6148652807
Currently CATU is the only helper device, and its enable and disable calls are hard coded. To allow more helper devices to be added in a generic way, remove these hard coded calls and just enable and disable all helper devices. This has to apply to helpers adjacent to the path, because they will never be in the path. CATU was already discovered in this way, so there is no change there. One change that is needed is for CATU to call back into ETR to allocate the buffer. Because the enable call was previously hard coded, it was done at a point where the buffer was already allocated, but this is no longer the case. Reviewed-by: Mike Leach <mike.leach@linaro.org> Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20230425143542.2305069-13-james.clark@arm.com
918 lines
24 KiB
C
918 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright(C) 2015 Linaro Limited. All rights reserved.
|
|
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/coresight.h>
|
|
#include <linux/coresight-pmu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/device.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stringhash.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include "coresight-config.h"
|
|
#include "coresight-etm-perf.h"
|
|
#include "coresight-priv.h"
|
|
#include "coresight-syscfg.h"
|
|
#include "coresight-trace-id.h"
|
|
|
|
static struct pmu etm_pmu;
|
|
static bool etm_perf_up;
|
|
|
|
/*
|
|
* An ETM context for a running event includes the perf aux handle
|
|
* and aux_data. For ETM, the aux_data (etm_event_data), consists of
|
|
* the trace path and the sink configuration. The event data is accessible
|
|
* via perf_get_aux(handle). However, a sink could "end" a perf output
|
|
* handle via the IRQ handler. And if the "sink" encounters a failure
|
|
* to "begin" another session (e.g due to lack of space in the buffer),
|
|
* the handle will be cleared. Thus, the event_data may not be accessible
|
|
* from the handle when we get to the etm_event_stop(), which is required
|
|
* for stopping the trace path. The event_data is guaranteed to stay alive
|
|
* until "free_aux()", which cannot happen as long as the event is active on
|
|
* the ETM. Thus the event_data for the session must be part of the ETM context
|
|
* to make sure we can disable the trace path.
|
|
*/
|
|
struct etm_ctxt {
|
|
struct perf_output_handle handle;
|
|
struct etm_event_data *event_data;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
|
|
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
|
|
|
|
/*
|
|
* The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
|
|
* now take them as general formats and apply on all ETMs.
|
|
*/
|
|
PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
|
|
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
|
|
/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
|
|
PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID));
|
|
/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
|
|
PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2));
|
|
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
|
|
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
|
|
/* preset - if sink ID is used as a configuration selector */
|
|
PMU_FORMAT_ATTR(preset, "config:0-3");
|
|
/* Sink ID - same for all ETMs */
|
|
PMU_FORMAT_ATTR(sinkid, "config2:0-31");
|
|
/* config ID - set if a system configuration is selected */
|
|
PMU_FORMAT_ATTR(configid, "config2:32-63");
|
|
|
|
|
|
/*
|
|
* contextid always traces the "PID". The PID is in CONTEXTIDR_EL1
|
|
* when the kernel is running at EL1; when the kernel is at EL2,
|
|
* the PID is in CONTEXTIDR_EL2.
|
|
*/
|
|
static ssize_t format_attr_contextid_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *page)
|
|
{
|
|
int pid_fmt = ETM_OPT_CTXTID;
|
|
|
|
#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
|
|
pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
|
|
#endif
|
|
return sprintf(page, "config:%d\n", pid_fmt);
|
|
}
|
|
|
|
static struct device_attribute format_attr_contextid =
|
|
__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
|
|
|
|
static struct attribute *etm_config_formats_attr[] = {
|
|
&format_attr_cycacc.attr,
|
|
&format_attr_contextid.attr,
|
|
&format_attr_contextid1.attr,
|
|
&format_attr_contextid2.attr,
|
|
&format_attr_timestamp.attr,
|
|
&format_attr_retstack.attr,
|
|
&format_attr_sinkid.attr,
|
|
&format_attr_preset.attr,
|
|
&format_attr_configid.attr,
|
|
&format_attr_branch_broadcast.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group etm_pmu_format_group = {
|
|
.name = "format",
|
|
.attrs = etm_config_formats_attr,
|
|
};
|
|
|
|
static struct attribute *etm_config_sinks_attr[] = {
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group etm_pmu_sinks_group = {
|
|
.name = "sinks",
|
|
.attrs = etm_config_sinks_attr,
|
|
};
|
|
|
|
static struct attribute *etm_config_events_attr[] = {
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group etm_pmu_events_group = {
|
|
.name = "events",
|
|
.attrs = etm_config_events_attr,
|
|
};
|
|
|
|
static const struct attribute_group *etm_pmu_attr_groups[] = {
|
|
&etm_pmu_format_group,
|
|
&etm_pmu_sinks_group,
|
|
&etm_pmu_events_group,
|
|
NULL,
|
|
};
|
|
|
|
static inline struct list_head **
|
|
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
|
|
{
|
|
return per_cpu_ptr(data->path, cpu);
|
|
}
|
|
|
|
static inline struct list_head *
|
|
etm_event_cpu_path(struct etm_event_data *data, int cpu)
|
|
{
|
|
return *etm_event_cpu_path_ptr(data, cpu);
|
|
}
|
|
|
|
static void etm_event_read(struct perf_event *event) {}
|
|
|
|
static int etm_addr_filters_alloc(struct perf_event *event)
|
|
{
|
|
struct etm_filters *filters;
|
|
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
|
|
|
|
filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
|
|
if (!filters)
|
|
return -ENOMEM;
|
|
|
|
if (event->parent)
|
|
memcpy(filters, event->parent->hw.addr_filters,
|
|
sizeof(*filters));
|
|
|
|
event->hw.addr_filters = filters;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etm_event_destroy(struct perf_event *event)
|
|
{
|
|
kfree(event->hw.addr_filters);
|
|
event->hw.addr_filters = NULL;
|
|
}
|
|
|
|
static int etm_event_init(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (event->attr.type != etm_pmu.type) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = etm_addr_filters_alloc(event);
|
|
if (ret)
|
|
goto out;
|
|
|
|
event->destroy = etm_event_destroy;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void free_sink_buffer(struct etm_event_data *event_data)
|
|
{
|
|
int cpu;
|
|
cpumask_t *mask = &event_data->mask;
|
|
struct coresight_device *sink;
|
|
|
|
if (!event_data->snk_config)
|
|
return;
|
|
|
|
if (WARN_ON(cpumask_empty(mask)))
|
|
return;
|
|
|
|
cpu = cpumask_first(mask);
|
|
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
|
|
sink_ops(sink)->free_buffer(event_data->snk_config);
|
|
}
|
|
|
|
static void free_event_data(struct work_struct *work)
|
|
{
|
|
int cpu;
|
|
cpumask_t *mask;
|
|
struct etm_event_data *event_data;
|
|
|
|
event_data = container_of(work, struct etm_event_data, work);
|
|
mask = &event_data->mask;
|
|
|
|
/* Free the sink buffers, if there are any */
|
|
free_sink_buffer(event_data);
|
|
|
|
/* clear any configuration we were using */
|
|
if (event_data->cfg_hash)
|
|
cscfg_deactivate_config(event_data->cfg_hash);
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
struct list_head **ppath;
|
|
|
|
ppath = etm_event_cpu_path_ptr(event_data, cpu);
|
|
if (!(IS_ERR_OR_NULL(*ppath)))
|
|
coresight_release_path(*ppath);
|
|
*ppath = NULL;
|
|
coresight_trace_id_put_cpu_id(cpu);
|
|
}
|
|
|
|
/* mark perf event as done for trace id allocator */
|
|
coresight_trace_id_perf_stop();
|
|
|
|
free_percpu(event_data->path);
|
|
kfree(event_data);
|
|
}
|
|
|
|
static void *alloc_event_data(int cpu)
|
|
{
|
|
cpumask_t *mask;
|
|
struct etm_event_data *event_data;
|
|
|
|
/* First get memory for the session's data */
|
|
event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
|
|
if (!event_data)
|
|
return NULL;
|
|
|
|
|
|
mask = &event_data->mask;
|
|
if (cpu != -1)
|
|
cpumask_set_cpu(cpu, mask);
|
|
else
|
|
cpumask_copy(mask, cpu_present_mask);
|
|
|
|
/*
|
|
* Each CPU has a single path between source and destination. As such
|
|
* allocate an array using CPU numbers as indexes. That way a path
|
|
* for any CPU can easily be accessed at any given time. We proceed
|
|
* the same way for sessions involving a single CPU. The cost of
|
|
* unused memory when dealing with single CPU trace scenarios is small
|
|
* compared to the cost of searching through an optimized array.
|
|
*/
|
|
event_data->path = alloc_percpu(struct list_head *);
|
|
|
|
if (!event_data->path) {
|
|
kfree(event_data);
|
|
return NULL;
|
|
}
|
|
|
|
return event_data;
|
|
}
|
|
|
|
static void etm_free_aux(void *data)
|
|
{
|
|
struct etm_event_data *event_data = data;
|
|
|
|
schedule_work(&event_data->work);
|
|
}
|
|
|
|
/*
|
|
* Check if two given sinks are compatible with each other,
|
|
* so that they can use the same sink buffers, when an event
|
|
* moves around.
|
|
*/
|
|
static bool sinks_compatible(struct coresight_device *a,
|
|
struct coresight_device *b)
|
|
{
|
|
if (!a || !b)
|
|
return false;
|
|
/*
|
|
* If the sinks are of the same subtype and driven
|
|
* by the same driver, we can use the same buffer
|
|
* on these sinks.
|
|
*/
|
|
return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
|
|
(sink_ops(a) == sink_ops(b));
|
|
}
|
|
|
|
static void *etm_setup_aux(struct perf_event *event, void **pages,
|
|
int nr_pages, bool overwrite)
|
|
{
|
|
u32 id, cfg_hash;
|
|
int cpu = event->cpu;
|
|
int trace_id;
|
|
cpumask_t *mask;
|
|
struct coresight_device *sink = NULL;
|
|
struct coresight_device *user_sink = NULL, *last_sink = NULL;
|
|
struct etm_event_data *event_data = NULL;
|
|
|
|
event_data = alloc_event_data(cpu);
|
|
if (!event_data)
|
|
return NULL;
|
|
INIT_WORK(&event_data->work, free_event_data);
|
|
|
|
/* First get the selected sink from user space. */
|
|
if (event->attr.config2 & GENMASK_ULL(31, 0)) {
|
|
id = (u32)event->attr.config2;
|
|
sink = user_sink = coresight_get_sink_by_id(id);
|
|
}
|
|
|
|
/* tell the trace ID allocator that a perf event is starting up */
|
|
coresight_trace_id_perf_start();
|
|
|
|
/* check if user wants a coresight configuration selected */
|
|
cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
|
|
if (cfg_hash) {
|
|
if (cscfg_activate_config(cfg_hash))
|
|
goto err;
|
|
event_data->cfg_hash = cfg_hash;
|
|
}
|
|
|
|
mask = &event_data->mask;
|
|
|
|
/*
|
|
* Setup the path for each CPU in a trace session. We try to build
|
|
* trace path for each CPU in the mask. If we don't find an ETM
|
|
* for the CPU or fail to build a path, we clear the CPU from the
|
|
* mask and continue with the rest. If ever we try to trace on those
|
|
* CPUs, we can handle it and fail the session.
|
|
*/
|
|
for_each_cpu(cpu, mask) {
|
|
struct list_head *path;
|
|
struct coresight_device *csdev;
|
|
|
|
csdev = per_cpu(csdev_src, cpu);
|
|
/*
|
|
* If there is no ETM associated with this CPU clear it from
|
|
* the mask and continue with the rest. If ever we try to trace
|
|
* on this CPU, we handle it accordingly.
|
|
*/
|
|
if (!csdev) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* No sink provided - look for a default sink for all the ETMs,
|
|
* where this event can be scheduled.
|
|
* We allocate the sink specific buffers only once for this
|
|
* event. If the ETMs have different default sink devices, we
|
|
* can only use a single "type" of sink as the event can carry
|
|
* only one sink specific buffer. Thus we have to make sure
|
|
* that the sinks are of the same type and driven by the same
|
|
* driver, as the one we allocate the buffer for. As such
|
|
* we choose the first sink and check if the remaining ETMs
|
|
* have a compatible default sink. We don't trace on a CPU
|
|
* if the sink is not compatible.
|
|
*/
|
|
if (!user_sink) {
|
|
/* Find the default sink for this ETM */
|
|
sink = coresight_find_default_sink(csdev);
|
|
if (!sink) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
continue;
|
|
}
|
|
|
|
/* Check if this sink compatible with the last sink */
|
|
if (last_sink && !sinks_compatible(last_sink, sink)) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
continue;
|
|
}
|
|
last_sink = sink;
|
|
}
|
|
|
|
/*
|
|
* Building a path doesn't enable it, it simply builds a
|
|
* list of devices from source to sink that can be
|
|
* referenced later when the path is actually needed.
|
|
*/
|
|
path = coresight_build_path(csdev, sink);
|
|
if (IS_ERR(path)) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
continue;
|
|
}
|
|
|
|
/* ensure we can allocate a trace ID for this CPU */
|
|
trace_id = coresight_trace_id_get_cpu_id(cpu);
|
|
if (!IS_VALID_CS_TRACE_ID(trace_id)) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
coresight_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
*etm_event_cpu_path_ptr(event_data, cpu) = path;
|
|
}
|
|
|
|
/* no sink found for any CPU - cannot trace */
|
|
if (!sink)
|
|
goto err;
|
|
|
|
/* If we don't have any CPUs ready for tracing, abort */
|
|
cpu = cpumask_first(mask);
|
|
if (cpu >= nr_cpu_ids)
|
|
goto err;
|
|
|
|
if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
|
|
goto err;
|
|
|
|
/*
|
|
* Allocate the sink buffer for this session. All the sinks
|
|
* where this event can be scheduled are ensured to be of the
|
|
* same type. Thus the same sink configuration is used by the
|
|
* sinks.
|
|
*/
|
|
event_data->snk_config =
|
|
sink_ops(sink)->alloc_buffer(sink, event, pages,
|
|
nr_pages, overwrite);
|
|
if (!event_data->snk_config)
|
|
goto err;
|
|
|
|
out:
|
|
return event_data;
|
|
|
|
err:
|
|
etm_free_aux(event_data);
|
|
event_data = NULL;
|
|
goto out;
|
|
}
|
|
|
|
static void etm_event_start(struct perf_event *event, int flags)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct etm_event_data *event_data;
|
|
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
|
|
struct perf_output_handle *handle = &ctxt->handle;
|
|
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
|
|
struct list_head *path;
|
|
u64 hw_id;
|
|
|
|
if (!csdev)
|
|
goto fail;
|
|
|
|
/* Have we messed up our tracking ? */
|
|
if (WARN_ON(ctxt->event_data))
|
|
goto fail;
|
|
|
|
/*
|
|
* Deal with the ring buffer API and get a handle on the
|
|
* session's information.
|
|
*/
|
|
event_data = perf_aux_output_begin(handle, event);
|
|
if (!event_data)
|
|
goto fail;
|
|
|
|
/*
|
|
* Check if this ETM is allowed to trace, as decided
|
|
* at etm_setup_aux(). This could be due to an unreachable
|
|
* sink from this ETM. We can't do much in this case if
|
|
* the sink was specified or hinted to the driver. For
|
|
* now, simply don't record anything on this ETM.
|
|
*
|
|
* As such we pretend that everything is fine, and let
|
|
* it continue without actually tracing. The event could
|
|
* continue tracing when it moves to a CPU where it is
|
|
* reachable to a sink.
|
|
*/
|
|
if (!cpumask_test_cpu(cpu, &event_data->mask))
|
|
goto out;
|
|
|
|
path = etm_event_cpu_path(event_data, cpu);
|
|
/* We need a sink, no need to continue without one */
|
|
sink = coresight_get_sink(path);
|
|
if (WARN_ON_ONCE(!sink))
|
|
goto fail_end_stop;
|
|
|
|
/* Nothing will happen without a path */
|
|
if (coresight_enable_path(path, CS_MODE_PERF, handle))
|
|
goto fail_end_stop;
|
|
|
|
/* Finally enable the tracer */
|
|
if (coresight_enable_source(csdev, CS_MODE_PERF, event))
|
|
goto fail_disable_path;
|
|
|
|
/*
|
|
* output cpu / trace ID in perf record, once for the lifetime
|
|
* of the event.
|
|
*/
|
|
if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
|
|
cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
|
|
hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK,
|
|
CS_AUX_HW_ID_CURR_VERSION);
|
|
hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK,
|
|
coresight_trace_id_read_cpu_id(cpu));
|
|
perf_report_aux_output_id(event, hw_id);
|
|
}
|
|
|
|
out:
|
|
/* Tell the perf core the event is alive */
|
|
event->hw.state = 0;
|
|
/* Save the event_data for this ETM */
|
|
ctxt->event_data = event_data;
|
|
return;
|
|
|
|
fail_disable_path:
|
|
coresight_disable_path(path);
|
|
fail_end_stop:
|
|
/*
|
|
* Check if the handle is still associated with the event,
|
|
* to handle cases where if the sink failed to start the
|
|
* trace and TRUNCATED the handle already.
|
|
*/
|
|
if (READ_ONCE(handle->event)) {
|
|
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
|
|
perf_aux_output_end(handle, 0);
|
|
}
|
|
fail:
|
|
event->hw.state = PERF_HES_STOPPED;
|
|
return;
|
|
}
|
|
|
|
static void etm_event_stop(struct perf_event *event, int mode)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
unsigned long size;
|
|
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
|
|
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
|
|
struct perf_output_handle *handle = &ctxt->handle;
|
|
struct etm_event_data *event_data;
|
|
struct list_head *path;
|
|
|
|
/*
|
|
* If we still have access to the event_data via handle,
|
|
* confirm that we haven't messed up the tracking.
|
|
*/
|
|
if (handle->event &&
|
|
WARN_ON(perf_get_aux(handle) != ctxt->event_data))
|
|
return;
|
|
|
|
event_data = ctxt->event_data;
|
|
/* Clear the event_data as this ETM is stopping the trace. */
|
|
ctxt->event_data = NULL;
|
|
|
|
if (event->hw.state == PERF_HES_STOPPED)
|
|
return;
|
|
|
|
/* We must have a valid event_data for a running event */
|
|
if (WARN_ON(!event_data))
|
|
return;
|
|
|
|
/*
|
|
* Check if this ETM was allowed to trace, as decided at
|
|
* etm_setup_aux(). If it wasn't allowed to trace, then
|
|
* nothing needs to be torn down other than outputting a
|
|
* zero sized record.
|
|
*/
|
|
if (handle->event && (mode & PERF_EF_UPDATE) &&
|
|
!cpumask_test_cpu(cpu, &event_data->mask)) {
|
|
event->hw.state = PERF_HES_STOPPED;
|
|
perf_aux_output_end(handle, 0);
|
|
return;
|
|
}
|
|
|
|
if (!csdev)
|
|
return;
|
|
|
|
path = etm_event_cpu_path(event_data, cpu);
|
|
if (!path)
|
|
return;
|
|
|
|
sink = coresight_get_sink(path);
|
|
if (!sink)
|
|
return;
|
|
|
|
/* stop tracer */
|
|
coresight_disable_source(csdev, event);
|
|
|
|
/* tell the core */
|
|
event->hw.state = PERF_HES_STOPPED;
|
|
|
|
/*
|
|
* If the handle is not bound to an event anymore
|
|
* (e.g, the sink driver was unable to restart the
|
|
* handle due to lack of buffer space), we don't
|
|
* have to do anything here.
|
|
*/
|
|
if (handle->event && (mode & PERF_EF_UPDATE)) {
|
|
if (WARN_ON_ONCE(handle->event != event))
|
|
return;
|
|
|
|
/* update trace information */
|
|
if (!sink_ops(sink)->update_buffer)
|
|
return;
|
|
|
|
size = sink_ops(sink)->update_buffer(sink, handle,
|
|
event_data->snk_config);
|
|
/*
|
|
* Make sure the handle is still valid as the
|
|
* sink could have closed it from an IRQ.
|
|
* The sink driver must handle the race with
|
|
* update_buffer() and IRQ. Thus either we
|
|
* should get a valid handle and valid size
|
|
* (which may be 0).
|
|
*
|
|
* But we should never get a non-zero size with
|
|
* an invalid handle.
|
|
*/
|
|
if (READ_ONCE(handle->event))
|
|
perf_aux_output_end(handle, size);
|
|
else
|
|
WARN_ON(size);
|
|
}
|
|
|
|
/* Disabling the path make its elements available to other sessions */
|
|
coresight_disable_path(path);
|
|
}
|
|
|
|
static int etm_event_add(struct perf_event *event, int mode)
|
|
{
|
|
int ret = 0;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (mode & PERF_EF_START) {
|
|
etm_event_start(event, 0);
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
ret = -EINVAL;
|
|
} else {
|
|
hwc->state = PERF_HES_STOPPED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void etm_event_del(struct perf_event *event, int mode)
|
|
{
|
|
etm_event_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
static int etm_addr_filters_validate(struct list_head *filters)
|
|
{
|
|
bool range = false, address = false;
|
|
int index = 0;
|
|
struct perf_addr_filter *filter;
|
|
|
|
list_for_each_entry(filter, filters, entry) {
|
|
/*
|
|
* No need to go further if there's no more
|
|
* room for filters.
|
|
*/
|
|
if (++index > ETM_ADDR_CMP_MAX)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* filter::size==0 means single address trigger */
|
|
if (filter->size) {
|
|
/*
|
|
* The existing code relies on START/STOP filters
|
|
* being address filters.
|
|
*/
|
|
if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
|
|
filter->action == PERF_ADDR_FILTER_ACTION_STOP)
|
|
return -EOPNOTSUPP;
|
|
|
|
range = true;
|
|
} else
|
|
address = true;
|
|
|
|
/*
|
|
* At this time we don't allow range and start/stop filtering
|
|
* to cohabitate, they have to be mutually exclusive.
|
|
*/
|
|
if (range && address)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etm_addr_filters_sync(struct perf_event *event)
|
|
{
|
|
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
|
|
unsigned long start, stop;
|
|
struct perf_addr_filter_range *fr = event->addr_filter_ranges;
|
|
struct etm_filters *filters = event->hw.addr_filters;
|
|
struct etm_filter *etm_filter;
|
|
struct perf_addr_filter *filter;
|
|
int i = 0;
|
|
|
|
list_for_each_entry(filter, &head->list, entry) {
|
|
start = fr[i].start;
|
|
stop = start + fr[i].size;
|
|
etm_filter = &filters->etm_filter[i];
|
|
|
|
switch (filter->action) {
|
|
case PERF_ADDR_FILTER_ACTION_FILTER:
|
|
etm_filter->start_addr = start;
|
|
etm_filter->stop_addr = stop;
|
|
etm_filter->type = ETM_ADDR_TYPE_RANGE;
|
|
break;
|
|
case PERF_ADDR_FILTER_ACTION_START:
|
|
etm_filter->start_addr = start;
|
|
etm_filter->type = ETM_ADDR_TYPE_START;
|
|
break;
|
|
case PERF_ADDR_FILTER_ACTION_STOP:
|
|
etm_filter->stop_addr = stop;
|
|
etm_filter->type = ETM_ADDR_TYPE_STOP;
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
filters->nr_filters = i;
|
|
}
|
|
|
|
int etm_perf_symlink(struct coresight_device *csdev, bool link)
|
|
{
|
|
char entry[sizeof("cpu9999999")];
|
|
int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
|
|
struct device *pmu_dev = etm_pmu.dev;
|
|
struct device *cs_dev = &csdev->dev;
|
|
|
|
sprintf(entry, "cpu%d", cpu);
|
|
|
|
if (!etm_perf_up)
|
|
return -EPROBE_DEFER;
|
|
|
|
if (link) {
|
|
ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
|
|
if (ret)
|
|
return ret;
|
|
per_cpu(csdev_src, cpu) = csdev;
|
|
} else {
|
|
sysfs_remove_link(&pmu_dev->kobj, entry);
|
|
per_cpu(csdev_src, cpu) = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(etm_perf_symlink);
|
|
|
|
static ssize_t etm_perf_sink_name_show(struct device *dev,
|
|
struct device_attribute *dattr,
|
|
char *buf)
|
|
{
|
|
struct dev_ext_attribute *ea;
|
|
|
|
ea = container_of(dattr, struct dev_ext_attribute, attr);
|
|
return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
|
|
}
|
|
|
|
static struct dev_ext_attribute *
|
|
etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
|
|
{
|
|
struct dev_ext_attribute *ea;
|
|
unsigned long hash;
|
|
int ret;
|
|
struct device *pmu_dev = etm_pmu.dev;
|
|
|
|
if (!etm_perf_up)
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
|
|
if (!ea)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* If this function is called adding a sink then the hash is used for
|
|
* sink selection - see function coresight_get_sink_by_id().
|
|
* If adding a configuration then the hash is used for selection in
|
|
* cscfg_activate_config()
|
|
*/
|
|
hash = hashlen_hash(hashlen_string(NULL, name));
|
|
|
|
sysfs_attr_init(&ea->attr.attr);
|
|
ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
|
|
if (!ea->attr.attr.name)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ea->attr.attr.mode = 0444;
|
|
ea->var = (unsigned long *)hash;
|
|
|
|
ret = sysfs_add_file_to_group(&pmu_dev->kobj,
|
|
&ea->attr.attr, group_name);
|
|
|
|
return ret ? ERR_PTR(ret) : ea;
|
|
}
|
|
|
|
int etm_perf_add_symlink_sink(struct coresight_device *csdev)
|
|
{
|
|
const char *name;
|
|
struct device *dev = &csdev->dev;
|
|
int err = 0;
|
|
|
|
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
|
|
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
|
|
return -EINVAL;
|
|
|
|
if (csdev->ea != NULL)
|
|
return -EINVAL;
|
|
|
|
name = dev_name(dev);
|
|
csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
|
|
if (IS_ERR(csdev->ea)) {
|
|
err = PTR_ERR(csdev->ea);
|
|
csdev->ea = NULL;
|
|
} else
|
|
csdev->ea->attr.show = etm_perf_sink_name_show;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
|
|
{
|
|
struct device *pmu_dev = etm_pmu.dev;
|
|
|
|
sysfs_remove_file_from_group(&pmu_dev->kobj,
|
|
&ea->attr.attr, group_name);
|
|
}
|
|
|
|
void etm_perf_del_symlink_sink(struct coresight_device *csdev)
|
|
{
|
|
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
|
|
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
|
|
return;
|
|
|
|
if (!csdev->ea)
|
|
return;
|
|
|
|
etm_perf_del_symlink_group(csdev->ea, "sinks");
|
|
csdev->ea = NULL;
|
|
}
|
|
|
|
static ssize_t etm_perf_cscfg_event_show(struct device *dev,
|
|
struct device_attribute *dattr,
|
|
char *buf)
|
|
{
|
|
struct dev_ext_attribute *ea;
|
|
|
|
ea = container_of(dattr, struct dev_ext_attribute, attr);
|
|
return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
|
|
}
|
|
|
|
int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
|
|
{
|
|
int err = 0;
|
|
|
|
if (config_desc->event_ea != NULL)
|
|
return 0;
|
|
|
|
config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
|
|
|
|
/* set the show function to the custom cscfg event */
|
|
if (!IS_ERR(config_desc->event_ea))
|
|
config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
|
|
else {
|
|
err = PTR_ERR(config_desc->event_ea);
|
|
config_desc->event_ea = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
|
|
{
|
|
if (!config_desc->event_ea)
|
|
return;
|
|
|
|
etm_perf_del_symlink_group(config_desc->event_ea, "events");
|
|
config_desc->event_ea = NULL;
|
|
}
|
|
|
|
int __init etm_perf_init(void)
|
|
{
|
|
int ret;
|
|
|
|
etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
|
|
PERF_PMU_CAP_ITRACE);
|
|
|
|
etm_pmu.attr_groups = etm_pmu_attr_groups;
|
|
etm_pmu.task_ctx_nr = perf_sw_context;
|
|
etm_pmu.read = etm_event_read;
|
|
etm_pmu.event_init = etm_event_init;
|
|
etm_pmu.setup_aux = etm_setup_aux;
|
|
etm_pmu.free_aux = etm_free_aux;
|
|
etm_pmu.start = etm_event_start;
|
|
etm_pmu.stop = etm_event_stop;
|
|
etm_pmu.add = etm_event_add;
|
|
etm_pmu.del = etm_event_del;
|
|
etm_pmu.addr_filters_sync = etm_addr_filters_sync;
|
|
etm_pmu.addr_filters_validate = etm_addr_filters_validate;
|
|
etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
|
|
etm_pmu.module = THIS_MODULE;
|
|
|
|
ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
|
|
if (ret == 0)
|
|
etm_perf_up = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void etm_perf_exit(void)
|
|
{
|
|
perf_pmu_unregister(&etm_pmu);
|
|
}
|