitmap represents which event ids are available for allocation.
|
|
* Set bits are not available, clear bits can be used. This function
|
|
* initializes the map so all events supported by the hardware are available,
|
|
* then precludes any reserved events from being allocated.
|
|
*/
|
|
static u32 gsi_event_bitmap_init(u32 evt_ring_max)
|
|
{
|
|
u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
|
|
|
|
event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
|
|
|
|
return event_bitmap;
|
|
}
|
|
|
|
/* Setup function for event rings */
|
|
static void gsi_evt_ring_setup(struct gsi *gsi)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
/* Inverse of gsi_evt_ring_setup() */
|
|
static void gsi_evt_ring_teardown(struct gsi *gsi)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
/* Setup function for a single channel */
|
|
static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
int ret;
|
|
|
|
if (!channel->gsi)
|
|
return 0; /* Ignore uninitialized channels */
|
|
|
|
ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gsi_evt_ring_program(gsi, evt_ring_id);
|
|
|
|
ret = gsi_channel_alloc_command(gsi, channel_id);
|
|
if (ret)
|
|
goto err_evt_ring_de_alloc;
|
|
|
|
gsi_channel_program(channel, true);
|
|
|
|
if (channel->toward_ipa)
|
|
netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
|
|
gsi_channel_poll, NAPI_POLL_WEIGHT);
|
|
else
|
|
netif_napi_add(&gsi->dummy_dev, &channel->napi,
|
|
gsi_channel_poll, NAPI_POLL_WEIGHT);
|
|
|
|
return 0;
|
|
|
|
err_evt_ring_de_alloc:
|
|
/* We've done nothing with the event ring yet so don't reset */
|
|
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_setup_one() */
|
|
static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
|
|
if (!channel->gsi)
|
|
return; /* Ignore uninitialized channels */
|
|
|
|
netif_napi_del(&channel->napi);
|
|
|
|
gsi_channel_deprogram(channel);
|
|
gsi_channel_de_alloc_command(gsi, channel_id);
|
|
gsi_evt_ring_reset_command(gsi, evt_ring_id);
|
|
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
|
|
}
|
|
|
|
static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
|
|
enum gsi_generic_cmd_opcode opcode)
|
|
{
|
|
struct completion *completion = &gsi->completion;
|
|
bool success;
|
|
u32 val;
|
|
|
|
/* The error global interrupt type is always enabled (until we
|
|
* teardown), so we won't change that. A generic EE command
|
|
* completes with a GSI global interrupt of type GP_INT1. We
|
|
* only perform one generic command at a time (to allocate or
|
|
* halt a modem channel) and only from this function. So we
|
|
* enable the GP_INT1 IRQ type here while we're expecting it.
|
|
*/
|
|
val = BIT(ERROR_INT) | BIT(GP_INT1);
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
|
|
|
|
/* First zero the result code field */
|
|
val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
|
|
val &= ~GENERIC_EE_RESULT_FMASK;
|
|
iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
|
|
|
|
/* Now issue the command */
|
|
val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
|
|
val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
|
|
val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
|
|
|
|
success = gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
|
|
|
|
/* Disable the GP_INT1 IRQ type again */
|
|
iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
|
|
|
|
if (success)
|
|
return 0;
|
|
|
|
dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
|
|
opcode, channel_id);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
return gsi_generic_command(gsi, channel_id,
|
|
GSI_GENERIC_ALLOCATE_CHANNEL);
|
|
}
|
|
|
|
static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
(void)gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
|
|
}
|
|
|
|
/* Setup function for channels */
|
|
static int gsi_channel_setup(struct gsi *gsi)
|
|
{
|
|
u32 channel_id = 0;
|
|
u32 mask;
|
|
int ret;
|
|
|
|
gsi_evt_ring_setup(gsi);
|
|
gsi_irq_enable(gsi);
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
do {
|
|
ret = gsi_channel_setup_one(gsi, channel_id);
|
|
if (ret)
|
|
goto err_unwind;
|
|
} while (++channel_id < gsi->channel_count);
|
|
|
|
/* Make sure no channels were defined that hardware does not support */
|
|
while (channel_id < GSI_CHANNEL_COUNT_MAX) {
|
|
struct gsi_channel *channel = &gsi->channel[channel_id++];
|
|
|
|
if (!channel->gsi)
|
|
continue; /* Ignore uninitialized channels */
|
|
|
|
dev_err(gsi->dev, "channel %u not supported by hardware\n",
|
|
channel_id - 1);
|
|
channel_id = gsi->channel_count;
|
|
goto err_unwind;
|
|
}
|
|
|
|
/* Allocate modem channels if necessary */
|
|
mask = gsi->modem_channel_bitmap;
|
|
while (mask) {
|
|
u32 modem_channel_id = __ffs(mask);
|
|
|
|
ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
|
|
if (ret)
|
|
goto err_unwind_modem;
|
|
|
|
/* Clear bit from mask only after success (for unwind) */
|
|
mask ^= BIT(modem_channel_id);
|
|
}
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
return 0;
|
|
|
|
err_unwind_modem:
|
|
/* Compute which modem channels need to be deallocated */
|
|
mask ^= gsi->modem_channel_bitmap;
|
|
while (mask) {
|
|
channel_id = __fls(mask);
|
|
|
|
mask ^= BIT(channel_id);
|
|
|
|
gsi_modem_channel_halt(gsi, channel_id);
|
|
}
|
|
|
|
err_unwind:
|
|
while (channel_id--)
|
|
gsi_channel_teardown_one(gsi, channel_id);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
gsi_irq_disable(gsi);
|
|
gsi_evt_ring_teardown(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_setup() */
|
|
static void gsi_channel_teardown(struct gsi *gsi)
|
|
{
|
|
u32 mask = gsi->modem_channel_bitmap;
|
|
u32 channel_id;
|
|
|
|
mutex_lock(&gsi->mutex);
|
|
|
|
while (mask) {
|
|
channel_id = __fls(mask);
|
|
|
|
mask ^= BIT(channel_id);
|
|
|
|
gsi_modem_channel_halt(gsi, channel_id);
|
|
}
|
|
|
|
channel_id = gsi->channel_count - 1;
|
|
do
|
|
gsi_channel_teardown_one(gsi, channel_id);
|
|
while (channel_id--);
|
|
|
|
mutex_unlock(&gsi->mutex);
|
|
|
|
gsi_irq_disable(gsi);
|
|
gsi_evt_ring_teardown(gsi);
|
|
}
|
|
|
|
/* Setup function for GSI. GSI firmware must be loaded and initialized */
|
|
int gsi_setup(struct gsi *gsi)
|
|
{
|
|
struct device *dev = gsi->dev;
|
|
u32 val;
|
|
int ret;
|
|
|
|
/* Here is where we first touch the GSI hardware */
|
|
val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
|
|
if (!(val & ENABLED_FMASK)) {
|
|
dev_err(dev, "GSI has not been enabled\n");
|
|
return -EIO;
|
|
}
|
|
|
|
gsi_irq_setup(gsi);
|
|
|
|
val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
|
|
|
|
gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
|
|
if (!gsi->channel_count) {
|
|
dev_err(dev, "GSI reports zero channels supported\n");
|
|
return -EINVAL;
|
|
}
|
|
if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
|
|
dev_warn(dev,
|
|
"limiting to %u channels; hardware supports %u\n",
|
|
GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
|
|
gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
|
|
}
|
|
|
|
gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
|
|
if (!gsi->evt_ring_count) {
|
|
dev_err(dev, "GSI reports zero event rings supported\n");
|
|
return -EINVAL;
|
|
}
|
|
if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
|
|
dev_warn(dev,
|
|
"limiting to %u event rings; hardware supports %u\n",
|
|
GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
|
|
gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
|
|
}
|
|
|
|
/* Initialize the error log */
|
|
iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
|
|
|
|
/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
|
|
iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
|
|
|
|
ret = gsi_channel_setup(gsi);
|
|
if (ret)
|
|
gsi_irq_teardown(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_setup() */
|
|
void gsi_teardown(struct gsi *gsi)
|
|
{
|
|
gsi_channel_teardown(gsi);
|
|
gsi_irq_teardown(gsi);
|
|
}
|
|
|
|
/* Initialize a channel's event ring */
|
|
static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
|
|
{
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
int ret;
|
|
|
|
ret = gsi_evt_ring_id_alloc(gsi);
|
|
if (ret < 0)
|
|
return ret;
|
|
channel->evt_ring_id = ret;
|
|
|
|
evt_ring = &gsi->evt_ring[channel->evt_ring_id];
|
|
evt_ring->channel = channel;
|
|
|
|
ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
|
|
if (!ret)
|
|
return 0; /* Success! */
|
|
|
|
dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
|
|
ret, gsi_channel_id(channel));
|
|
|
|
gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_evt_ring_init() */
|
|
static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
|
|
{
|
|
u32 evt_ring_id = channel->evt_ring_id;
|
|
struct gsi *gsi = channel->gsi;
|
|
struct gsi_evt_ring *evt_ring;
|
|
|
|
evt_ring = &gsi->evt_ring[evt_ring_id];
|
|
gsi_ring_free(gsi, &evt_ring->ring);
|
|
gsi_evt_ring_id_free(gsi, evt_ring_id);
|
|
}
|
|
|
|
/* Init function for event rings */
|
|
static void gsi_evt_ring_init(struct gsi *gsi)
|
|
{
|
|
u32 evt_ring_id = 0;
|
|
|
|
gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
|
|
gsi->ieob_enabled_bitmap = 0;
|
|
do
|
|
init_completion(&gsi->evt_ring[evt_ring_id].completion);
|
|
while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
|
|
}
|
|
|
|
/* Inverse of gsi_evt_ring_init() */
|
|
static void gsi_evt_ring_exit(struct gsi *gsi)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static bool gsi_channel_data_valid(struct gsi *gsi,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
#ifdef IPA_VALIDATION
|
|
u32 channel_id = data->channel_id;
|
|
struct device *dev = gsi->dev;
|
|
|
|
/* Make sure channel ids are in the range driver supports */
|
|
if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
|
|
dev_err(dev, "bad channel id %u; must be less than %u\n",
|
|
channel_id, GSI_CHANNEL_COUNT_MAX);
|
|
return false;
|
|
}
|
|
|
|
if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
|
|
dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
|
|
return false;
|
|
}
|
|
|
|
if (!data->channel.tlv_count ||
|
|
data->channel.tlv_count > GSI_TLV_MAX) {
|
|
dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
|
|
channel_id, data->channel.tlv_count, GSI_TLV_MAX);
|
|
return false;
|
|
}
|
|
|
|
/* We have to allow at least one maximally-sized transaction to
|
|
* be outstanding (which would use tlv_count TREs). Given how
|
|
* gsi_channel_tre_max() is computed, tre_count has to be almost
|
|
* twice the TLV FIFO size to satisfy this requirement.
|
|
*/
|
|
if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
|
|
dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
|
|
channel_id, data->channel.tlv_count,
|
|
data->channel.tre_count);
|
|
return false;
|
|
}
|
|
|
|
if (!is_power_of_2(data->channel.tre_count)) {
|
|
dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
|
|
channel_id, data->channel.tre_count);
|
|
return false;
|
|
}
|
|
|
|
if (!is_power_of_2(data->channel.event_count)) {
|
|
dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
|
|
channel_id, data->channel.event_count);
|
|
return false;
|
|
}
|
|
#endif /* IPA_VALIDATION */
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Init function for a single channel */
|
|
static int gsi_channel_init_one(struct gsi *gsi,
|
|
const struct ipa_gsi_endpoint_data *data,
|
|
bool command)
|
|
{
|
|
struct gsi_channel *channel;
|
|
u32 tre_count;
|
|
int ret;
|
|
|
|
if (!gsi_channel_data_valid(gsi, data))
|
|
return -EINVAL;
|
|
|
|
/* Worst case we need an event for every outstanding TRE */
|
|
if (data->channel.tre_count > data->channel.event_count) {
|
|
tre_count = data->channel.event_count;
|
|
dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
|
|
data->channel_id, tre_count);
|
|
} else {
|
|
tre_count = data->channel.tre_count;
|
|
}
|
|
|
|
channel = &gsi->channel[data->channel_id];
|
|
memset(channel, 0, sizeof(*channel));
|
|
|
|
channel->gsi = gsi;
|
|
channel->toward_ipa = data->toward_ipa;
|
|
channel->command = command;
|
|
channel->tlv_count = data->channel.tlv_count;
|
|
channel->tre_count = tre_count;
|
|
channel->event_count = data->channel.event_count;
|
|
init_completion(&channel->completion);
|
|
|
|
ret = gsi_channel_evt_ring_init(channel);
|
|
if (ret)
|
|
goto err_clear_gsi;
|
|
|
|
ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
|
|
if (ret) {
|
|
dev_err(gsi->dev, "error %d allocating channel %u ring\n",
|
|
ret, data->channel_id);
|
|
goto err_channel_evt_ring_exit;
|
|
}
|
|
|
|
ret = gsi_channel_trans_init(gsi, data->channel_id);
|
|
if (ret)
|
|
goto err_ring_free;
|
|
|
|
if (command) {
|
|
u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
|
|
|
|
ret = ipa_cmd_pool_init(channel, tre_max);
|
|
}
|
|
if (!ret)
|
|
return 0; /* Success! */
|
|
|
|
gsi_channel_trans_exit(channel);
|
|
err_ring_free:
|
|
gsi_ring_free(gsi, &channel->tre_ring);
|
|
err_channel_evt_ring_exit:
|
|
gsi_channel_evt_ring_exit(channel);
|
|
err_clear_gsi:
|
|
channel->gsi = NULL; /* Mark it not (fully) initialized */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_init_one() */
|
|
static void gsi_channel_exit_one(struct gsi_channel *channel)
|
|
{
|
|
if (!channel->gsi)
|
|
return; /* Ignore uninitialized channels */
|
|
|
|
if (channel->command)
|
|
ipa_cmd_pool_exit(channel);
|
|
gsi_channel_trans_exit(channel);
|
|
gsi_ring_free(channel->gsi, &channel->tre_ring);
|
|
gsi_channel_evt_ring_exit(channel);
|
|
}
|
|
|
|
/* Init function for channels */
|
|
static int gsi_channel_init(struct gsi *gsi, u32 count,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
bool modem_alloc;
|
|
int ret = 0;
|
|
u32 i;
|
|
|
|
/* IPA v4.2 requires the AP to allocate channels for the modem */
|
|
modem_alloc = gsi->version == IPA_VERSION_4_2;
|
|
|
|
gsi_evt_ring_init(gsi);
|
|
|
|
/* The endpoint data array is indexed by endpoint name */
|
|
for (i = 0; i < count; i++) {
|
|
bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
|
|
|
|
if (ipa_gsi_endpoint_data_empty(&data[i]))
|
|
continue; /* Skip over empty slots */
|
|
|
|
/* Mark modem channels to be allocated (hardware workaround) */
|
|
if (data[i].ee_id == GSI_EE_MODEM) {
|
|
if (modem_alloc)
|
|
gsi->modem_channel_bitmap |=
|
|
BIT(data[i].channel_id);
|
|
continue;
|
|
}
|
|
|
|
ret = gsi_channel_init_one(gsi, &data[i], command);
|
|
if (ret)
|
|
goto err_unwind;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_unwind:
|
|
while (i--) {
|
|
if (ipa_gsi_endpoint_data_empty(&data[i]))
|
|
continue;
|
|
if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
|
|
gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
|
|
continue;
|
|
}
|
|
gsi_channel_exit_one(&gsi->channel[data->channel_id]);
|
|
}
|
|
gsi_evt_ring_exit(gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_channel_init() */
|
|
static void gsi_channel_exit(struct gsi *gsi)
|
|
{
|
|
u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
|
|
|
|
do
|
|
gsi_channel_exit_one(&gsi->channel[channel_id]);
|
|
while (channel_id--);
|
|
gsi->modem_channel_bitmap = 0;
|
|
|
|
gsi_evt_ring_exit(gsi);
|
|
}
|
|
|
|
/* Init function for GSI. GSI hardware does not need to be "ready" */
|
|
int gsi_init(struct gsi *gsi, struct platform_device *pdev,
|
|
enum ipa_version version, u32 count,
|
|
const struct ipa_gsi_endpoint_data *data)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct resource *res;
|
|
resource_size_t size;
|
|
int ret;
|
|
|
|
gsi_validate_build();
|
|
|
|
gsi->dev = dev;
|
|
gsi->version = version;
|
|
|
|
/* The GSI layer performs NAPI on all endpoints. NAPI requires a
|
|
* network device structure, but the GSI layer does not have one,
|
|
* so we must create a dummy network device for this purpose.
|
|
*/
|
|
init_dummy_netdev(&gsi->dummy_dev);
|
|
|
|
/* Get GSI memory range and map it */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
|
|
if (!res) {
|
|
dev_err(dev, "DT error getting \"gsi\" memory property\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
size = resource_size(res);
|
|
if (res->start > U32_MAX || size > U32_MAX - res->start) {
|
|
dev_err(dev, "DT memory resource \"gsi\" out of range\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
gsi->virt = ioremap(res->start, size);
|
|
if (!gsi->virt) {
|
|
dev_err(dev, "unable to remap \"gsi\" memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
init_completion(&gsi->completion);
|
|
|
|
ret = gsi_irq_init(gsi, pdev);
|
|
if (ret)
|
|
goto err_iounmap;
|
|
|
|
ret = gsi_channel_init(gsi, count, data);
|
|
if (ret)
|
|
goto err_irq_exit;
|
|
|
|
mutex_init(&gsi->mutex);
|
|
|
|
return 0;
|
|
|
|
err_irq_exit:
|
|
gsi_irq_exit(gsi);
|
|
err_iounmap:
|
|
iounmap(gsi->virt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of gsi_init() */
|
|
void gsi_exit(struct gsi *gsi)
|
|
{
|
|
mutex_destroy(&gsi->mutex);
|
|
gsi_channel_exit(gsi);
|
|
gsi_irq_exit(gsi);
|
|
iounmap(gsi->virt);
|
|
}
|
|
|
|
/* The maximum number of outstanding TREs on a channel. This limits
|
|
* a channel's maximum number of transactions outstanding (worst case
|
|
* is one TRE per transaction).
|
|
*
|
|
* The absolute limit is the number of TREs in the channel's TRE ring,
|
|
* and in theory we should be able use all of them. But in practice,
|
|
* doing that led to the hardware reporting exhaustion of event ring
|
|
* slots for writing completion information. So the hardware limit
|
|
* would be (tre_count - 1).
|
|
*
|
|
* We reduce it a bit further though. Transaction resource pools are
|
|
* sized to be a little larger than this maximum, to allow resource
|
|
* allocations to always be contiguous. The number of entries in a
|
|
* TRE ring buffer is a power of 2, and the extra resources in a pool
|
|
* tends to nearly double the memory allocated for it. Reducing the
|
|
* maximum number of outstanding TREs allows the number of entries in
|
|
* a pool to avoid crossing that power-of-2 boundary, and this can
|
|
* substantially reduce pool memory requirements. The number we
|
|
* reduce it by matches the number added in gsi_trans_pool_init().
|
|
*/
|
|
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
/* Hardware limit is channel->tre_count - 1 */
|
|
return channel->tre_count - (channel->tlv_count - 1);
|
|
}
|
|
|
|
/* Returns the maximum number of TREs in a single transaction for a channel */
|
|
u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
|
|
{
|
|
struct gsi_channel *channel = &gsi->channel[channel_id];
|
|
|
|
return channel->tlv_count;
|
|
}
|