f8faaffaa7
Prefixed instructions will mean there are instructions of different length. As a result dereferencing a pointer to an instruction will not necessarily give the desired result. Introduce a function for reading instructions from memory into the instruction data type. Signed-off-by: Jordan Niethe <jniethe5@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Link: https://lore.kernel.org/r/20200506034050.24806-13-jniethe5@gmail.com
602 lines
16 KiB
C
602 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation ( includes contributions from
|
|
* Rusty Russell).
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
|
|
* for PPC64
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sstep.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/inst.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
|
|
|
|
bool arch_within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
return (addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end) ||
|
|
(addr >= (unsigned long)_stext &&
|
|
addr < (unsigned long)__head_end);
|
|
}
|
|
|
|
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
|
|
{
|
|
kprobe_opcode_t *addr = NULL;
|
|
|
|
#ifdef PPC64_ELF_ABI_v2
|
|
/* PPC64 ABIv2 needs local entry point */
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
if (addr && !offset) {
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
unsigned long faddr;
|
|
/*
|
|
* Per livepatch.h, ftrace location is always within the first
|
|
* 16 bytes of a function on powerpc with -mprofile-kernel.
|
|
*/
|
|
faddr = ftrace_location_range((unsigned long)addr,
|
|
(unsigned long)addr + 16);
|
|
if (faddr)
|
|
addr = (kprobe_opcode_t *)faddr;
|
|
else
|
|
#endif
|
|
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
|
|
}
|
|
#elif defined(PPC64_ELF_ABI_v1)
|
|
/*
|
|
* 64bit powerpc ABIv1 uses function descriptors:
|
|
* - Check for the dot variant of the symbol first.
|
|
* - If that fails, try looking up the symbol provided.
|
|
*
|
|
* This ensures we always get to the actual symbol and not
|
|
* the descriptor.
|
|
*
|
|
* Also handle <module:symbol> format.
|
|
*/
|
|
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
|
|
bool dot_appended = false;
|
|
const char *c;
|
|
ssize_t ret = 0;
|
|
int len = 0;
|
|
|
|
if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
|
|
c++;
|
|
len = c - name;
|
|
memcpy(dot_name, name, len);
|
|
} else
|
|
c = name;
|
|
|
|
if (*c != '\0' && *c != '.') {
|
|
dot_name[len++] = '.';
|
|
dot_appended = true;
|
|
}
|
|
ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
|
|
if (ret > 0)
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
|
|
|
|
/* Fallback to the original non-dot symbol lookup */
|
|
if (!addr && dot_appended)
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
#else
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
#endif
|
|
|
|
return addr;
|
|
}
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->addr);
|
|
|
|
if ((unsigned long)p->addr & 0x03) {
|
|
printk("Attempt to register kprobe at an unaligned address\n");
|
|
ret = -EINVAL;
|
|
} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
|
|
printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* insn must be on a special executable page on ppc64. This is
|
|
* not explicitly required on ppc32 (right now), but it doesn't hurt */
|
|
if (!ret) {
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
if (!ret) {
|
|
memcpy(p->ainsn.insn, p->addr,
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
p->opcode = ppc_inst_val(insn);
|
|
flush_icache_range((unsigned long)p->ainsn.insn,
|
|
(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
p->ainsn.boostable = 0;
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
|
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_instruction((struct ppc_inst *)p->addr, ppc_inst(BREAKPOINT_INSTRUCTION));
|
|
}
|
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
|
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_instruction((struct ppc_inst *)p->addr, ppc_inst(p->opcode));
|
|
}
|
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
|
|
|
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
enable_single_step(regs);
|
|
|
|
/*
|
|
* On powerpc we should single step on the original
|
|
* instruction even if the probed insn is a trap
|
|
* variant as values in regs could play a part in
|
|
* if the trap is taken or not
|
|
*/
|
|
regs->nip = (unsigned long)p->ainsn.insn;
|
|
}
|
|
|
|
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
|
|
}
|
|
|
|
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
|
|
}
|
|
|
|
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_msr = regs->msr;
|
|
}
|
|
|
|
bool arch_kprobe_on_func_entry(unsigned long offset)
|
|
{
|
|
#ifdef PPC64_ELF_ABI_v2
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
return offset <= 16;
|
|
#else
|
|
return offset <= 8;
|
|
#endif
|
|
#else
|
|
return !offset;
|
|
#endif
|
|
}
|
|
|
|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->link;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->link = (unsigned long)kretprobe_trampoline;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
|
|
|
|
static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
int ret;
|
|
struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->ainsn.insn);
|
|
|
|
/* regs->nip is also adjusted if emulate_step returns 1 */
|
|
ret = emulate_step(regs, insn);
|
|
if (ret > 0) {
|
|
/*
|
|
* Once this instruction has been boosted
|
|
* successfully, set the boostable flag
|
|
*/
|
|
if (unlikely(p->ainsn.boostable == 0))
|
|
p->ainsn.boostable = 1;
|
|
} else if (ret < 0) {
|
|
/*
|
|
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
|
|
* So, we should never get here... but, its still
|
|
* good to catch them, just in case...
|
|
*/
|
|
printk("Can't step on instruction %x\n", ppc_inst_val(insn));
|
|
BUG();
|
|
} else {
|
|
/*
|
|
* If we haven't previously emulated this instruction, then it
|
|
* can't be boosted. Note it down so we don't try to do so again.
|
|
*
|
|
* If, however, we had emulated this instruction in the past,
|
|
* then this is just an error with the current run (for
|
|
* instance, exceptions due to a load/store). We return 0 so
|
|
* that this is now single-stepped, but continue to try
|
|
* emulating it in subsequent probe hits.
|
|
*/
|
|
if (unlikely(p->ainsn.boostable != 1))
|
|
p->ainsn.boostable = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(try_to_emulate);
|
|
|
|
int kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
int ret = 0;
|
|
unsigned int *addr = (unsigned int *)regs->nip;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
|
|
return 0;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
p = get_kprobe(addr);
|
|
if (!p) {
|
|
if (*addr != BREAKPOINT_INSTRUCTION) {
|
|
/*
|
|
* PowerPC has multiple variants of the "trap"
|
|
* instruction. If the current instruction is a
|
|
* trap variant, it could belong to someone else
|
|
*/
|
|
kprobe_opcode_t cur_insn = *addr;
|
|
if (is_trap(cur_insn))
|
|
goto no_kprobe;
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
*/
|
|
ret = 1;
|
|
}
|
|
/* Not one of ours: let kernel handle it */
|
|
goto no_kprobe;
|
|
}
|
|
|
|
/* Check we're not actually recursing */
|
|
if (kprobe_running()) {
|
|
kprobe_opcode_t insn = *p->ainsn.insn;
|
|
if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
|
|
/* Turn off 'trace' bits */
|
|
regs->msr &= ~MSR_SINGLESTEP;
|
|
regs->msr |= kcb->kprobe_saved_msr;
|
|
goto no_kprobe;
|
|
}
|
|
|
|
/*
|
|
* We have reentered the kprobe_handler(), since another probe
|
|
* was hit while within the handler. We here save the original
|
|
* kprobes variables and just single step on the instruction of
|
|
* the new probe without calling any user handlers.
|
|
*/
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kprobes_inc_nmissed_count(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
if (p->ainsn.boostable >= 0) {
|
|
ret = try_to_emulate(p, regs);
|
|
|
|
if (ret > 0) {
|
|
restore_previous_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
}
|
|
prepare_singlestep(p, regs);
|
|
return 1;
|
|
}
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
set_current_kprobe(p, regs, kcb);
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
/* handler changed execution path, so skip ss setup */
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
if (p->ainsn.boostable >= 0) {
|
|
ret = try_to_emulate(p, regs);
|
|
|
|
if (ret > 0) {
|
|
if (p->post_handler)
|
|
p->post_handler(p, regs, 0);
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
}
|
|
prepare_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
return 1;
|
|
|
|
no_kprobe:
|
|
preempt_enable_no_resched();
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_handler);
|
|
|
|
/*
|
|
* Function return probe trampoline:
|
|
* - init_kprobes() establishes a probepoint here
|
|
* - When the probed function returns, this probe
|
|
* causes the handlers to fire
|
|
*/
|
|
asm(".global kretprobe_trampoline\n"
|
|
".type kretprobe_trampoline, @function\n"
|
|
"kretprobe_trampoline:\n"
|
|
"nop\n"
|
|
"blr\n"
|
|
".size kretprobe_trampoline, .-kretprobe_trampoline\n");
|
|
|
|
/*
|
|
* Called when the probe at kretprobe trampoline is hit
|
|
*/
|
|
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because an multiple functions in the call path
|
|
* have a return probe installed on them, and/or more than one return
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
if (ri->rp && ri->rp->handler)
|
|
ri->rp->handler(ri, regs);
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
|
/*
|
|
* We get here through one of two paths:
|
|
* 1. by taking a trap -> kprobe_handler() -> here
|
|
* 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
|
|
*
|
|
* When going back through (1), we need regs->nip to be setup properly
|
|
* as it is used to determine the return address from the trap.
|
|
* For (2), since nip is not honoured with optprobes, we instead setup
|
|
* the link register properly so that the subsequent 'blr' in
|
|
* kretprobe_trampoline jumps back to the right instruction.
|
|
*
|
|
* For nip, we should set the address to the previous instruction since
|
|
* we end up emulating it in kprobe_handler(), which increments the nip
|
|
* again.
|
|
*/
|
|
regs->nip = orig_ret_address - 4;
|
|
regs->link = orig_ret_address;
|
|
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(trampoline_probe_handler);
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "breakpoint"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*/
|
|
int kprobe_post_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur || user_mode(regs))
|
|
return 0;
|
|
|
|
/* make sure we got here for instruction we have a kprobe on */
|
|
if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
|
|
return 0;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
/* Adjust nip to after the single-stepped instruction */
|
|
regs->nip = (unsigned long)cur->addr + 4;
|
|
regs->msr |= kcb->kprobe_saved_msr;
|
|
|
|
/*Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
reset_current_kprobe();
|
|
out:
|
|
preempt_enable_no_resched();
|
|
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, msr
|
|
* will have DE/SE set, in which case, continue the remaining processing
|
|
* of do_debug, as if this is not a probe hit.
|
|
*/
|
|
if (regs->msr & MSR_SINGLESTEP)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_post_handler);
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
const struct exception_table_entry *entry;
|
|
|
|
switch(kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the nip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->nip = (unsigned long)cur->addr;
|
|
regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
|
|
regs->msr |= kcb->kprobe_saved_msr;
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if ((entry = search_exception_tables(regs->nip)) != NULL) {
|
|
regs->nip = extable_fixup(entry);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
unsigned long arch_deref_entry_point(void *entry)
|
|
{
|
|
#ifdef PPC64_ELF_ABI_v1
|
|
if (!kernel_text_address((unsigned long)entry))
|
|
return ppc_global_function_entry(entry);
|
|
else
|
|
#endif
|
|
return (unsigned long)entry;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_deref_entry_point);
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline_p);
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|