bdd8a98ce4
Enable trace generation for packets with the "Send Last with Invalidate" and "Send Only with Invalidate" opcodes. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Jianxin Xiong <jianxin.xiong@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
1765 lines
50 KiB
C
1765 lines
50 KiB
C
/*
|
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <rdma/ib_mad.h>
|
|
#include <rdma/ib_user_verbs.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "hfi.h"
|
|
#include "common.h"
|
|
#include "device.h"
|
|
#include "trace.h"
|
|
#include "qp.h"
|
|
#include "verbs_txreq.h"
|
|
|
|
static unsigned int hfi1_lkey_table_size = 16;
|
|
module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
|
|
S_IRUGO);
|
|
MODULE_PARM_DESC(lkey_table_size,
|
|
"LKEY table size in bits (2^n, 1 <= n <= 23)");
|
|
|
|
static unsigned int hfi1_max_pds = 0xFFFF;
|
|
module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_pds,
|
|
"Maximum number of protection domains to support");
|
|
|
|
static unsigned int hfi1_max_ahs = 0xFFFF;
|
|
module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
|
|
|
|
unsigned int hfi1_max_cqes = 0x2FFFF;
|
|
module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_cqes,
|
|
"Maximum number of completion queue entries to support");
|
|
|
|
unsigned int hfi1_max_cqs = 0x1FFFF;
|
|
module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
|
|
|
|
unsigned int hfi1_max_qp_wrs = 0x3FFF;
|
|
module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
|
|
|
|
unsigned int hfi1_max_qps = 16384;
|
|
module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
|
|
|
|
unsigned int hfi1_max_sges = 0x60;
|
|
module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
|
|
|
|
unsigned int hfi1_max_mcast_grps = 16384;
|
|
module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_mcast_grps,
|
|
"Maximum number of multicast groups to support");
|
|
|
|
unsigned int hfi1_max_mcast_qp_attached = 16;
|
|
module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
|
|
uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_mcast_qp_attached,
|
|
"Maximum number of attached QPs to support");
|
|
|
|
unsigned int hfi1_max_srqs = 1024;
|
|
module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
|
|
|
|
unsigned int hfi1_max_srq_sges = 128;
|
|
module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
|
|
|
|
unsigned int hfi1_max_srq_wrs = 0x1FFFF;
|
|
module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
|
|
|
|
unsigned short piothreshold = 256;
|
|
module_param(piothreshold, ushort, S_IRUGO);
|
|
MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
|
|
|
|
#define COPY_CACHELESS 1
|
|
#define COPY_ADAPTIVE 2
|
|
static unsigned int sge_copy_mode;
|
|
module_param(sge_copy_mode, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(sge_copy_mode,
|
|
"Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
|
|
|
|
static void verbs_sdma_complete(
|
|
struct sdma_txreq *cookie,
|
|
int status);
|
|
|
|
static int pio_wait(struct rvt_qp *qp,
|
|
struct send_context *sc,
|
|
struct hfi1_pkt_state *ps,
|
|
u32 flag);
|
|
|
|
/* Length of buffer to create verbs txreq cache name */
|
|
#define TXREQ_NAME_LEN 24
|
|
|
|
static uint wss_threshold;
|
|
module_param(wss_threshold, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
|
|
static uint wss_clean_period = 256;
|
|
module_param(wss_clean_period, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
|
|
|
|
/* memory working set size */
|
|
struct hfi1_wss {
|
|
unsigned long *entries;
|
|
atomic_t total_count;
|
|
atomic_t clean_counter;
|
|
atomic_t clean_entry;
|
|
|
|
int threshold;
|
|
int num_entries;
|
|
long pages_mask;
|
|
};
|
|
|
|
static struct hfi1_wss wss;
|
|
|
|
int hfi1_wss_init(void)
|
|
{
|
|
long llc_size;
|
|
long llc_bits;
|
|
long table_size;
|
|
long table_bits;
|
|
|
|
/* check for a valid percent range - default to 80 if none or invalid */
|
|
if (wss_threshold < 1 || wss_threshold > 100)
|
|
wss_threshold = 80;
|
|
/* reject a wildly large period */
|
|
if (wss_clean_period > 1000000)
|
|
wss_clean_period = 256;
|
|
/* reject a zero period */
|
|
if (wss_clean_period == 0)
|
|
wss_clean_period = 1;
|
|
|
|
/*
|
|
* Calculate the table size - the next power of 2 larger than the
|
|
* LLC size. LLC size is in KiB.
|
|
*/
|
|
llc_size = wss_llc_size() * 1024;
|
|
table_size = roundup_pow_of_two(llc_size);
|
|
|
|
/* one bit per page in rounded up table */
|
|
llc_bits = llc_size / PAGE_SIZE;
|
|
table_bits = table_size / PAGE_SIZE;
|
|
wss.pages_mask = table_bits - 1;
|
|
wss.num_entries = table_bits / BITS_PER_LONG;
|
|
|
|
wss.threshold = (llc_bits * wss_threshold) / 100;
|
|
if (wss.threshold == 0)
|
|
wss.threshold = 1;
|
|
|
|
atomic_set(&wss.clean_counter, wss_clean_period);
|
|
|
|
wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
|
|
GFP_KERNEL);
|
|
if (!wss.entries) {
|
|
hfi1_wss_exit();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hfi1_wss_exit(void)
|
|
{
|
|
/* coded to handle partially initialized and repeat callers */
|
|
kfree(wss.entries);
|
|
wss.entries = NULL;
|
|
}
|
|
|
|
/*
|
|
* Advance the clean counter. When the clean period has expired,
|
|
* clean an entry.
|
|
*
|
|
* This is implemented in atomics to avoid locking. Because multiple
|
|
* variables are involved, it can be racy which can lead to slightly
|
|
* inaccurate information. Since this is only a heuristic, this is
|
|
* OK. Any innaccuracies will clean themselves out as the counter
|
|
* advances. That said, it is unlikely the entry clean operation will
|
|
* race - the next possible racer will not start until the next clean
|
|
* period.
|
|
*
|
|
* The clean counter is implemented as a decrement to zero. When zero
|
|
* is reached an entry is cleaned.
|
|
*/
|
|
static void wss_advance_clean_counter(void)
|
|
{
|
|
int entry;
|
|
int weight;
|
|
unsigned long bits;
|
|
|
|
/* become the cleaner if we decrement the counter to zero */
|
|
if (atomic_dec_and_test(&wss.clean_counter)) {
|
|
/*
|
|
* Set, not add, the clean period. This avoids an issue
|
|
* where the counter could decrement below the clean period.
|
|
* Doing a set can result in lost decrements, slowing the
|
|
* clean advance. Since this a heuristic, this possible
|
|
* slowdown is OK.
|
|
*
|
|
* An alternative is to loop, advancing the counter by a
|
|
* clean period until the result is > 0. However, this could
|
|
* lead to several threads keeping another in the clean loop.
|
|
* This could be mitigated by limiting the number of times
|
|
* we stay in the loop.
|
|
*/
|
|
atomic_set(&wss.clean_counter, wss_clean_period);
|
|
|
|
/*
|
|
* Uniquely grab the entry to clean and move to next.
|
|
* The current entry is always the lower bits of
|
|
* wss.clean_entry. The table size, wss.num_entries,
|
|
* is always a power-of-2.
|
|
*/
|
|
entry = (atomic_inc_return(&wss.clean_entry) - 1)
|
|
& (wss.num_entries - 1);
|
|
|
|
/* clear the entry and count the bits */
|
|
bits = xchg(&wss.entries[entry], 0);
|
|
weight = hweight64((u64)bits);
|
|
/* only adjust the contended total count if needed */
|
|
if (weight)
|
|
atomic_sub(weight, &wss.total_count);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert the given address into the working set array.
|
|
*/
|
|
static void wss_insert(void *address)
|
|
{
|
|
u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
|
|
u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
|
|
u32 nr = page & (BITS_PER_LONG - 1);
|
|
|
|
if (!test_and_set_bit(nr, &wss.entries[entry]))
|
|
atomic_inc(&wss.total_count);
|
|
|
|
wss_advance_clean_counter();
|
|
}
|
|
|
|
/*
|
|
* Is the working set larger than the threshold?
|
|
*/
|
|
static inline int wss_exceeds_threshold(void)
|
|
{
|
|
return atomic_read(&wss.total_count) >= wss.threshold;
|
|
}
|
|
|
|
/*
|
|
* Translate ib_wr_opcode into ib_wc_opcode.
|
|
*/
|
|
const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
|
|
[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
|
|
[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
|
|
[IB_WR_SEND] = IB_WC_SEND,
|
|
[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
|
|
[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
|
|
[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
|
|
[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
|
|
};
|
|
|
|
/*
|
|
* Length of header by opcode, 0 --> not supported
|
|
*/
|
|
const u8 hdr_len_by_opcode[256] = {
|
|
/* RC */
|
|
[IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
|
|
[IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
|
|
[IB_OPCODE_RC_SEND_LAST] = 12 + 8,
|
|
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
|
|
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
|
|
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
|
|
[IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
|
|
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
|
|
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
|
|
[IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
|
|
[IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
|
|
[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
|
|
/* UC */
|
|
[IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
|
|
[IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
|
|
[IB_OPCODE_UC_SEND_LAST] = 12 + 8,
|
|
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
|
|
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
|
|
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
|
|
[IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
|
|
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
|
|
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
|
|
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
|
|
/* UD */
|
|
[IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
|
|
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
|
|
};
|
|
|
|
static const opcode_handler opcode_handler_tbl[256] = {
|
|
/* RC */
|
|
[IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
|
|
[IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
|
|
/* UC */
|
|
[IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
|
|
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
|
|
/* UD */
|
|
[IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
|
|
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
|
|
/* CNP */
|
|
[IB_OPCODE_CNP] = &hfi1_cnp_rcv
|
|
};
|
|
|
|
/*
|
|
* System image GUID.
|
|
*/
|
|
__be64 ib_hfi1_sys_image_guid;
|
|
|
|
/**
|
|
* hfi1_copy_sge - copy data to SGE memory
|
|
* @ss: the SGE state
|
|
* @data: the data to copy
|
|
* @length: the length of the data
|
|
* @copy_last: do a separate copy of the last 8 bytes
|
|
*/
|
|
void hfi1_copy_sge(
|
|
struct rvt_sge_state *ss,
|
|
void *data, u32 length,
|
|
int release,
|
|
int copy_last)
|
|
{
|
|
struct rvt_sge *sge = &ss->sge;
|
|
int in_last = 0;
|
|
int i;
|
|
int cacheless_copy = 0;
|
|
|
|
if (sge_copy_mode == COPY_CACHELESS) {
|
|
cacheless_copy = length >= PAGE_SIZE;
|
|
} else if (sge_copy_mode == COPY_ADAPTIVE) {
|
|
if (length >= PAGE_SIZE) {
|
|
/*
|
|
* NOTE: this *assumes*:
|
|
* o The first vaddr is the dest.
|
|
* o If multiple pages, then vaddr is sequential.
|
|
*/
|
|
wss_insert(sge->vaddr);
|
|
if (length >= (2 * PAGE_SIZE))
|
|
wss_insert(sge->vaddr + PAGE_SIZE);
|
|
|
|
cacheless_copy = wss_exceeds_threshold();
|
|
} else {
|
|
wss_advance_clean_counter();
|
|
}
|
|
}
|
|
if (copy_last) {
|
|
if (length > 8) {
|
|
length -= 8;
|
|
} else {
|
|
copy_last = 0;
|
|
in_last = 1;
|
|
}
|
|
}
|
|
|
|
again:
|
|
while (length) {
|
|
u32 len = sge->length;
|
|
|
|
if (len > length)
|
|
len = length;
|
|
if (len > sge->sge_length)
|
|
len = sge->sge_length;
|
|
WARN_ON_ONCE(len == 0);
|
|
if (unlikely(in_last)) {
|
|
/* enforce byte transfer ordering */
|
|
for (i = 0; i < len; i++)
|
|
((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
|
|
} else if (cacheless_copy) {
|
|
cacheless_memcpy(sge->vaddr, data, len);
|
|
} else {
|
|
memcpy(sge->vaddr, data, len);
|
|
}
|
|
sge->vaddr += len;
|
|
sge->length -= len;
|
|
sge->sge_length -= len;
|
|
if (sge->sge_length == 0) {
|
|
if (release)
|
|
rvt_put_mr(sge->mr);
|
|
if (--ss->num_sge)
|
|
*sge = *ss->sg_list++;
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
if (++sge->m >= sge->mr->mapsz)
|
|
break;
|
|
sge->n = 0;
|
|
}
|
|
sge->vaddr =
|
|
sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
sge->length =
|
|
sge->mr->map[sge->m]->segs[sge->n].length;
|
|
}
|
|
data += len;
|
|
length -= len;
|
|
}
|
|
|
|
if (copy_last) {
|
|
copy_last = 0;
|
|
in_last = 1;
|
|
length = 8;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hfi1_skip_sge - skip over SGE memory
|
|
* @ss: the SGE state
|
|
* @length: the number of bytes to skip
|
|
*/
|
|
void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
|
|
{
|
|
struct rvt_sge *sge = &ss->sge;
|
|
|
|
while (length) {
|
|
u32 len = sge->length;
|
|
|
|
if (len > length)
|
|
len = length;
|
|
if (len > sge->sge_length)
|
|
len = sge->sge_length;
|
|
WARN_ON_ONCE(len == 0);
|
|
sge->vaddr += len;
|
|
sge->length -= len;
|
|
sge->sge_length -= len;
|
|
if (sge->sge_length == 0) {
|
|
if (release)
|
|
rvt_put_mr(sge->mr);
|
|
if (--ss->num_sge)
|
|
*sge = *ss->sg_list++;
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
if (++sge->m >= sge->mr->mapsz)
|
|
break;
|
|
sge->n = 0;
|
|
}
|
|
sge->vaddr =
|
|
sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
sge->length =
|
|
sge->mr->map[sge->m]->segs[sge->n].length;
|
|
}
|
|
length -= len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure the QP is ready and able to accept the given opcode.
|
|
*/
|
|
static inline int qp_ok(int opcode, struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ibport *ibp;
|
|
|
|
if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
|
|
goto dropit;
|
|
if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
|
|
(opcode == IB_OPCODE_CNP))
|
|
return 1;
|
|
dropit:
|
|
ibp = &packet->rcd->ppd->ibport_data;
|
|
ibp->rvp.n_pkt_drops++;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hfi1_ib_rcv - process an incoming packet
|
|
* @packet: data packet information
|
|
*
|
|
* This is called to process an incoming packet at interrupt level.
|
|
*
|
|
* Tlen is the length of the header + data + CRC in bytes.
|
|
*/
|
|
void hfi1_ib_rcv(struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct hfi1_ib_header *hdr = packet->hdr;
|
|
u32 tlen = packet->tlen;
|
|
struct hfi1_pportdata *ppd = rcd->ppd;
|
|
struct hfi1_ibport *ibp = &ppd->ibport_data;
|
|
struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
|
|
unsigned long flags;
|
|
u32 qp_num;
|
|
int lnh;
|
|
u8 opcode;
|
|
u16 lid;
|
|
|
|
/* Check for GRH */
|
|
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
|
|
if (lnh == HFI1_LRH_BTH) {
|
|
packet->ohdr = &hdr->u.oth;
|
|
} else if (lnh == HFI1_LRH_GRH) {
|
|
u32 vtf;
|
|
|
|
packet->ohdr = &hdr->u.l.oth;
|
|
if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
|
|
goto drop;
|
|
vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
|
|
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
|
|
goto drop;
|
|
packet->rcv_flags |= HFI1_HAS_GRH;
|
|
} else {
|
|
goto drop;
|
|
}
|
|
|
|
trace_input_ibhdr(rcd->dd, hdr);
|
|
|
|
opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
|
|
inc_opstats(tlen, &rcd->opstats->stats[opcode]);
|
|
|
|
/* Get the destination QP number. */
|
|
qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
|
|
lid = be16_to_cpu(hdr->lrh[1]);
|
|
if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
|
|
(lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
|
|
struct rvt_mcast *mcast;
|
|
struct rvt_mcast_qp *p;
|
|
|
|
if (lnh != HFI1_LRH_GRH)
|
|
goto drop;
|
|
mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
|
|
if (!mcast)
|
|
goto drop;
|
|
list_for_each_entry_rcu(p, &mcast->qp_list, list) {
|
|
packet->qp = p->qp;
|
|
spin_lock_irqsave(&packet->qp->r_lock, flags);
|
|
if (likely((qp_ok(opcode, packet))))
|
|
opcode_handler_tbl[opcode](packet);
|
|
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
|
|
}
|
|
/*
|
|
* Notify rvt_multicast_detach() if it is waiting for us
|
|
* to finish.
|
|
*/
|
|
if (atomic_dec_return(&mcast->refcount) <= 1)
|
|
wake_up(&mcast->wait);
|
|
} else {
|
|
rcu_read_lock();
|
|
packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
|
|
if (!packet->qp) {
|
|
rcu_read_unlock();
|
|
goto drop;
|
|
}
|
|
spin_lock_irqsave(&packet->qp->r_lock, flags);
|
|
if (likely((qp_ok(opcode, packet))))
|
|
opcode_handler_tbl[opcode](packet);
|
|
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
|
|
rcu_read_unlock();
|
|
}
|
|
return;
|
|
|
|
drop:
|
|
ibp->rvp.n_pkt_drops++;
|
|
}
|
|
|
|
/*
|
|
* This is called from a timer to check for QPs
|
|
* which need kernel memory in order to send a packet.
|
|
*/
|
|
static void mem_timer(unsigned long data)
|
|
{
|
|
struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
|
|
struct list_head *list = &dev->memwait;
|
|
struct rvt_qp *qp = NULL;
|
|
struct iowait *wait;
|
|
unsigned long flags;
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
write_seqlock_irqsave(&dev->iowait_lock, flags);
|
|
if (!list_empty(list)) {
|
|
wait = list_first_entry(list, struct iowait, list);
|
|
qp = iowait_to_qp(wait);
|
|
priv = qp->priv;
|
|
list_del_init(&priv->s_iowait.list);
|
|
/* refcount held until actual wake up */
|
|
if (!list_empty(list))
|
|
mod_timer(&dev->mem_timer, jiffies + 1);
|
|
}
|
|
write_sequnlock_irqrestore(&dev->iowait_lock, flags);
|
|
|
|
if (qp)
|
|
hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
|
|
}
|
|
|
|
void update_sge(struct rvt_sge_state *ss, u32 length)
|
|
{
|
|
struct rvt_sge *sge = &ss->sge;
|
|
|
|
sge->vaddr += length;
|
|
sge->length -= length;
|
|
sge->sge_length -= length;
|
|
if (sge->sge_length == 0) {
|
|
if (--ss->num_sge)
|
|
*sge = *ss->sg_list++;
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
if (++sge->m >= sge->mr->mapsz)
|
|
return;
|
|
sge->n = 0;
|
|
}
|
|
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called with progress side lock held.
|
|
*/
|
|
/* New API */
|
|
static void verbs_sdma_complete(
|
|
struct sdma_txreq *cookie,
|
|
int status)
|
|
{
|
|
struct verbs_txreq *tx =
|
|
container_of(cookie, struct verbs_txreq, txreq);
|
|
struct rvt_qp *qp = tx->qp;
|
|
|
|
spin_lock(&qp->s_lock);
|
|
if (tx->wqe) {
|
|
hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
|
|
} else if (qp->ibqp.qp_type == IB_QPT_RC) {
|
|
struct hfi1_ib_header *hdr;
|
|
|
|
hdr = &tx->phdr.hdr;
|
|
hfi1_rc_send_complete(qp, hdr);
|
|
}
|
|
spin_unlock(&qp->s_lock);
|
|
|
|
hfi1_put_txreq(tx);
|
|
}
|
|
|
|
static int wait_kmem(struct hfi1_ibdev *dev,
|
|
struct rvt_qp *qp,
|
|
struct hfi1_pkt_state *ps)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
|
|
write_seqlock(&dev->iowait_lock);
|
|
list_add_tail(&ps->s_txreq->txreq.list,
|
|
&priv->s_iowait.tx_head);
|
|
if (list_empty(&priv->s_iowait.list)) {
|
|
if (list_empty(&dev->memwait))
|
|
mod_timer(&dev->mem_timer, jiffies + 1);
|
|
qp->s_flags |= RVT_S_WAIT_KMEM;
|
|
list_add_tail(&priv->s_iowait.list, &dev->memwait);
|
|
trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
|
|
atomic_inc(&qp->refcount);
|
|
}
|
|
write_sequnlock(&dev->iowait_lock);
|
|
qp->s_flags &= ~RVT_S_BUSY;
|
|
ret = -EBUSY;
|
|
}
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine calls txadds for each sg entry.
|
|
*
|
|
* Add failures will revert the sge cursor
|
|
*/
|
|
static noinline int build_verbs_ulp_payload(
|
|
struct sdma_engine *sde,
|
|
struct rvt_sge_state *ss,
|
|
u32 length,
|
|
struct verbs_txreq *tx)
|
|
{
|
|
struct rvt_sge *sg_list = ss->sg_list;
|
|
struct rvt_sge sge = ss->sge;
|
|
u8 num_sge = ss->num_sge;
|
|
u32 len;
|
|
int ret = 0;
|
|
|
|
while (length) {
|
|
len = ss->sge.length;
|
|
if (len > length)
|
|
len = length;
|
|
if (len > ss->sge.sge_length)
|
|
len = ss->sge.sge_length;
|
|
WARN_ON_ONCE(len == 0);
|
|
ret = sdma_txadd_kvaddr(
|
|
sde->dd,
|
|
&tx->txreq,
|
|
ss->sge.vaddr,
|
|
len);
|
|
if (ret)
|
|
goto bail_txadd;
|
|
update_sge(ss, len);
|
|
length -= len;
|
|
}
|
|
return ret;
|
|
bail_txadd:
|
|
/* unwind cursor */
|
|
ss->sge = sge;
|
|
ss->num_sge = num_sge;
|
|
ss->sg_list = sg_list;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Build the number of DMA descriptors needed to send length bytes of data.
|
|
*
|
|
* NOTE: DMA mapping is held in the tx until completed in the ring or
|
|
* the tx desc is freed without having been submitted to the ring
|
|
*
|
|
* This routine ensures all the helper routine calls succeed.
|
|
*/
|
|
/* New API */
|
|
static int build_verbs_tx_desc(
|
|
struct sdma_engine *sde,
|
|
struct rvt_sge_state *ss,
|
|
u32 length,
|
|
struct verbs_txreq *tx,
|
|
struct ahg_ib_header *ahdr,
|
|
u64 pbc)
|
|
{
|
|
int ret = 0;
|
|
struct hfi1_pio_header *phdr = &tx->phdr;
|
|
u16 hdrbytes = tx->hdr_dwords << 2;
|
|
|
|
if (!ahdr->ahgcount) {
|
|
ret = sdma_txinit_ahg(
|
|
&tx->txreq,
|
|
ahdr->tx_flags,
|
|
hdrbytes + length,
|
|
ahdr->ahgidx,
|
|
0,
|
|
NULL,
|
|
0,
|
|
verbs_sdma_complete);
|
|
if (ret)
|
|
goto bail_txadd;
|
|
phdr->pbc = cpu_to_le64(pbc);
|
|
ret = sdma_txadd_kvaddr(
|
|
sde->dd,
|
|
&tx->txreq,
|
|
phdr,
|
|
hdrbytes);
|
|
if (ret)
|
|
goto bail_txadd;
|
|
} else {
|
|
ret = sdma_txinit_ahg(
|
|
&tx->txreq,
|
|
ahdr->tx_flags,
|
|
length,
|
|
ahdr->ahgidx,
|
|
ahdr->ahgcount,
|
|
ahdr->ahgdesc,
|
|
hdrbytes,
|
|
verbs_sdma_complete);
|
|
if (ret)
|
|
goto bail_txadd;
|
|
}
|
|
|
|
/* add the ulp payload - if any. ss can be NULL for acks */
|
|
if (ss)
|
|
ret = build_verbs_ulp_payload(sde, ss, length, tx);
|
|
bail_txadd:
|
|
return ret;
|
|
}
|
|
|
|
int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
|
|
u64 pbc)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct ahg_ib_header *ahdr = priv->s_hdr;
|
|
u32 hdrwords = qp->s_hdrwords;
|
|
struct rvt_sge_state *ss = qp->s_cur_sge;
|
|
u32 len = qp->s_cur_size;
|
|
u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
|
|
struct hfi1_ibdev *dev = ps->dev;
|
|
struct hfi1_pportdata *ppd = ps->ppd;
|
|
struct verbs_txreq *tx;
|
|
u64 pbc_flags = 0;
|
|
u8 sc5 = priv->s_sc;
|
|
|
|
int ret;
|
|
|
|
tx = ps->s_txreq;
|
|
if (!sdma_txreq_built(&tx->txreq)) {
|
|
if (likely(pbc == 0)) {
|
|
u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
|
|
/* No vl15 here */
|
|
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
|
|
pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
|
|
|
|
pbc = create_pbc(ppd,
|
|
pbc_flags,
|
|
qp->srate_mbps,
|
|
vl,
|
|
plen);
|
|
}
|
|
tx->wqe = qp->s_wqe;
|
|
ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
|
|
if (unlikely(ret))
|
|
goto bail_build;
|
|
}
|
|
ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
|
|
if (unlikely(ret < 0)) {
|
|
if (ret == -ECOMM)
|
|
goto bail_ecomm;
|
|
return ret;
|
|
}
|
|
trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
|
|
&ps->s_txreq->phdr.hdr);
|
|
return ret;
|
|
|
|
bail_ecomm:
|
|
/* The current one got "sent" */
|
|
return 0;
|
|
bail_build:
|
|
ret = wait_kmem(dev, qp, ps);
|
|
if (!ret) {
|
|
/* free txreq - bad state */
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
ps->s_txreq = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If we are now in the error state, return zero to flush the
|
|
* send work request.
|
|
*/
|
|
static int pio_wait(struct rvt_qp *qp,
|
|
struct send_context *sc,
|
|
struct hfi1_pkt_state *ps,
|
|
u32 flag)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_devdata *dd = sc->dd;
|
|
struct hfi1_ibdev *dev = &dd->verbs_dev;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Note that as soon as want_buffer() is called and
|
|
* possibly before it returns, sc_piobufavail()
|
|
* could be called. Therefore, put QP on the I/O wait list before
|
|
* enabling the PIO avail interrupt.
|
|
*/
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
|
|
write_seqlock(&dev->iowait_lock);
|
|
list_add_tail(&ps->s_txreq->txreq.list,
|
|
&priv->s_iowait.tx_head);
|
|
if (list_empty(&priv->s_iowait.list)) {
|
|
struct hfi1_ibdev *dev = &dd->verbs_dev;
|
|
int was_empty;
|
|
|
|
dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
|
|
dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
|
|
qp->s_flags |= flag;
|
|
was_empty = list_empty(&sc->piowait);
|
|
list_add_tail(&priv->s_iowait.list, &sc->piowait);
|
|
trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
|
|
atomic_inc(&qp->refcount);
|
|
/* counting: only call wantpiobuf_intr if first user */
|
|
if (was_empty)
|
|
hfi1_sc_wantpiobuf_intr(sc, 1);
|
|
}
|
|
write_sequnlock(&dev->iowait_lock);
|
|
qp->s_flags &= ~RVT_S_BUSY;
|
|
ret = -EBUSY;
|
|
}
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void verbs_pio_complete(void *arg, int code)
|
|
{
|
|
struct rvt_qp *qp = (struct rvt_qp *)arg;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
if (iowait_pio_dec(&priv->s_iowait))
|
|
iowait_drain_wakeup(&priv->s_iowait);
|
|
}
|
|
|
|
int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
|
|
u64 pbc)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
u32 hdrwords = qp->s_hdrwords;
|
|
struct rvt_sge_state *ss = qp->s_cur_sge;
|
|
u32 len = qp->s_cur_size;
|
|
u32 dwords = (len + 3) >> 2;
|
|
u32 plen = hdrwords + dwords + 2; /* includes pbc */
|
|
struct hfi1_pportdata *ppd = ps->ppd;
|
|
u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
|
|
u64 pbc_flags = 0;
|
|
u8 sc5;
|
|
unsigned long flags = 0;
|
|
struct send_context *sc;
|
|
struct pio_buf *pbuf;
|
|
int wc_status = IB_WC_SUCCESS;
|
|
int ret = 0;
|
|
pio_release_cb cb = NULL;
|
|
|
|
/* only RC/UC use complete */
|
|
switch (qp->ibqp.qp_type) {
|
|
case IB_QPT_RC:
|
|
case IB_QPT_UC:
|
|
cb = verbs_pio_complete;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* vl15 special case taken care of in ud.c */
|
|
sc5 = priv->s_sc;
|
|
sc = ps->s_txreq->psc;
|
|
|
|
if (likely(pbc == 0)) {
|
|
u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
|
|
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
|
|
pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
|
|
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
|
|
}
|
|
if (cb)
|
|
iowait_pio_inc(&priv->s_iowait);
|
|
pbuf = sc_buffer_alloc(sc, plen, cb, qp);
|
|
if (unlikely(!pbuf)) {
|
|
if (cb)
|
|
verbs_pio_complete(qp, 0);
|
|
if (ppd->host_link_state != HLS_UP_ACTIVE) {
|
|
/*
|
|
* If we have filled the PIO buffers to capacity and are
|
|
* not in an active state this request is not going to
|
|
* go out to so just complete it with an error or else a
|
|
* ULP or the core may be stuck waiting.
|
|
*/
|
|
hfi1_cdbg(
|
|
PIO,
|
|
"alloc failed. state not active, completing");
|
|
wc_status = IB_WC_GENERAL_ERR;
|
|
goto pio_bail;
|
|
} else {
|
|
/*
|
|
* This is a normal occurrence. The PIO buffs are full
|
|
* up but we are still happily sending, well we could be
|
|
* so lets continue to queue the request.
|
|
*/
|
|
hfi1_cdbg(PIO, "alloc failed. state active, queuing");
|
|
ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
|
|
if (!ret)
|
|
/* txreq not queued - free */
|
|
goto bail;
|
|
/* tx consumed in wait */
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (len == 0) {
|
|
pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
|
|
} else {
|
|
if (ss) {
|
|
seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
|
|
while (len) {
|
|
void *addr = ss->sge.vaddr;
|
|
u32 slen = ss->sge.length;
|
|
|
|
if (slen > len)
|
|
slen = len;
|
|
update_sge(ss, slen);
|
|
seg_pio_copy_mid(pbuf, addr, slen);
|
|
len -= slen;
|
|
}
|
|
seg_pio_copy_end(pbuf);
|
|
}
|
|
}
|
|
|
|
trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
|
|
&ps->s_txreq->phdr.hdr);
|
|
|
|
pio_bail:
|
|
if (qp->s_wqe) {
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
hfi1_send_complete(qp, qp->s_wqe, wc_status);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
} else if (qp->ibqp.qp_type == IB_QPT_RC) {
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
bail:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
|
|
* being an entry from the partition key table), return 0
|
|
* otherwise. Use the matching criteria for egress partition keys
|
|
* specified in the OPAv1 spec., section 9.1l.7.
|
|
*/
|
|
static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
|
|
{
|
|
u16 mkey = pkey & PKEY_LOW_15_MASK;
|
|
u16 mentry = ent & PKEY_LOW_15_MASK;
|
|
|
|
if (mkey == mentry) {
|
|
/*
|
|
* If pkey[15] is set (full partition member),
|
|
* is bit 15 in the corresponding table element
|
|
* clear (limited member)?
|
|
*/
|
|
if (pkey & PKEY_MEMBER_MASK)
|
|
return !!(ent & PKEY_MEMBER_MASK);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* egress_pkey_check - check P_KEY of a packet
|
|
* @ppd: Physical IB port data
|
|
* @lrh: Local route header
|
|
* @bth: Base transport header
|
|
* @sc5: SC for packet
|
|
* @s_pkey_index: It will be used for look up optimization for kernel contexts
|
|
* only. If it is negative value, then it means user contexts is calling this
|
|
* function.
|
|
*
|
|
* It checks if hdr's pkey is valid.
|
|
*
|
|
* Return: 0 on success, otherwise, 1
|
|
*/
|
|
int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
|
|
u8 sc5, int8_t s_pkey_index)
|
|
{
|
|
struct hfi1_devdata *dd;
|
|
int i;
|
|
u16 pkey;
|
|
int is_user_ctxt_mechanism = (s_pkey_index < 0);
|
|
|
|
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
|
|
return 0;
|
|
|
|
pkey = (u16)be32_to_cpu(bth[0]);
|
|
|
|
/* If SC15, pkey[0:14] must be 0x7fff */
|
|
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
|
|
goto bad;
|
|
|
|
/* Is the pkey = 0x0, or 0x8000? */
|
|
if ((pkey & PKEY_LOW_15_MASK) == 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* For the kernel contexts only, if a qp is passed into the function,
|
|
* the most likely matching pkey has index qp->s_pkey_index
|
|
*/
|
|
if (!is_user_ctxt_mechanism &&
|
|
egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < MAX_PKEY_VALUES; i++) {
|
|
if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
|
|
return 0;
|
|
}
|
|
bad:
|
|
/*
|
|
* For the user-context mechanism, the P_KEY check would only happen
|
|
* once per SDMA request, not once per packet. Therefore, there's no
|
|
* need to increment the counter for the user-context mechanism.
|
|
*/
|
|
if (!is_user_ctxt_mechanism) {
|
|
incr_cntr64(&ppd->port_xmit_constraint_errors);
|
|
dd = ppd->dd;
|
|
if (!(dd->err_info_xmit_constraint.status &
|
|
OPA_EI_STATUS_SMASK)) {
|
|
u16 slid = be16_to_cpu(lrh[3]);
|
|
|
|
dd->err_info_xmit_constraint.status |=
|
|
OPA_EI_STATUS_SMASK;
|
|
dd->err_info_xmit_constraint.slid = slid;
|
|
dd->err_info_xmit_constraint.pkey = pkey;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* get_send_routine - choose an egress routine
|
|
*
|
|
* Choose an egress routine based on QP type
|
|
* and size
|
|
*/
|
|
static inline send_routine get_send_routine(struct rvt_qp *qp,
|
|
struct verbs_txreq *tx)
|
|
{
|
|
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_ib_header *h = &tx->phdr.hdr;
|
|
|
|
if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
|
|
return dd->process_pio_send;
|
|
switch (qp->ibqp.qp_type) {
|
|
case IB_QPT_SMI:
|
|
return dd->process_pio_send;
|
|
case IB_QPT_GSI:
|
|
case IB_QPT_UD:
|
|
break;
|
|
case IB_QPT_RC:
|
|
if (piothreshold &&
|
|
qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
|
|
(BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
|
|
iowait_sdma_pending(&priv->s_iowait) == 0 &&
|
|
!sdma_txreq_built(&tx->txreq))
|
|
return dd->process_pio_send;
|
|
break;
|
|
case IB_QPT_UC:
|
|
if (piothreshold &&
|
|
qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
|
|
(BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
|
|
iowait_sdma_pending(&priv->s_iowait) == 0 &&
|
|
!sdma_txreq_built(&tx->txreq))
|
|
return dd->process_pio_send;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return dd->process_dma_send;
|
|
}
|
|
|
|
/**
|
|
* hfi1_verbs_send - send a packet
|
|
* @qp: the QP to send on
|
|
* @ps: the state of the packet to send
|
|
*
|
|
* Return zero if packet is sent or queued OK.
|
|
* Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
|
|
*/
|
|
int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
|
|
{
|
|
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_other_headers *ohdr;
|
|
struct hfi1_ib_header *hdr;
|
|
send_routine sr;
|
|
int ret;
|
|
u8 lnh;
|
|
|
|
hdr = &ps->s_txreq->phdr.hdr;
|
|
/* locate the pkey within the headers */
|
|
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
|
|
if (lnh == HFI1_LRH_GRH)
|
|
ohdr = &hdr->u.l.oth;
|
|
else
|
|
ohdr = &hdr->u.oth;
|
|
|
|
sr = get_send_routine(qp, ps->s_txreq);
|
|
ret = egress_pkey_check(dd->pport,
|
|
hdr->lrh,
|
|
ohdr->bth,
|
|
priv->s_sc,
|
|
qp->s_pkey_index);
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* The value we are returning here does not get propagated to
|
|
* the verbs caller. Thus we need to complete the request with
|
|
* error otherwise the caller could be sitting waiting on the
|
|
* completion event. Only do this for PIO. SDMA has its own
|
|
* mechanism for handling the errors. So for SDMA we can just
|
|
* return.
|
|
*/
|
|
if (sr == dd->process_pio_send) {
|
|
unsigned long flags;
|
|
|
|
hfi1_cdbg(PIO, "%s() Failed. Completing with err",
|
|
__func__);
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
|
|
return pio_wait(qp,
|
|
ps->s_txreq->psc,
|
|
ps,
|
|
RVT_S_WAIT_PIO_DRAIN);
|
|
return sr(qp, ps, 0);
|
|
}
|
|
|
|
/**
|
|
* hfi1_fill_device_attr - Fill in rvt dev info device attributes.
|
|
* @dd: the device data structure
|
|
*/
|
|
static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
|
|
{
|
|
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
|
|
|
|
memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
|
|
|
|
rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
|
|
IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
|
|
IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
|
|
IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
|
|
rdi->dparms.props.page_size_cap = PAGE_SIZE;
|
|
rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
|
|
rdi->dparms.props.vendor_part_id = dd->pcidev->device;
|
|
rdi->dparms.props.hw_ver = dd->minrev;
|
|
rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
|
|
rdi->dparms.props.max_mr_size = ~0ULL;
|
|
rdi->dparms.props.max_qp = hfi1_max_qps;
|
|
rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
|
|
rdi->dparms.props.max_sge = hfi1_max_sges;
|
|
rdi->dparms.props.max_sge_rd = hfi1_max_sges;
|
|
rdi->dparms.props.max_cq = hfi1_max_cqs;
|
|
rdi->dparms.props.max_ah = hfi1_max_ahs;
|
|
rdi->dparms.props.max_cqe = hfi1_max_cqes;
|
|
rdi->dparms.props.max_mr = rdi->lkey_table.max;
|
|
rdi->dparms.props.max_fmr = rdi->lkey_table.max;
|
|
rdi->dparms.props.max_map_per_fmr = 32767;
|
|
rdi->dparms.props.max_pd = hfi1_max_pds;
|
|
rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
|
|
rdi->dparms.props.max_qp_init_rd_atom = 255;
|
|
rdi->dparms.props.max_srq = hfi1_max_srqs;
|
|
rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
|
|
rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
|
|
rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
|
|
rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
|
|
rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
|
|
rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
|
|
rdi->dparms.props.max_total_mcast_qp_attach =
|
|
rdi->dparms.props.max_mcast_qp_attach *
|
|
rdi->dparms.props.max_mcast_grp;
|
|
}
|
|
|
|
static inline u16 opa_speed_to_ib(u16 in)
|
|
{
|
|
u16 out = 0;
|
|
|
|
if (in & OPA_LINK_SPEED_25G)
|
|
out |= IB_SPEED_EDR;
|
|
if (in & OPA_LINK_SPEED_12_5G)
|
|
out |= IB_SPEED_FDR;
|
|
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
* Convert a single OPA link width (no multiple flags) to an IB value.
|
|
* A zero OPA link width means link down, which means the IB width value
|
|
* is a don't care.
|
|
*/
|
|
static inline u16 opa_width_to_ib(u16 in)
|
|
{
|
|
switch (in) {
|
|
case OPA_LINK_WIDTH_1X:
|
|
/* map 2x and 3x to 1x as they don't exist in IB */
|
|
case OPA_LINK_WIDTH_2X:
|
|
case OPA_LINK_WIDTH_3X:
|
|
return IB_WIDTH_1X;
|
|
default: /* link down or unknown, return our largest width */
|
|
case OPA_LINK_WIDTH_4X:
|
|
return IB_WIDTH_4X;
|
|
}
|
|
}
|
|
|
|
static int query_port(struct rvt_dev_info *rdi, u8 port_num,
|
|
struct ib_port_attr *props)
|
|
{
|
|
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
|
|
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
|
|
struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
|
|
u16 lid = ppd->lid;
|
|
|
|
props->lid = lid ? lid : 0;
|
|
props->lmc = ppd->lmc;
|
|
/* OPA logical states match IB logical states */
|
|
props->state = driver_lstate(ppd);
|
|
props->phys_state = hfi1_ibphys_portstate(ppd);
|
|
props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
|
|
props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
|
|
/* see rate_show() in ib core/sysfs.c */
|
|
props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
|
|
props->max_vl_num = ppd->vls_supported;
|
|
|
|
/* Once we are a "first class" citizen and have added the OPA MTUs to
|
|
* the core we can advertise the larger MTU enum to the ULPs, for now
|
|
* advertise only 4K.
|
|
*
|
|
* Those applications which are either OPA aware or pass the MTU enum
|
|
* from the Path Records to us will get the new 8k MTU. Those that
|
|
* attempt to process the MTU enum may fail in various ways.
|
|
*/
|
|
props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
|
|
4096 : hfi1_max_mtu), IB_MTU_4096);
|
|
props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
|
|
mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int modify_device(struct ib_device *device,
|
|
int device_modify_mask,
|
|
struct ib_device_modify *device_modify)
|
|
{
|
|
struct hfi1_devdata *dd = dd_from_ibdev(device);
|
|
unsigned i;
|
|
int ret;
|
|
|
|
if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
|
|
IB_DEVICE_MODIFY_NODE_DESC)) {
|
|
ret = -EOPNOTSUPP;
|
|
goto bail;
|
|
}
|
|
|
|
if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
|
|
memcpy(device->node_desc, device_modify->node_desc, 64);
|
|
for (i = 0; i < dd->num_pports; i++) {
|
|
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
|
|
|
|
hfi1_node_desc_chg(ibp);
|
|
}
|
|
}
|
|
|
|
if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
|
|
ib_hfi1_sys_image_guid =
|
|
cpu_to_be64(device_modify->sys_image_guid);
|
|
for (i = 0; i < dd->num_pports; i++) {
|
|
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
|
|
|
|
hfi1_sys_guid_chg(ibp);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
|
|
{
|
|
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
|
|
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
|
|
struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
|
|
int ret;
|
|
|
|
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
|
|
OPA_LINKDOWN_REASON_UNKNOWN);
|
|
ret = set_link_state(ppd, HLS_DN_DOWNDEF);
|
|
return ret;
|
|
}
|
|
|
|
static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
|
|
int guid_index, __be64 *guid)
|
|
{
|
|
struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
|
|
if (guid_index == 0)
|
|
*guid = cpu_to_be64(ppd->guid);
|
|
else if (guid_index < HFI1_GUIDS_PER_PORT)
|
|
*guid = ibp->guids[guid_index - 1];
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* convert ah port,sl to sc
|
|
*/
|
|
u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
|
|
{
|
|
struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
|
|
|
|
return ibp->sl_to_sc[ah->sl];
|
|
}
|
|
|
|
static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
|
|
{
|
|
struct hfi1_ibport *ibp;
|
|
struct hfi1_pportdata *ppd;
|
|
struct hfi1_devdata *dd;
|
|
u8 sc5;
|
|
|
|
/* test the mapping for validity */
|
|
ibp = to_iport(ibdev, ah_attr->port_num);
|
|
ppd = ppd_from_ibp(ibp);
|
|
sc5 = ibp->sl_to_sc[ah_attr->sl];
|
|
dd = dd_from_ppd(ppd);
|
|
if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void hfi1_notify_new_ah(struct ib_device *ibdev,
|
|
struct ib_ah_attr *ah_attr,
|
|
struct rvt_ah *ah)
|
|
{
|
|
struct hfi1_ibport *ibp;
|
|
struct hfi1_pportdata *ppd;
|
|
struct hfi1_devdata *dd;
|
|
u8 sc5;
|
|
|
|
/*
|
|
* Do not trust reading anything from rvt_ah at this point as it is not
|
|
* done being setup. We can however modify things which we need to set.
|
|
*/
|
|
|
|
ibp = to_iport(ibdev, ah_attr->port_num);
|
|
ppd = ppd_from_ibp(ibp);
|
|
sc5 = ibp->sl_to_sc[ah->attr.sl];
|
|
dd = dd_from_ppd(ppd);
|
|
ah->vl = sc_to_vlt(dd, sc5);
|
|
if (ah->vl < num_vls || ah->vl == 15)
|
|
ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
|
|
}
|
|
|
|
struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
|
|
{
|
|
struct ib_ah_attr attr;
|
|
struct ib_ah *ah = ERR_PTR(-EINVAL);
|
|
struct rvt_qp *qp0;
|
|
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.dlid = dlid;
|
|
attr.port_num = ppd_from_ibp(ibp)->port;
|
|
rcu_read_lock();
|
|
qp0 = rcu_dereference(ibp->rvp.qp[0]);
|
|
if (qp0)
|
|
ah = ib_create_ah(qp0->ibqp.pd, &attr);
|
|
rcu_read_unlock();
|
|
return ah;
|
|
}
|
|
|
|
/**
|
|
* hfi1_get_npkeys - return the size of the PKEY table for context 0
|
|
* @dd: the hfi1_ib device
|
|
*/
|
|
unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
|
|
{
|
|
return ARRAY_SIZE(dd->pport[0].pkeys);
|
|
}
|
|
|
|
static void init_ibport(struct hfi1_pportdata *ppd)
|
|
{
|
|
struct hfi1_ibport *ibp = &ppd->ibport_data;
|
|
size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
|
|
int i;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
ibp->sl_to_sc[i] = i;
|
|
ibp->sc_to_sl[i] = i;
|
|
}
|
|
|
|
spin_lock_init(&ibp->rvp.lock);
|
|
/* Set the prefix to the default value (see ch. 4.1.1) */
|
|
ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
|
|
ibp->rvp.sm_lid = 0;
|
|
/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
|
|
ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
|
|
IB_PORT_CAP_MASK_NOTICE_SUP;
|
|
ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
|
|
ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
|
|
ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
|
|
ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
|
|
ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
|
|
|
|
RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
|
|
RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
|
|
}
|
|
|
|
/**
|
|
* hfi1_register_ib_device - register our device with the infiniband core
|
|
* @dd: the device data structure
|
|
* Return 0 if successful, errno if unsuccessful.
|
|
*/
|
|
int hfi1_register_ib_device(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_ibdev *dev = &dd->verbs_dev;
|
|
struct ib_device *ibdev = &dev->rdi.ibdev;
|
|
struct hfi1_pportdata *ppd = dd->pport;
|
|
unsigned i;
|
|
int ret;
|
|
size_t lcpysz = IB_DEVICE_NAME_MAX;
|
|
|
|
for (i = 0; i < dd->num_pports; i++)
|
|
init_ibport(ppd + i);
|
|
|
|
/* Only need to initialize non-zero fields. */
|
|
|
|
setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
|
|
|
|
seqlock_init(&dev->iowait_lock);
|
|
INIT_LIST_HEAD(&dev->txwait);
|
|
INIT_LIST_HEAD(&dev->memwait);
|
|
|
|
ret = verbs_txreq_init(dev);
|
|
if (ret)
|
|
goto err_verbs_txreq;
|
|
|
|
/*
|
|
* The system image GUID is supposed to be the same for all
|
|
* HFIs in a single system but since there can be other
|
|
* device types in the system, we can't be sure this is unique.
|
|
*/
|
|
if (!ib_hfi1_sys_image_guid)
|
|
ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
|
|
lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
|
|
strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
|
|
ibdev->owner = THIS_MODULE;
|
|
ibdev->node_guid = cpu_to_be64(ppd->guid);
|
|
ibdev->phys_port_cnt = dd->num_pports;
|
|
ibdev->dma_device = &dd->pcidev->dev;
|
|
ibdev->modify_device = modify_device;
|
|
|
|
/* keep process mad in the driver */
|
|
ibdev->process_mad = hfi1_process_mad;
|
|
|
|
strncpy(ibdev->node_desc, init_utsname()->nodename,
|
|
sizeof(ibdev->node_desc));
|
|
|
|
/*
|
|
* Fill in rvt info object.
|
|
*/
|
|
dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
|
|
dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
|
|
dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
|
|
dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
|
|
dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
|
|
dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
|
|
dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
|
|
dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
|
|
dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
|
|
/*
|
|
* Fill in rvt info device attributes.
|
|
*/
|
|
hfi1_fill_device_attr(dd);
|
|
|
|
/* queue pair */
|
|
dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
|
|
dd->verbs_dev.rdi.dparms.qpn_start = 0;
|
|
dd->verbs_dev.rdi.dparms.qpn_inc = 1;
|
|
dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
|
|
dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
|
|
dd->verbs_dev.rdi.dparms.qpn_res_end =
|
|
dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
|
|
dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
|
|
dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
|
|
dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
|
|
dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
|
|
dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
|
|
dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
|
|
|
|
dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
|
|
dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
|
|
dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
|
|
dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
|
|
dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
|
|
dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
|
|
dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
|
|
dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
|
|
dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
|
|
dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
|
|
dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
|
|
dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
|
|
dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
|
|
dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
|
|
dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
|
|
dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
|
|
dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
|
|
dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
|
|
|
|
/* completeion queue */
|
|
snprintf(dd->verbs_dev.rdi.dparms.cq_name,
|
|
sizeof(dd->verbs_dev.rdi.dparms.cq_name),
|
|
"hfi1_cq%d", dd->unit);
|
|
dd->verbs_dev.rdi.dparms.node = dd->node;
|
|
|
|
/* misc settings */
|
|
dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
|
|
dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
|
|
dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
|
|
dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
|
|
|
|
ppd = dd->pport;
|
|
for (i = 0; i < dd->num_pports; i++, ppd++)
|
|
rvt_init_port(&dd->verbs_dev.rdi,
|
|
&ppd->ibport_data.rvp,
|
|
i,
|
|
ppd->pkeys);
|
|
|
|
ret = rvt_register_device(&dd->verbs_dev.rdi);
|
|
if (ret)
|
|
goto err_verbs_txreq;
|
|
|
|
ret = hfi1_verbs_register_sysfs(dd);
|
|
if (ret)
|
|
goto err_class;
|
|
|
|
return ret;
|
|
|
|
err_class:
|
|
rvt_unregister_device(&dd->verbs_dev.rdi);
|
|
err_verbs_txreq:
|
|
verbs_txreq_exit(dev);
|
|
dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
|
|
return ret;
|
|
}
|
|
|
|
void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
|
|
{
|
|
struct hfi1_ibdev *dev = &dd->verbs_dev;
|
|
|
|
hfi1_verbs_unregister_sysfs(dd);
|
|
|
|
rvt_unregister_device(&dd->verbs_dev.rdi);
|
|
|
|
if (!list_empty(&dev->txwait))
|
|
dd_dev_err(dd, "txwait list not empty!\n");
|
|
if (!list_empty(&dev->memwait))
|
|
dd_dev_err(dd, "memwait list not empty!\n");
|
|
|
|
del_timer_sync(&dev->mem_timer);
|
|
verbs_txreq_exit(dev);
|
|
}
|
|
|
|
void hfi1_cnp_rcv(struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
struct hfi1_ib_header *hdr = packet->hdr;
|
|
struct rvt_qp *qp = packet->qp;
|
|
u32 lqpn, rqpn = 0;
|
|
u16 rlid = 0;
|
|
u8 sl, sc5, sc4_bit, svc_type;
|
|
bool sc4_set = has_sc4_bit(packet);
|
|
|
|
switch (packet->qp->ibqp.qp_type) {
|
|
case IB_QPT_UC:
|
|
rlid = qp->remote_ah_attr.dlid;
|
|
rqpn = qp->remote_qpn;
|
|
svc_type = IB_CC_SVCTYPE_UC;
|
|
break;
|
|
case IB_QPT_RC:
|
|
rlid = qp->remote_ah_attr.dlid;
|
|
rqpn = qp->remote_qpn;
|
|
svc_type = IB_CC_SVCTYPE_RC;
|
|
break;
|
|
case IB_QPT_SMI:
|
|
case IB_QPT_GSI:
|
|
case IB_QPT_UD:
|
|
svc_type = IB_CC_SVCTYPE_UD;
|
|
break;
|
|
default:
|
|
ibp->rvp.n_pkt_drops++;
|
|
return;
|
|
}
|
|
|
|
sc4_bit = sc4_set << 4;
|
|
sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
|
|
sc5 |= sc4_bit;
|
|
sl = ibp->sc_to_sl[sc5];
|
|
lqpn = qp->ibqp.qp_num;
|
|
|
|
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
|
|
}
|