linux/arch/x86/hyperv/hv_init.c
Tianyu Lan faff44069f x86/hyperv: Add Write/Read MSR registers via ghcb page
Hyperv provides GHCB protocol to write Synthetic Interrupt
Controller MSR registers in Isolation VM with AMD SEV SNP
and these registers are emulated by hypervisor directly.
Hyperv requires to write SINTx MSR registers twice. First
writes MSR via GHCB page to communicate with hypervisor
and then writes wrmsr instruction to talk with paravisor
which runs in VMPL0. Guest OS ID MSR also needs to be set
via GHCB page.

Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Link: https://lore.kernel.org/r/20211025122116.264793-7-ltykernel@gmail.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
2021-10-28 11:22:38 +00:00

600 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* X86 specific Hyper-V initialization code.
*
* Copyright (C) 2016, Microsoft, Inc.
*
* Author : K. Y. Srinivasan <kys@microsoft.com>
*/
#include <linux/efi.h>
#include <linux/types.h>
#include <linux/bitfield.h>
#include <linux/io.h>
#include <asm/apic.h>
#include <asm/desc.h>
#include <asm/hypervisor.h>
#include <asm/hyperv-tlfs.h>
#include <asm/mshyperv.h>
#include <asm/idtentry.h>
#include <linux/kexec.h>
#include <linux/version.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/hyperv.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/cpuhotplug.h>
#include <linux/syscore_ops.h>
#include <clocksource/hyperv_timer.h>
#include <linux/highmem.h>
int hyperv_init_cpuhp;
u64 hv_current_partition_id = ~0ull;
EXPORT_SYMBOL_GPL(hv_current_partition_id);
void *hv_hypercall_pg;
EXPORT_SYMBOL_GPL(hv_hypercall_pg);
union hv_ghcb __percpu **hv_ghcb_pg;
/* Storage to save the hypercall page temporarily for hibernation */
static void *hv_hypercall_pg_saved;
struct hv_vp_assist_page **hv_vp_assist_page;
EXPORT_SYMBOL_GPL(hv_vp_assist_page);
static int hyperv_init_ghcb(void)
{
u64 ghcb_gpa;
void *ghcb_va;
void **ghcb_base;
if (!hv_isolation_type_snp())
return 0;
if (!hv_ghcb_pg)
return -EINVAL;
/*
* GHCB page is allocated by paravisor. The address
* returned by MSR_AMD64_SEV_ES_GHCB is above shared
* memory boundary and map it here.
*/
rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
if (!ghcb_va)
return -ENOMEM;
ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
*ghcb_base = ghcb_va;
return 0;
}
static int hv_cpu_init(unsigned int cpu)
{
union hv_vp_assist_msr_contents msr = { 0 };
struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
int ret;
ret = hv_common_cpu_init(cpu);
if (ret)
return ret;
if (!hv_vp_assist_page)
return 0;
if (!*hvp) {
if (hv_root_partition) {
/*
* For root partition we get the hypervisor provided VP assist
* page, instead of allocating a new page.
*/
rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
*hvp = memremap(msr.pfn <<
HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
PAGE_SIZE, MEMREMAP_WB);
} else {
/*
* The VP assist page is an "overlay" page (see Hyper-V TLFS's
* Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
* out to make sure we always write the EOI MSR in
* hv_apic_eoi_write() *after* the EOI optimization is disabled
* in hv_cpu_die(), otherwise a CPU may not be stopped in the
* case of CPU offlining and the VM will hang.
*/
*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
if (*hvp)
msr.pfn = vmalloc_to_pfn(*hvp);
}
WARN_ON(!(*hvp));
if (*hvp) {
msr.enable = 1;
wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
}
}
return hyperv_init_ghcb();
}
static void (*hv_reenlightenment_cb)(void);
static void hv_reenlightenment_notify(struct work_struct *dummy)
{
struct hv_tsc_emulation_status emu_status;
rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
/* Don't issue the callback if TSC accesses are not emulated */
if (hv_reenlightenment_cb && emu_status.inprogress)
hv_reenlightenment_cb();
}
static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
void hyperv_stop_tsc_emulation(void)
{
u64 freq;
struct hv_tsc_emulation_status emu_status;
rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
emu_status.inprogress = 0;
wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
tsc_khz = div64_u64(freq, 1000);
}
EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
static inline bool hv_reenlightenment_available(void)
{
/*
* Check for required features and privileges to make TSC frequency
* change notifications work.
*/
return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
}
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
{
ack_APIC_irq();
inc_irq_stat(irq_hv_reenlightenment_count);
schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
}
void set_hv_tscchange_cb(void (*cb)(void))
{
struct hv_reenlightenment_control re_ctrl = {
.vector = HYPERV_REENLIGHTENMENT_VECTOR,
.enabled = 1,
.target_vp = hv_vp_index[smp_processor_id()]
};
struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
if (!hv_reenlightenment_available()) {
pr_warn("Hyper-V: reenlightenment support is unavailable\n");
return;
}
hv_reenlightenment_cb = cb;
/* Make sure callback is registered before we write to MSRs */
wmb();
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
}
EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
void clear_hv_tscchange_cb(void)
{
struct hv_reenlightenment_control re_ctrl;
if (!hv_reenlightenment_available())
return;
rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
re_ctrl.enabled = 0;
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
hv_reenlightenment_cb = NULL;
}
EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
static int hv_cpu_die(unsigned int cpu)
{
struct hv_reenlightenment_control re_ctrl;
unsigned int new_cpu;
void **ghcb_va;
if (hv_ghcb_pg) {
ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
if (*ghcb_va)
memunmap(*ghcb_va);
*ghcb_va = NULL;
}
hv_common_cpu_die(cpu);
if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
union hv_vp_assist_msr_contents msr = { 0 };
if (hv_root_partition) {
/*
* For root partition the VP assist page is mapped to
* hypervisor provided page, and thus we unmap the
* page here and nullify it, so that in future we have
* correct page address mapped in hv_cpu_init.
*/
memunmap(hv_vp_assist_page[cpu]);
hv_vp_assist_page[cpu] = NULL;
rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
msr.enable = 0;
}
wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
}
if (hv_reenlightenment_cb == NULL)
return 0;
rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
if (re_ctrl.target_vp == hv_vp_index[cpu]) {
/*
* Reassign reenlightenment notifications to some other online
* CPU or just disable the feature if there are no online CPUs
* left (happens on hibernation).
*/
new_cpu = cpumask_any_but(cpu_online_mask, cpu);
if (new_cpu < nr_cpu_ids)
re_ctrl.target_vp = hv_vp_index[new_cpu];
else
re_ctrl.enabled = 0;
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
}
return 0;
}
static int __init hv_pci_init(void)
{
int gen2vm = efi_enabled(EFI_BOOT);
/*
* For Generation-2 VM, we exit from pci_arch_init() by returning 0.
* The purpose is to suppress the harmless warning:
* "PCI: Fatal: No config space access function found"
*/
if (gen2vm)
return 0;
/* For Generation-1 VM, we'll proceed in pci_arch_init(). */
return 1;
}
static int hv_suspend(void)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
int ret;
if (hv_root_partition)
return -EPERM;
/*
* Reset the hypercall page as it is going to be invalidated
* across hibernation. Setting hv_hypercall_pg to NULL ensures
* that any subsequent hypercall operation fails safely instead of
* crashing due to an access of an invalid page. The hypercall page
* pointer is restored on resume.
*/
hv_hypercall_pg_saved = hv_hypercall_pg;
hv_hypercall_pg = NULL;
/* Disable the hypercall page in the hypervisor */
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
hypercall_msr.enable = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
ret = hv_cpu_die(0);
return ret;
}
static void hv_resume(void)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
int ret;
ret = hv_cpu_init(0);
WARN_ON(ret);
/* Re-enable the hypercall page */
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
hypercall_msr.enable = 1;
hypercall_msr.guest_physical_address =
vmalloc_to_pfn(hv_hypercall_pg_saved);
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
hv_hypercall_pg = hv_hypercall_pg_saved;
hv_hypercall_pg_saved = NULL;
/*
* Reenlightenment notifications are disabled by hv_cpu_die(0),
* reenable them here if hv_reenlightenment_cb was previously set.
*/
if (hv_reenlightenment_cb)
set_hv_tscchange_cb(hv_reenlightenment_cb);
}
/* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
static struct syscore_ops hv_syscore_ops = {
.suspend = hv_suspend,
.resume = hv_resume,
};
static void (* __initdata old_setup_percpu_clockev)(void);
static void __init hv_stimer_setup_percpu_clockev(void)
{
/*
* Ignore any errors in setting up stimer clockevents
* as we can run with the LAPIC timer as a fallback.
*/
(void)hv_stimer_alloc(false);
/*
* Still register the LAPIC timer, because the direct-mode STIMER is
* not supported by old versions of Hyper-V. This also allows users
* to switch to LAPIC timer via /sys, if they want to.
*/
if (old_setup_percpu_clockev)
old_setup_percpu_clockev();
}
static void __init hv_get_partition_id(void)
{
struct hv_get_partition_id *output_page;
u64 status;
unsigned long flags;
local_irq_save(flags);
output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
if (!hv_result_success(status)) {
/* No point in proceeding if this failed */
pr_err("Failed to get partition ID: %lld\n", status);
BUG();
}
hv_current_partition_id = output_page->partition_id;
local_irq_restore(flags);
}
/*
* This function is to be invoked early in the boot sequence after the
* hypervisor has been detected.
*
* 1. Setup the hypercall page.
* 2. Register Hyper-V specific clocksource.
* 3. Setup Hyper-V specific APIC entry points.
*/
void __init hyperv_init(void)
{
u64 guest_id, required_msrs;
union hv_x64_msr_hypercall_contents hypercall_msr;
int cpuhp;
if (x86_hyper_type != X86_HYPER_MS_HYPERV)
return;
/* Absolutely required MSRs */
required_msrs = HV_MSR_HYPERCALL_AVAILABLE |
HV_MSR_VP_INDEX_AVAILABLE;
if ((ms_hyperv.features & required_msrs) != required_msrs)
return;
if (hv_common_init())
return;
hv_vp_assist_page = kcalloc(num_possible_cpus(),
sizeof(*hv_vp_assist_page), GFP_KERNEL);
if (!hv_vp_assist_page) {
ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
goto common_free;
}
if (hv_isolation_type_snp()) {
hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
if (!hv_ghcb_pg)
goto free_vp_assist_page;
}
cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
hv_cpu_init, hv_cpu_die);
if (cpuhp < 0)
goto free_ghcb_page;
/*
* Setup the hypercall page and enable hypercalls.
* 1. Register the guest ID
* 2. Enable the hypercall and register the hypercall page
*/
guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
__builtin_return_address(0));
if (hv_hypercall_pg == NULL)
goto clean_guest_os_id;
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
hypercall_msr.enable = 1;
if (hv_root_partition) {
struct page *pg;
void *src, *dst;
/*
* For the root partition, the hypervisor will set up its
* hypercall page. The hypervisor guarantees it will not show
* up in the root's address space. The root can't change the
* location of the hypercall page.
*
* Order is important here. We must enable the hypercall page
* so it is populated with code, then copy the code to an
* executable page.
*/
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
pg = vmalloc_to_page(hv_hypercall_pg);
dst = kmap(pg);
src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
MEMREMAP_WB);
BUG_ON(!(src && dst));
memcpy(dst, src, HV_HYP_PAGE_SIZE);
memunmap(src);
kunmap(pg);
} else {
hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
}
/*
* hyperv_init() is called before LAPIC is initialized: see
* apic_intr_mode_init() -> x86_platform.apic_post_init() and
* apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
* depends on LAPIC, so hv_stimer_alloc() should be called from
* x86_init.timers.setup_percpu_clockev.
*/
old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
hv_apic_init();
x86_init.pci.arch_init = hv_pci_init;
register_syscore_ops(&hv_syscore_ops);
hyperv_init_cpuhp = cpuhp;
if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
hv_get_partition_id();
BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
#ifdef CONFIG_PCI_MSI
/*
* If we're running as root, we want to create our own PCI MSI domain.
* We can't set this in hv_pci_init because that would be too late.
*/
if (hv_root_partition)
x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
#endif
/* Query the VMs extended capability once, so that it can be cached. */
hv_query_ext_cap(0);
return;
clean_guest_os_id:
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
cpuhp_remove_state(cpuhp);
free_ghcb_page:
free_percpu(hv_ghcb_pg);
free_vp_assist_page:
kfree(hv_vp_assist_page);
hv_vp_assist_page = NULL;
common_free:
hv_common_free();
}
/*
* This routine is called before kexec/kdump, it does the required cleanup.
*/
void hyperv_cleanup(void)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
unregister_syscore_ops(&hv_syscore_ops);
/* Reset our OS id */
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
/*
* Reset hypercall page reference before reset the page,
* let hypercall operations fail safely rather than
* panic the kernel for using invalid hypercall page
*/
hv_hypercall_pg = NULL;
/* Reset the hypercall page */
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
/* Reset the TSC page */
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
}
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
{
static bool panic_reported;
u64 guest_id;
if (in_die && !panic_on_oops)
return;
/*
* We prefer to report panic on 'die' chain as we have proper
* registers to report, but if we miss it (e.g. on BUG()) we need
* to report it on 'panic'.
*/
if (panic_reported)
return;
panic_reported = true;
rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
wrmsrl(HV_X64_MSR_CRASH_P0, err);
wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
/*
* Let Hyper-V know there is crash data available
*/
wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
}
EXPORT_SYMBOL_GPL(hyperv_report_panic);
bool hv_is_hyperv_initialized(void)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
/*
* Ensure that we're really on Hyper-V, and not a KVM or Xen
* emulation of Hyper-V
*/
if (x86_hyper_type != X86_HYPER_MS_HYPERV)
return false;
/*
* Verify that earlier initialization succeeded by checking
* that the hypercall page is setup
*/
hypercall_msr.as_uint64 = 0;
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
return hypercall_msr.enable;
}
EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);