f97117d153
Move functions to read inodes into readinode.c Move functions to handle fragtree and dentry lists into nodelist.[ch] Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
911 lines
27 KiB
C
911 lines
27 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
* $Id: readinode.c,v 1.131 2005/07/27 14:46:11 dedekind Exp $
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/compiler.h>
|
|
#include "nodelist.h"
|
|
|
|
void jffs2_truncate_fragtree (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size)
|
|
{
|
|
struct jffs2_node_frag *frag = jffs2_lookup_node_frag(list, size);
|
|
|
|
D1(printk(KERN_DEBUG "Truncating fraglist to 0x%08x bytes\n", size));
|
|
|
|
/* We know frag->ofs <= size. That's what lookup does for us */
|
|
if (frag && frag->ofs != size) {
|
|
if (frag->ofs+frag->size >= size) {
|
|
D1(printk(KERN_DEBUG "Truncating frag 0x%08x-0x%08x\n", frag->ofs, frag->ofs+frag->size));
|
|
frag->size = size - frag->ofs;
|
|
}
|
|
frag = frag_next(frag);
|
|
}
|
|
while (frag && frag->ofs >= size) {
|
|
struct jffs2_node_frag *next = frag_next(frag);
|
|
|
|
D1(printk(KERN_DEBUG "Removing frag 0x%08x-0x%08x\n", frag->ofs, frag->ofs+frag->size));
|
|
frag_erase(frag, list);
|
|
jffs2_obsolete_node_frag(c, frag);
|
|
frag = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put a new tmp_dnode_info into the temporaty RB-tree, keeping the list in
|
|
* order of increasing version.
|
|
*/
|
|
static void jffs2_add_tn_to_tree(struct jffs2_tmp_dnode_info *tn, struct rb_root *list)
|
|
{
|
|
struct rb_node **p = &list->rb_node;
|
|
struct rb_node * parent = NULL;
|
|
struct jffs2_tmp_dnode_info *this;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
this = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
|
|
|
|
/* There may actually be a collision here, but it doesn't
|
|
actually matter. As long as the two nodes with the same
|
|
version are together, it's all fine. */
|
|
if (tn->version < this->version)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
rb_link_node(&tn->rb, parent, p);
|
|
rb_insert_color(&tn->rb, list);
|
|
}
|
|
|
|
static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
|
|
{
|
|
struct rb_node *this;
|
|
struct jffs2_tmp_dnode_info *tn;
|
|
|
|
this = list->rb_node;
|
|
|
|
/* Now at bottom of tree */
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
|
|
jffs2_free_full_dnode(tn->fn);
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
|
|
this = this->rb_parent;
|
|
if (!this)
|
|
break;
|
|
|
|
if (this->rb_left == &tn->rb)
|
|
this->rb_left = NULL;
|
|
else if (this->rb_right == &tn->rb)
|
|
this->rb_right = NULL;
|
|
else BUG();
|
|
}
|
|
}
|
|
list->rb_node = NULL;
|
|
}
|
|
|
|
static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
|
|
{
|
|
struct jffs2_full_dirent *next;
|
|
|
|
while (fd) {
|
|
next = fd->next;
|
|
jffs2_free_full_dirent(fd);
|
|
fd = next;
|
|
}
|
|
}
|
|
|
|
/* Returns first valid node after 'ref'. May return 'ref' */
|
|
static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
|
|
{
|
|
while (ref && ref->next_in_ino) {
|
|
if (!ref_obsolete(ref))
|
|
return ref;
|
|
D1(printk(KERN_DEBUG "node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)));
|
|
ref = ref->next_in_ino;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an directory entry node is found.
|
|
*
|
|
* Returns: 0 on succes;
|
|
* 1 if the node should be marked obsolete;
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int
|
|
read_direntry(struct jffs2_sb_info *c,
|
|
struct jffs2_raw_node_ref *ref,
|
|
struct jffs2_raw_dirent *rd,
|
|
uint32_t read,
|
|
struct jffs2_full_dirent **fdp,
|
|
int32_t *latest_mctime,
|
|
uint32_t *mctime_ver)
|
|
{
|
|
struct jffs2_full_dirent *fd;
|
|
|
|
/* The direntry nodes are checked during the flash scanning */
|
|
BUG_ON(ref_flags(ref) == REF_UNCHECKED);
|
|
/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
|
|
BUG_ON(ref_obsolete(ref));
|
|
|
|
/* Sanity check */
|
|
if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
|
|
printk(KERN_ERR "Error! Illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
|
|
ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
|
|
return 1;
|
|
}
|
|
|
|
fd = jffs2_alloc_full_dirent(rd->nsize + 1);
|
|
if (unlikely(!fd))
|
|
return -ENOMEM;
|
|
|
|
fd->raw = ref;
|
|
fd->version = je32_to_cpu(rd->version);
|
|
fd->ino = je32_to_cpu(rd->ino);
|
|
fd->type = rd->type;
|
|
|
|
/* Pick out the mctime of the latest dirent */
|
|
if(fd->version > *mctime_ver) {
|
|
*mctime_ver = fd->version;
|
|
*latest_mctime = je32_to_cpu(rd->mctime);
|
|
}
|
|
|
|
/*
|
|
* Copy as much of the name as possible from the raw
|
|
* dirent we've already read from the flash.
|
|
*/
|
|
if (read > sizeof(*rd))
|
|
memcpy(&fd->name[0], &rd->name[0],
|
|
min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
|
|
|
|
/* Do we need to copy any more of the name directly from the flash? */
|
|
if (rd->nsize + sizeof(*rd) > read) {
|
|
/* FIXME: point() */
|
|
int err;
|
|
int already = read - sizeof(*rd);
|
|
|
|
err = jffs2_flash_read(c, (ref_offset(ref)) + read,
|
|
rd->nsize - already, &read, &fd->name[already]);
|
|
if (unlikely(read != rd->nsize - already) && likely(!err))
|
|
return -EIO;
|
|
|
|
if (unlikely(err)) {
|
|
printk(KERN_WARNING "Read remainder of name: error %d\n", err);
|
|
jffs2_free_full_dirent(fd);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
fd->nhash = full_name_hash(fd->name, rd->nsize);
|
|
fd->next = NULL;
|
|
fd->name[rd->nsize] = '\0';
|
|
|
|
/*
|
|
* Wheee. We now have a complete jffs2_full_dirent structure, with
|
|
* the name in it and everything. Link it into the list
|
|
*/
|
|
D1(printk(KERN_DEBUG "Adding fd \"%s\", ino #%u\n", fd->name, fd->ino));
|
|
|
|
jffs2_add_fd_to_list(c, fd, fdp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an inode node is found.
|
|
*
|
|
* Returns: 0 on succes;
|
|
* 1 if the node should be marked obsolete;
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int
|
|
read_dnode(struct jffs2_sb_info *c,
|
|
struct jffs2_raw_node_ref *ref,
|
|
struct jffs2_raw_inode *rd,
|
|
uint32_t read,
|
|
struct rb_root *tnp,
|
|
int32_t *latest_mctime,
|
|
uint32_t *mctime_ver)
|
|
{
|
|
struct jffs2_eraseblock *jeb;
|
|
struct jffs2_tmp_dnode_info *tn;
|
|
|
|
/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
|
|
BUG_ON(ref_obsolete(ref));
|
|
|
|
/* If we've never checked the CRCs on this node, check them now */
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
|
uint32_t crc, len;
|
|
|
|
crc = crc32(0, rd, sizeof(*rd) - 8);
|
|
if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
|
|
printk(KERN_WARNING "Header CRC failed on node at %#08x: read %#08x, calculated %#08x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
|
|
return 1;
|
|
}
|
|
|
|
/* Sanity checks */
|
|
if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
|
|
unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
|
|
printk(KERN_WARNING "Inode corrupted at %#08x, totlen %d, #ino %d, version %d, "
|
|
"isize %d, csize %d, dsize %d \n",
|
|
ref_offset(ref), je32_to_cpu(rd->totlen), je32_to_cpu(rd->ino),
|
|
je32_to_cpu(rd->version), je32_to_cpu(rd->isize),
|
|
je32_to_cpu(rd->csize), je32_to_cpu(rd->dsize));
|
|
return 1;
|
|
}
|
|
|
|
if (rd->compr != JFFS2_COMPR_ZERO && je32_to_cpu(rd->csize)) {
|
|
unsigned char *buf = NULL;
|
|
uint32_t pointed = 0;
|
|
int err;
|
|
#ifndef __ECOS
|
|
if (c->mtd->point) {
|
|
err = c->mtd->point (c->mtd, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize),
|
|
&read, &buf);
|
|
if (unlikely(read < je32_to_cpu(rd->csize)) && likely(!err)) {
|
|
D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", read));
|
|
c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd),
|
|
je32_to_cpu(rd->csize));
|
|
} else if (unlikely(err)){
|
|
D1(printk(KERN_DEBUG "MTD point failed %d\n", err));
|
|
} else
|
|
pointed = 1; /* succefully pointed to device */
|
|
}
|
|
#endif
|
|
if(!pointed){
|
|
buf = kmalloc(je32_to_cpu(rd->csize), GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
err = jffs2_flash_read(c, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize),
|
|
&read, buf);
|
|
if (unlikely(read != je32_to_cpu(rd->csize)) && likely(!err))
|
|
err = -EIO;
|
|
if (err) {
|
|
kfree(buf);
|
|
return err;
|
|
}
|
|
}
|
|
crc = crc32(0, buf, je32_to_cpu(rd->csize));
|
|
if(!pointed)
|
|
kfree(buf);
|
|
#ifndef __ECOS
|
|
else
|
|
c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize));
|
|
#endif
|
|
|
|
if (crc != je32_to_cpu(rd->data_crc)) {
|
|
printk(KERN_NOTICE "Data CRC failed on node at %#08x: read %#08x, calculated %#08x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->data_crc), crc);
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
|
|
/* Mark the node as having been checked and fix the accounting accordingly */
|
|
jeb = &c->blocks[ref->flash_offset / c->sector_size];
|
|
len = ref_totlen(c, jeb, ref);
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
jeb->used_size += len;
|
|
jeb->unchecked_size -= len;
|
|
c->used_size += len;
|
|
c->unchecked_size -= len;
|
|
|
|
/* If node covers at least a whole page, or if it starts at the
|
|
beginning of a page and runs to the end of the file, or if
|
|
it's a hole node, mark it REF_PRISTINE, else REF_NORMAL.
|
|
|
|
If it's actually overlapped, it'll get made NORMAL (or OBSOLETE)
|
|
when the overlapping node(s) get added to the tree anyway.
|
|
*/
|
|
if ((je32_to_cpu(rd->dsize) >= PAGE_CACHE_SIZE) ||
|
|
( ((je32_to_cpu(rd->offset) & (PAGE_CACHE_SIZE-1))==0) &&
|
|
(je32_to_cpu(rd->dsize) + je32_to_cpu(rd->offset) == je32_to_cpu(rd->isize)))) {
|
|
D1(printk(KERN_DEBUG "Marking node at %#08x REF_PRISTINE\n", ref_offset(ref)));
|
|
ref->flash_offset = ref_offset(ref) | REF_PRISTINE;
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Marking node at %#08x REF_NORMAL\n", ref_offset(ref)));
|
|
ref->flash_offset = ref_offset(ref) | REF_NORMAL;
|
|
}
|
|
spin_unlock(&c->erase_completion_lock);
|
|
}
|
|
|
|
tn = jffs2_alloc_tmp_dnode_info();
|
|
if (!tn) {
|
|
D1(printk(KERN_DEBUG "alloc tn failed\n"));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tn->fn = jffs2_alloc_full_dnode();
|
|
if (!tn->fn) {
|
|
D1(printk(KERN_DEBUG "alloc fn failed\n"));
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tn->version = je32_to_cpu(rd->version);
|
|
tn->fn->ofs = je32_to_cpu(rd->offset);
|
|
tn->fn->raw = ref;
|
|
|
|
/* There was a bug where we wrote hole nodes out with
|
|
csize/dsize swapped. Deal with it */
|
|
if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && je32_to_cpu(rd->csize))
|
|
tn->fn->size = je32_to_cpu(rd->csize);
|
|
else // normal case...
|
|
tn->fn->size = je32_to_cpu(rd->dsize);
|
|
|
|
D1(printk(KERN_DEBUG "dnode @%08x: ver %u, offset %#04x, dsize %#04x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->version),
|
|
je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize)));
|
|
|
|
jffs2_add_tn_to_tree(tn, tnp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an unknown node is found.
|
|
*
|
|
* Returns: 0 on succes;
|
|
* 1 if the node should be marked obsolete;
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int
|
|
read_unknown(struct jffs2_sb_info *c,
|
|
struct jffs2_raw_node_ref *ref,
|
|
struct jffs2_unknown_node *un,
|
|
uint32_t read)
|
|
{
|
|
/* We don't mark unknown nodes as REF_UNCHECKED */
|
|
BUG_ON(ref_flags(ref) == REF_UNCHECKED);
|
|
|
|
un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
|
|
|
|
if (crc32(0, un, sizeof(struct jffs2_unknown_node) - 4) != je32_to_cpu(un->hdr_crc)) {
|
|
|
|
/* Hmmm. This should have been caught at scan time. */
|
|
printk(KERN_WARNING "Warning! Node header CRC failed at %#08x. "
|
|
"But it must have been OK earlier.\n", ref_offset(ref));
|
|
D1(printk(KERN_DEBUG "Node was: { %#04x, %#04x, %#08x, %#08x }\n",
|
|
je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
|
|
je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc)));
|
|
return 1;
|
|
} else {
|
|
switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
|
|
|
|
case JFFS2_FEATURE_INCOMPAT:
|
|
printk(KERN_NOTICE "Unknown INCOMPAT nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
/* EEP */
|
|
BUG();
|
|
break;
|
|
|
|
case JFFS2_FEATURE_ROCOMPAT:
|
|
printk(KERN_NOTICE "Unknown ROCOMPAT nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_COPY:
|
|
printk(KERN_NOTICE "Unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_DELETE:
|
|
printk(KERN_NOTICE "Unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
|
|
with this ino, returning the former in order of version */
|
|
|
|
static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
|
|
struct rb_root *tnp, struct jffs2_full_dirent **fdp,
|
|
uint32_t *highest_version, uint32_t *latest_mctime,
|
|
uint32_t *mctime_ver)
|
|
{
|
|
struct jffs2_raw_node_ref *ref, *valid_ref;
|
|
struct rb_root ret_tn = RB_ROOT;
|
|
struct jffs2_full_dirent *ret_fd = NULL;
|
|
union jffs2_node_union node;
|
|
size_t retlen;
|
|
int err;
|
|
|
|
*mctime_ver = 0;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_get_inode_nodes(): ino #%u\n", f->inocache->ino));
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
valid_ref = jffs2_first_valid_node(f->inocache->nodes);
|
|
|
|
if (!valid_ref && (f->inocache->ino != 1))
|
|
printk(KERN_WARNING "Eep. No valid nodes for ino #%u\n", f->inocache->ino);
|
|
|
|
while (valid_ref) {
|
|
/* We can hold a pointer to a non-obsolete node without the spinlock,
|
|
but _obsolete_ nodes may disappear at any time, if the block
|
|
they're in gets erased. So if we mark 'ref' obsolete while we're
|
|
not holding the lock, it can go away immediately. For that reason,
|
|
we find the next valid node first, before processing 'ref'.
|
|
*/
|
|
ref = valid_ref;
|
|
valid_ref = jffs2_first_valid_node(ref->next_in_ino);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
cond_resched();
|
|
|
|
/* FIXME: point() */
|
|
err = jffs2_flash_read(c, (ref_offset(ref)),
|
|
min_t(uint32_t, ref_totlen(c, NULL, ref), sizeof(node)),
|
|
&retlen, (void *)&node);
|
|
if (err) {
|
|
printk(KERN_WARNING "error %d reading node at 0x%08x in get_inode_nodes()\n", err, ref_offset(ref));
|
|
goto free_out;
|
|
}
|
|
|
|
switch (je16_to_cpu(node.u.nodetype)) {
|
|
|
|
case JFFS2_NODETYPE_DIRENT:
|
|
D1(printk(KERN_DEBUG "Node at %08x (%d) is a dirent node\n", ref_offset(ref), ref_flags(ref)));
|
|
|
|
if (retlen < sizeof(node.d)) {
|
|
printk(KERN_WARNING "Warning! Short read dirent at %#08x\n", ref_offset(ref));
|
|
err = -EIO;
|
|
goto free_out;
|
|
}
|
|
|
|
err = read_direntry(c, ref, &node.d, retlen, &ret_fd, latest_mctime, mctime_ver);
|
|
if (err == 1) {
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
break;
|
|
} else if (unlikely(err))
|
|
goto free_out;
|
|
|
|
if (je32_to_cpu(node.d.version) > *highest_version)
|
|
*highest_version = je32_to_cpu(node.d.version);
|
|
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_INODE:
|
|
D1(printk(KERN_DEBUG "Node at %08x (%d) is a data node\n", ref_offset(ref), ref_flags(ref)));
|
|
|
|
if (retlen < sizeof(node.i)) {
|
|
printk(KERN_WARNING "Warning! Short read dnode at %#08x\n", ref_offset(ref));
|
|
err = -EIO;
|
|
goto free_out;
|
|
}
|
|
|
|
err = read_dnode(c, ref, &node.i, retlen, &ret_tn, latest_mctime, mctime_ver);
|
|
if (err == 1) {
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
break;
|
|
} else if (unlikely(err))
|
|
goto free_out;
|
|
|
|
if (je32_to_cpu(node.i.version) > *highest_version)
|
|
*highest_version = je32_to_cpu(node.i.version);
|
|
|
|
D1(printk(KERN_DEBUG "version %d, highest_version now %d\n",
|
|
je32_to_cpu(node.i.version), *highest_version));
|
|
|
|
break;
|
|
|
|
default:
|
|
/* Check we've managed to read at least the common node header */
|
|
if (retlen < sizeof(struct jffs2_unknown_node)) {
|
|
printk(KERN_WARNING "Warning! Short read unknown node at %#08x\n",
|
|
ref_offset(ref));
|
|
return -EIO;
|
|
}
|
|
|
|
err = read_unknown(c, ref, &node.u, retlen);
|
|
if (err == 1) {
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
break;
|
|
} else if (unlikely(err))
|
|
goto free_out;
|
|
|
|
}
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
}
|
|
spin_unlock(&c->erase_completion_lock);
|
|
*tnp = ret_tn;
|
|
*fdp = ret_fd;
|
|
|
|
return 0;
|
|
|
|
free_out:
|
|
jffs2_free_tmp_dnode_info_list(&ret_tn);
|
|
jffs2_free_full_dirent_list(ret_fd);
|
|
return err;
|
|
}
|
|
|
|
static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f,
|
|
struct jffs2_raw_inode *latest_node)
|
|
{
|
|
struct jffs2_tmp_dnode_info *tn = NULL;
|
|
struct rb_root tn_list;
|
|
struct rb_node *rb, *repl_rb;
|
|
struct jffs2_full_dirent *fd_list;
|
|
struct jffs2_full_dnode *fn = NULL;
|
|
uint32_t crc;
|
|
uint32_t latest_mctime, mctime_ver;
|
|
uint32_t mdata_ver = 0;
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_do_read_inode_internal(): ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink));
|
|
|
|
/* Grab all nodes relevant to this ino */
|
|
ret = jffs2_get_inode_nodes(c, f, &tn_list, &fd_list, &f->highest_version, &latest_mctime, &mctime_ver);
|
|
|
|
if (ret) {
|
|
printk(KERN_CRIT "jffs2_get_inode_nodes() for ino %u returned %d\n", f->inocache->ino, ret);
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
return ret;
|
|
}
|
|
f->dents = fd_list;
|
|
|
|
rb = rb_first(&tn_list);
|
|
|
|
while (rb) {
|
|
tn = rb_entry(rb, struct jffs2_tmp_dnode_info, rb);
|
|
fn = tn->fn;
|
|
|
|
if (f->metadata) {
|
|
if (likely(tn->version >= mdata_ver)) {
|
|
D1(printk(KERN_DEBUG "Obsoleting old metadata at 0x%08x\n", ref_offset(f->metadata->raw)));
|
|
jffs2_mark_node_obsolete(c, f->metadata->raw);
|
|
jffs2_free_full_dnode(f->metadata);
|
|
f->metadata = NULL;
|
|
|
|
mdata_ver = 0;
|
|
} else {
|
|
/* This should never happen. */
|
|
printk(KERN_WARNING "Er. New metadata at 0x%08x with ver %d is actually older than previous ver %d at 0x%08x\n",
|
|
ref_offset(fn->raw), tn->version, mdata_ver, ref_offset(f->metadata->raw));
|
|
jffs2_mark_node_obsolete(c, fn->raw);
|
|
jffs2_free_full_dnode(fn);
|
|
/* Fill in latest_node from the metadata, not this one we're about to free... */
|
|
fn = f->metadata;
|
|
goto next_tn;
|
|
}
|
|
}
|
|
|
|
if (fn->size) {
|
|
jffs2_add_full_dnode_to_inode(c, f, fn);
|
|
} else {
|
|
/* Zero-sized node at end of version list. Just a metadata update */
|
|
D1(printk(KERN_DEBUG "metadata @%08x: ver %d\n", ref_offset(fn->raw), tn->version));
|
|
f->metadata = fn;
|
|
mdata_ver = tn->version;
|
|
}
|
|
next_tn:
|
|
BUG_ON(rb->rb_left);
|
|
if (rb->rb_parent && rb->rb_parent->rb_left == rb) {
|
|
/* We were then left-hand child of our parent. We need
|
|
to move our own right-hand child into our place. */
|
|
repl_rb = rb->rb_right;
|
|
if (repl_rb)
|
|
repl_rb->rb_parent = rb->rb_parent;
|
|
} else
|
|
repl_rb = NULL;
|
|
|
|
rb = rb_next(rb);
|
|
|
|
/* Remove the spent tn from the tree; don't bother rebalancing
|
|
but put our right-hand child in our own place. */
|
|
if (tn->rb.rb_parent) {
|
|
if (tn->rb.rb_parent->rb_left == &tn->rb)
|
|
tn->rb.rb_parent->rb_left = repl_rb;
|
|
else if (tn->rb.rb_parent->rb_right == &tn->rb)
|
|
tn->rb.rb_parent->rb_right = repl_rb;
|
|
else BUG();
|
|
} else if (tn->rb.rb_right)
|
|
tn->rb.rb_right->rb_parent = NULL;
|
|
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
}
|
|
jffs2_dbg_fragtree_paranoia_check_nolock(f);
|
|
|
|
if (!fn) {
|
|
/* No data nodes for this inode. */
|
|
if (f->inocache->ino != 1) {
|
|
printk(KERN_WARNING "jffs2_do_read_inode(): No data nodes found for ino #%u\n", f->inocache->ino);
|
|
if (!fd_list) {
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
return -EIO;
|
|
}
|
|
printk(KERN_WARNING "jffs2_do_read_inode(): But it has children so we fake some modes for it\n");
|
|
}
|
|
latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
|
|
latest_node->version = cpu_to_je32(0);
|
|
latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
|
|
latest_node->isize = cpu_to_je32(0);
|
|
latest_node->gid = cpu_to_je16(0);
|
|
latest_node->uid = cpu_to_je16(0);
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
|
|
return 0;
|
|
}
|
|
|
|
ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(*latest_node), &retlen, (void *)latest_node);
|
|
if (ret || retlen != sizeof(*latest_node)) {
|
|
printk(KERN_NOTICE "MTD read in jffs2_do_read_inode() failed: Returned %d, %zd of %zd bytes read\n",
|
|
ret, retlen, sizeof(*latest_node));
|
|
/* FIXME: If this fails, there seems to be a memory leak. Find it. */
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return ret?ret:-EIO;
|
|
}
|
|
|
|
crc = crc32(0, latest_node, sizeof(*latest_node)-8);
|
|
if (crc != je32_to_cpu(latest_node->node_crc)) {
|
|
printk(KERN_NOTICE "CRC failed for read_inode of inode %u at physical location 0x%x\n", f->inocache->ino, ref_offset(fn->raw));
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
|
|
switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
|
|
case S_IFDIR:
|
|
if (mctime_ver > je32_to_cpu(latest_node->version)) {
|
|
/* The times in the latest_node are actually older than
|
|
mctime in the latest dirent. Cheat. */
|
|
latest_node->ctime = latest_node->mtime = cpu_to_je32(latest_mctime);
|
|
}
|
|
break;
|
|
|
|
|
|
case S_IFREG:
|
|
/* If it was a regular file, truncate it to the latest node's isize */
|
|
jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
|
|
break;
|
|
|
|
case S_IFLNK:
|
|
/* Hack to work around broken isize in old symlink code.
|
|
Remove this when dwmw2 comes to his senses and stops
|
|
symlinks from being an entirely gratuitous special
|
|
case. */
|
|
if (!je32_to_cpu(latest_node->isize))
|
|
latest_node->isize = latest_node->dsize;
|
|
|
|
if (f->inocache->state != INO_STATE_CHECKING) {
|
|
/* Symlink's inode data is the target path. Read it and
|
|
* keep in RAM to facilitate quick follow symlink
|
|
* operation. */
|
|
f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
|
|
if (!f->target) {
|
|
printk(KERN_WARNING "Can't allocate %d bytes of memory "
|
|
"for the symlink target path cache\n",
|
|
je32_to_cpu(latest_node->csize));
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = jffs2_flash_read(c, ref_offset(fn->raw) + sizeof(*latest_node),
|
|
je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
|
|
|
|
if (ret || retlen != je32_to_cpu(latest_node->csize)) {
|
|
if (retlen != je32_to_cpu(latest_node->csize))
|
|
ret = -EIO;
|
|
kfree(f->target);
|
|
f->target = NULL;
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -ret;
|
|
}
|
|
|
|
f->target[je32_to_cpu(latest_node->csize)] = '\0';
|
|
D1(printk(KERN_DEBUG "jffs2_do_read_inode(): symlink's target '%s' cached\n",
|
|
f->target));
|
|
}
|
|
|
|
/* fall through... */
|
|
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
/* Certain inode types should have only one data node, and it's
|
|
kept as the metadata node */
|
|
if (f->metadata) {
|
|
printk(KERN_WARNING "Argh. Special inode #%u with mode 0%o had metadata node\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
if (!frag_first(&f->fragtree)) {
|
|
printk(KERN_WARNING "Argh. Special inode #%u with mode 0%o has no fragments\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
/* ASSERT: f->fraglist != NULL */
|
|
if (frag_next(frag_first(&f->fragtree))) {
|
|
printk(KERN_WARNING "Argh. Special inode #%u with mode 0x%x had more than one node\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
/* OK. We're happy */
|
|
f->metadata = frag_first(&f->fragtree)->node;
|
|
jffs2_free_node_frag(frag_first(&f->fragtree));
|
|
f->fragtree = RB_ROOT;
|
|
break;
|
|
}
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Scan the list of all nodes present for this ino, build map of versions, etc. */
|
|
int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
|
|
uint32_t ino, struct jffs2_raw_inode *latest_node)
|
|
{
|
|
D2(printk(KERN_DEBUG "jffs2_do_read_inode(): getting inocache\n"));
|
|
|
|
retry_inocache:
|
|
spin_lock(&c->inocache_lock);
|
|
f->inocache = jffs2_get_ino_cache(c, ino);
|
|
|
|
D2(printk(KERN_DEBUG "jffs2_do_read_inode(): Got inocache at %p\n", f->inocache));
|
|
|
|
if (f->inocache) {
|
|
/* Check its state. We may need to wait before we can use it */
|
|
switch(f->inocache->state) {
|
|
case INO_STATE_UNCHECKED:
|
|
case INO_STATE_CHECKEDABSENT:
|
|
f->inocache->state = INO_STATE_READING;
|
|
break;
|
|
|
|
case INO_STATE_CHECKING:
|
|
case INO_STATE_GC:
|
|
/* If it's in either of these states, we need
|
|
to wait for whoever's got it to finish and
|
|
put it back. */
|
|
D1(printk(KERN_DEBUG "jffs2_get_ino_cache_read waiting for ino #%u in state %d\n",
|
|
ino, f->inocache->state));
|
|
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
|
|
goto retry_inocache;
|
|
|
|
case INO_STATE_READING:
|
|
case INO_STATE_PRESENT:
|
|
/* Eep. This should never happen. It can
|
|
happen if Linux calls read_inode() again
|
|
before clear_inode() has finished though. */
|
|
printk(KERN_WARNING "Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
|
|
/* Fail. That's probably better than allowing it to succeed */
|
|
f->inocache = NULL;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
spin_unlock(&c->inocache_lock);
|
|
|
|
if (!f->inocache && ino == 1) {
|
|
/* Special case - no root inode on medium */
|
|
f->inocache = jffs2_alloc_inode_cache();
|
|
if (!f->inocache) {
|
|
printk(KERN_CRIT "jffs2_do_read_inode(): Cannot allocate inocache for root inode\n");
|
|
return -ENOMEM;
|
|
}
|
|
D1(printk(KERN_DEBUG "jffs2_do_read_inode(): Creating inocache for root inode\n"));
|
|
memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
|
|
f->inocache->ino = f->inocache->nlink = 1;
|
|
f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
|
|
f->inocache->state = INO_STATE_READING;
|
|
jffs2_add_ino_cache(c, f->inocache);
|
|
}
|
|
if (!f->inocache) {
|
|
printk(KERN_WARNING "jffs2_do_read_inode() on nonexistent ino %u\n", ino);
|
|
return -ENOENT;
|
|
}
|
|
|
|
return jffs2_do_read_inode_internal(c, f, latest_node);
|
|
}
|
|
|
|
int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
|
|
{
|
|
struct jffs2_raw_inode n;
|
|
struct jffs2_inode_info *f = kmalloc(sizeof(*f), GFP_KERNEL);
|
|
int ret;
|
|
|
|
if (!f)
|
|
return -ENOMEM;
|
|
|
|
memset(f, 0, sizeof(*f));
|
|
init_MUTEX_LOCKED(&f->sem);
|
|
f->inocache = ic;
|
|
|
|
ret = jffs2_do_read_inode_internal(c, f, &n);
|
|
if (!ret) {
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
}
|
|
kfree (f);
|
|
return ret;
|
|
}
|
|
|
|
void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
|
|
{
|
|
struct jffs2_full_dirent *fd, *fds;
|
|
int deleted;
|
|
|
|
down(&f->sem);
|
|
deleted = f->inocache && !f->inocache->nlink;
|
|
|
|
if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
|
|
|
|
if (f->metadata) {
|
|
if (deleted)
|
|
jffs2_mark_node_obsolete(c, f->metadata->raw);
|
|
jffs2_free_full_dnode(f->metadata);
|
|
}
|
|
|
|
jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
|
|
|
|
if (f->target) {
|
|
kfree(f->target);
|
|
f->target = NULL;
|
|
}
|
|
|
|
fds = f->dents;
|
|
while(fds) {
|
|
fd = fds;
|
|
fds = fd->next;
|
|
jffs2_free_full_dirent(fd);
|
|
}
|
|
|
|
if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
if (f->inocache->nodes == (void *)f->inocache)
|
|
jffs2_del_ino_cache(c, f->inocache);
|
|
}
|
|
|
|
up(&f->sem);
|
|
}
|